
Nomes:

Euller Henrique

Bruno Matos

André Oliveira

Mateus Herrera G. Borges

Wellington Silva

Henrique Costa Fernandes

Carlos Henrique

Criação e 
desenvolvimento de 

um software



O 
desenvolvimento 
de um software 

é praticamente
dividido em 3 

etapas:

• Requisitos

• Viabilidade

• Código



Requisitos

Levantamento de requisitos

(Requisitos funcionais e não funcionais)

• Essa parte do desenvolvimento possui 

o objetivo de fazer com 

os desenvolvedores e clientes 

compreendam o problema para 

pensarem em como será a solução.

• Os clientes e desenvolvedores 

tentam levantar e priorizar 

as necessidades dos futuros usuários do 

software, isto é, os requisitos.



Requisitos

Análise de requisitos

• Nessa etapa os 

desenvolvedores realizam 

um estudo aprofundado dos 

dados adquiridos 

anteriormente.



Viabilidade

• É realizada uma extensa análise para 

determinar se o software é viável.

- Viabilidade técnica : Avaliação dos recursos 

técnicos disponíveis.

- Viabilidade operacional : Avaliação da eficácia 

da solução proposta.

- Viabilidade econômica: Avaliação do custo para 

desenvolver o software.



Código
Primeira etapa: 

Criar Algoritmos
Algoritmos

• Instruções concisas e precisas dadas ao computador.
• São utilizados em qualquer linguagem de programação 

(JAVA, C , C++, HASKELL).

• Precisa respeitar determinas regras para ser 
interpretado corretamente :

1. Nenhuma linha pode ser ambígua;
2. Os comandos devem estar nos lugares certos;

• Podem ser escritos em pseudocódigo, fluxograma ou 
em alguma linguagem de programação.

• Os algoritmos são extremamente úteis e estão 
presentes no cotidiano das pessoas.

• É necessário realizar um conjunto significativo de casos 
testes para determinar se o algoritmo está correto.



• O pseudocódigo é uma forma genérica de escrever um 

algoritmo, ou seja, utiliza-se uma sintaxe simples que pode ser 

entendida por qualquer pessoa .

• O pseudocódigo serve para que seja possível entender 

determinado algoritmo sem saber nenhuma regra específica 

pertencente à alguma linguagem de programação

MMC
1 leia o número natural N1
2 leia o número natural N2
3 resto <- resto (N1/N2)
4 X1 <- N1
5 X2 <- N2
6 enquanto resto =/ 0 faça
7 N1 <- N2
8 N2 <- resto
9 resto <- resto(N1/N2)
10 fim enquanto
11 MDC <- N2
12 MMC <- X1 * X2 / MDC
12 escreva " MMC =", MMC

Pseudocódigo



• O fluxograma é visual e intuitivo, 
tornando-se assim um jeito ainda 

mais fácil de se entender um 
algoritmo.

Fluxograma



Algoritmo em C MMC
1# include <stdio.h>
2 int main (void) {

3 unsigned int N1 = 0;
4 unsigned int N2 = 0;
5 unsigned int resto = 0;
6 unsigned int X1 = 0;
7 unsigned int X2 = 0;
8
9 scanf ("%u", & N1);
10 scanf("%u", & N2);
11 resto = (N1 % N2);
12 X1 = N1;
13 X2 = N2;

14 while (resto != 0 ) {
15 N1 = N2;
16 N2 = resto;
17 resto = (N1%N2);
18 }
19 MDC = N2;
20 MMC = X1 *X2 / MDC;

21 printf ("MMC = %u\n", MMC);
22 return 0;
22 }



CÓDIGO
Terceira etapa :

Determinar a linguagem que será 
utilizada e codificar o software nesta 

linguagem

Conceito
• Linguagem de programação é o meio que se 

utiliza para "conversar" com o computador, 
de forma que seja possível interagir e 

programar a máquina para que ela realize 
determinas tarefas com precisão. 

• Existem diversas linguagens, 
entretanto todas possuem o mesmo 

objetivo, isto é, possibilitar a interação 
entre o homem e a máquina de maneira 

eficiente por meio de códigos.

• Como cada linguagem foi feita para atender 
uma necessidade especifica, não é possível 
caracterizar em "melhores e piores", devem 
ser utilizadas de acordo com a necessidade 

da situação.



Qual a diferença ? Qual escolher ?

• É possível realizar quase tudo com uma mesma
linguagem, porém fazer isso não é 
eficiente. Exemplo: utilizar assembly, uma
programação de baixo nível, para escrever "Hello 
world", seria o mesmo de usar um garfo para tomar
sopa, é possível mas não é eficiente.

•Algumas linguagens são direcionadas a objetos, como
C++, C#, Java, etc. Já outras linguagens são 
direcionadas ao uso de strings com maior facilidade, 
como por exemplo: LUA



Linguagens Modelo de 
execução

Paradigma principal Aplicações

C Compilação Estruturada, Procedimenta
l, Orientada por fluxo

É bastante usada para criar softwares para aparelhos 
pequenos e dispositivos que contam com a Internet das 
Coisas (IoT).

C++ Compilação Principalmente orientada a 
objetos, múltiplos 

paradigmas

É bastante utilizado no desenvolvimento de softwares 
mais pesados, como sistemas integrados (CRM), 
aplicações que promovem interação entre cliente e 
servidor ou jogos para computador.

Objective-C Compilação Principalmente orientada a 
objetos, Refletiva, Passage

m de mensagens

Linguagem standard (padrão) para o desenvolvimento de 
aplicações mobile para iPhone (iOS).

Python Interpretação Orientada a objetos É principalmente utilizado para processamento de textos, 
dados científicos e criação de CGIs para páginas 
dinâmicas para a web.

C# Interpretação 
e compilação

Orientada a objectos, 
múltiplos paradigmas

É bastante utilizado na área de desenvolvimento de 
games.

Java Interpretação 
e compilação

Orientada a objetos Desenvolvimento de aplicações Android e diversos 
sistemas e softwares em organizações.

PHP Interpretação Orientada a objetos Criação de web sites e outras aplicações WEB



#include <stdio.h>
int main()
{

// printf() displays the string inside quotation
printf("Hello, World!");
return 0;

}

DATA SEGMENT
MESSAGE DB "HELLO WORLD!!!$"

ENDS
CODE SEGMENT

ASSUME DS:DATA CS:CODE
START:

MOV AX,DATA
MOV DS,AX
LEA DX,MESSAGE
MOV AH,9
INT 21H
MOV AH,4CH
INT 21H

ENDS
END START

Exemplos:
C Assembly



CÓDIGO

Conceito
• Compilador é um software 

que traduz um 
programa escrito em 
linguagem de alto nível 
para uma linguagem de 
baixo nível.

Como funciona

O processo de compilação 
ocorre em 6 fases:
• 1. Análise Léxica;

• 2.Análise Sintática;

• 3.Análise Semântica;

• 4.Geração de código 
intermediário;

• 5.Otimização de código;

• 6.Geração de código 
objeto;

Terceira etapa: 
compilar



1. Análise 
Léxica

• Nesta fase é lida cada carácter do código fonte e verifica se eles 

pertencem ao alfabeto da linguagem, comentários e espaços em 

branco são descartados, os caracteres são convertidos 

em tokens com base em uma tabela de símbolos, formando 

uma sequência de tokens.

2. Análise 
Sintática

• A análise sintática analisa se a sequência de tokens formada na 
análise léxica forma comandos válidos à linguagem de programação.

3. Análise 
Semântica

• Nesta fase da compilação os comandos e instruções são analisados 
para garantir a funcionalidade, a integridade e a coerência do 

programa para que possa ser convertido para baixa linguagem.



4. Geração do código 
intermediário

• Nesta fase é gerada uma sequência de 
código, que posteriormente gerará o 

código objeto.

5. Otimização 
de código

• Nesta fase o código é otimizado 
em termos de consumo de 
memória e velocidade de 

execução.

6. Geração do 
código objeto

• Esta é a última fase do processo de 
compilação, onde após a verificação de 
que não há erros sintáticos 
e semânticos o compilador gera, a 
partir do código intermediário, o 
código objeto final.



Opcionais :
O software pode ser feito em um IDE

CÓDIGO

• Conceito

• IDE é um software em que é 
possível digitar códigos fonte 
de maneira simplificada.

• Funcionalidades

• A principal função da IDE é 
facilitar e agilizar o processo 
de digitação de código fonte.

• Principais Funcionalidades

• Editor de Texto;

• GUI Builder;

• Debugger;

• Compilador

• Exemplos de IDE

• Bluefish (Open
Source);

• Microsoft 
Visual Studio 
(Microsoft);

• Xcode (Apple).



Código

Opcionais:
o código pode ser 

Open Source

• Conceito

Modelo de desenvolvimento livre, que permite à qualquer pessoa 
analisar, modificar, consultar e distribuir o código para 
que outros possam fazer a mesma coisa, sem cobrar uma taxa 
por isso.

•História
O termo surge em uma reunião em 1998 entre pessoas que 
futuramente se tornaram referências no assunto, entre eles Todd 
Anderson, Chris Peterson, Jon “Maddog” Hall, Larry Augustin, Sam 
Ockman e Erick Raymond.
Com o cunho desse termo, fica claro que o objetivo dos 
desenvolvedores era evitar questões éticas, como o direito autoral e 
fornecer para as empresas um produto comercial.



•Mercado
Um estudo da Oxford mostrou que 80% das empresas que foram entrevistadas usavam o softwares de código 
aberto, entre outras grandes empresas de tecnologia do mercado como Microsoft, IBM, HP, Intel e Dell.
Muito se acreditava que por ter seu código fonte distribuído gratuitamente o esperado era que as pessoas iriam 
estragar o produto, como hackers tentando criar janelas para quebrar a segurança de algum software.
Mas o que ocorre é o contrário, um caso que pode ser colocado é o do Linux, que antes de ser lançado 
oficialmente passou por uma versão beta aberto, onde milhares de pessoas puderam adquiri-la, identificar seus 
erros, sugerir e fazer melhorias antes de seu lançamento oficial.



Open Source x Software Livre

•O software livre garante 4 liberdades ao usuário:
1.Liberdade de executar o programa como desejar, 
para qualquer propósito.
2.A liberdade de estudar como o programa funciona, 
e adaptá-lo a suas necessidades.
3.A liberdade de redistribuir cópias de modo que 
você possa ajudar o próximo.
4.Liberdade de distribuir cópias de suas versões 
modificadas a outros, de modo que toda 
comunidade possa beneficiar.

•Diferença
A diferença é que Open Source simplesmente quer dizer 
que o código fonte do programa está aberto para 
consulta, e dependendo da vontade do criador 
para distribuição e redistribuição sob determinadas 
características.
O que vai determinar essa vontade é a licença que 
acompanha o programa.​
O Software Livre implica a não propriedade do software, 
o Open Source pode ter um dono, como por exemplo os 
drivers da Nvidia que são Open Source hoje em dia, com 
o código fonte podendo ser acessado por terceiros mas 
somente quem vai promover alterações nele é a própria 
Nvidia.



• Na década de 80 cada fabricante tinha sua própria API, construir aplicações que fossem suportadas
em diferentes hardwares era um desafio. Após a criação de diversas API que não foram bem aceitas
pelo mercado como PHIGS e IRIS GL e em 92 é lançado o padrão OpenGL que é mantido por um 
conselho de empresas que decidem as especificações e quais recursos são adicionados a cada
versão.

Desenvolvimento de API

• Suas inovações para época: • Permitir que as fabricantes criassem extensões, que caso fossem 
interessantes para a comunidade, se tornavam parte do programa padrão. 

• Muitos hardwares não eram bons o suficiente para executarem todo padrão, por isso criaram
extensões de software que emulavam as funcionalidades permitindo que as aplicações
funcionassem pela falta de um recurso ou outro.

• Apesar de atualmente estar perdendo espaço para a API Direct3D, a OpenGL vem sendo muito 
utilizada por empresas de games que querem adaptar seus jogos do computador para o console.

OpenGL



• Oque é API
é um conjunto de 

rotinas e padrões de 
programação para 
acesso a um aplicativo 
de software ou 
plataforma baseado na 
Web.

• Como é usada
Esta interface é o 
conjunto de padrões de 
programação que 
permite a construção 
de aplicativos e a sua 
utilização de maneira 
não tão evidente para 
os usuários

CÓDIGO

Opcionais : o código pode ter 
API



•API de maneira simples
​Uma vida sem padrões definitivamente seria mais complicada e podemos usar diversas comparações para mostr
ar como as APIs facilitam diversos processos nesse sentido. Uma analogia interessante é com o sistema elétrico
de uma casa. Da mesma forma que um aparelho utiliza a eletricidade da concessionária através de uma tomada
elétrica, uma aplicação pode utilizar dados ou funcionalidades de um serviço através de uma API. Para ilustrar 
melhor, se não houvesse plugues, teríamos que ligar os cabos dos aparelhos eletrônicos diretamente nas 
estruturas elétricas da casa. Para isso, seria necessário possuir as ferramentas específicas para retirar todos os 
cabos para fora da parede, emendar com o cabo do aparelho a ser utilizado e guardar tudo de novo. Isso sem 
contar a necessidade de conhecer as especificidades de cada tipo de cabo elétrico e aparelho. Seria uma 
bagunça imensurável!





• O Web Service é utilizado para integração entre sistemas, possibilitando interações 
independente do sistema operacional ou linguagem de programação dos mesmos. Isso é 
possível pois apesar de cada sistema ou aplicação utilizar sua própria linguagem, 
essa interação é traduzida para uma linguagem universal.

CÓDIGO

Opcionais :
o código pode ter 

Web Service



Como funciona:

▪ A aplicação solicita uma operação. O Web Service se comunica com 
o banco de dados e retorna o que foi requisitado pela aplicação em 
uma linguagem universal. A aplicação recebe os dados, faz uma 
interpretação e os converte para a sua própria linguagem.



• O Web Service depende de uma linguagem intermediaria para se comunicar com o sistema que faz a 
requisição, como o SOAP (Simple Object Access Protocol) e o REST (Representational State Transfer).

• O SOAP utiliza XML para enviar mensagens e, geralmente, serve-se do protocolo HTTP para 
transportar os dados. Associado ao protocolo SOAP está o documento WSDL (Web Service 
Definition Language) que descreve a localização do Web Service e as operações que 
dispõe, fornecendo a informação necessária para que a comunicação entre sistemas seja possível.

• O REST, protocolo mais recente, tem por objetivo simplificar o acesso aos Web Services. Baseia-se 
no protocolo HTTP e permite utilizar vários formatos para representação de dados, como JSON, XML, RSS, 
etc. Tem como grandes vantagens sua flexibilidade, já que não limita os formatos de representação de 
dados e performance, uma vez que é um protocolo ágil e com a capacidade de transmitir dados 
diretamente via protocolo HTTP.

SOAP E REST



Sedex

• Sites de compras utilizam Web Service para localizarem o CEP, calcularem valor do frete e o tempo de 
entrega de uma mercadoria. Ao informar o CEP ou o nome da rua a aplicação solicita ao Web Service que 
busque no banco de dados do Sedex as informações de endereço, calculo do frete ,se o produto for enviado 
via Sedex, e o tempo de entrega.



Do que os correios 
precisam?

• Código da sua empresa, se você tiver contrato com os correios saberá qual é esse código… Ele é 
opcional, se não tiver apenas envie o parâmetro em branco.
• Senha de acesso ao serviço. Geralmente é os 8 primeiros números do CNPJ correspondente ao código 
administrativo, caso não tiver é só passar o parâmetro em branco
• CEP de origem, no caso o CEP de onde sai à encomenda. Esse parâmetro precisa ser numérico, ou seja, 
você deverá formatar ele para que não entre o “-“ (hífen) espaços ou algo diferente de um número.
• CEP de destino, é o CEP do comprador, para onde irá o produto, esse parâmetro também é somente 
números.
• O peso do produto deverá ser enviado em quilogramas, leve em consideração que isso deverá incluir o 
peso da embalagem.
• Formato da encomenda, nesse caso tem apenas duas opções: 1 para caixa / pacote e 2 para 
rolo/prisma.
• O comprimento, altura, largura e diâmetro deverá ser informado em centímetros e somente números.
• Mão própria, nesse parâmetro você informa se quer a encomenda deverá ser entregue somente para 
uma determinada pessoa após confirmação por RG. Use “s” para declarar e “n” para não declarar.



O valor declarado serve para o caso de sua encomenda extraviar, então você poderá recuperar o valor dela. 
Vale lembrar que o valor da encomenda interfere no valor do frete. Se não quiser declarar pode passar 0 
(zero).
• No parâmetro aviso de recebimento, você informa se quer ser avisado sobre a entrega da encomenda. Para 
não avisar use “n”, para avisar use “s”.
• Podemos informar qual formato queremos que a consulta seja retornada, podendo ser:
1. Popup – mostra uma janela pop-up
2. URL – envia os dados via post para a URL informada
3. XML – Retorna a resposta em XML
Por fim o código do serviço. 
• 40010 SEDEX Varejo.
• 40045 SEDEX a Cobrar Varejo.
• 40215 SEDEX 10 Varejo.
• 40290 SEDEX Hoje Varejo.
• 41106 PAC Varejo.

Do que os 
correios precisam?



•Alguns dos benefícios do Web Service são:
•Integração de informação e sistemas, já que seu funcionamento depende essencialmente de 
tecnologia XML/JSON e protocolos HTTP, simplificando a comunicação entre sistemas independente 
de plataformas e linguagens de programação
•Redução de tempo de desenvolvimento e custos já que os sistemas não são construídos do zero e 
pode-se incluir funcionalidades com facilidade
•Maior segurança pois o Web Service evita a comunicação direta com a base de dados.

Benefícios


