
Continuous Integration(CI) e Continuous
Delivery/Continuous Deployment(CD)
Os conceitos Continuous Integration(CI) e Continuous Delivery/Continuous Deployment(CD) são práticas para
desenvolvimento de software que permitem a integração e entrega do código de forma contínua. De modo a
permitir a redução no tempo de entrega de novas funcionalidades e correções de bugs, além de aumentar a
qualidade e velocidade do desenvolvimento de software.

Continuous Integration(CI)
Continuous Integration é uma prática de desenvolvimento de software onde cada desenvolvedor envolvido no
processo deve realizar commits de forma frequente, de modo que o código seja integrado ao repositório
principal de forma contínua. Para isso, são utilizadas ferramentas de automatização para realizar processos
como building e testes de forma automática. Algumas das principais ferramentas utilizadas para Continuous
Integration são Jenkins, Github Actions, CircleCI, Travis CI, etc.

Continuous Delivery/Continuous Deployment(CD)
Continuous Delivery e Continuous Deployment são práticas de desenvolvimento de software que tem como
objetivo automatizar o processo de entrega de software. Ambas as práticas consistem em automatizar o
processo de build e testes.

A diferença entre essas práticas é que Continuous Delivery consiste em automatizar o processo de build e
testes de forma que o software possa ser entregue manualmente, enquanto Continuous Deployment consiste
em automatizar o processo de build e testes de forma que o software possa ser entregue automaticamente.

Fluxo de Trabalho com CI/CD
A imagem abaixo ilustra um fluxo de trabalho com CI/CD.

Ferramentas
Na tabela abaixo, são listadas algumas das ferramentas CI/CD mais utilizadas:

Nome Plataformas suportadas
Tipo de
hospedagem

Open
Source

Possui versão
gratuita?

Github
Actions

Linux, Windows e macOS Nuvem ✔ ✔

Jenkins Linux, Windows e macOS Auto-hospedagem ❌ ✔

CircleCI
Linux, Windows, macOS, GPU,
ARM e Docker

Nuvem e Auto-
hospedagem

❌ ✔

Travis CI Linux, macOS e iOS
Nuvem e Auto-
hospedagem

❌ ❌

Fonte: Best Continuous Integration Tools for 2023 ‒ Survey Results

Após pesquisas realizadas com 26,348 desenvolvedores em 2023 pela JetBrains, foi possível obter os
seguintes resultados em relação às ferramentas CI/CD mais utilizadas:

Nome Uso Pessoal Uso Profissional Total

Github Actions 37% 29% 51%

https://blog.jetbrains.com/teamcity/2023/07/best-ci-tools/

Nome Uso Pessoal Uso Profissional Total

Jenkins 12% 50% 54%

CircleCI 5% 7% 11%

Travis CI 5% 4% 9%

Fonte: Team Tools - The State of Developer Ecosystem in 2023 Infographic

A partir disso, é possível perceber que o Github Actions é a ferramenta mais utilizada para CI/CD para uso
pessoal, enquanto o Jenkins é a ferramenta mais utilizada para uso profissional. Isso é explicado pelo fato de
que o Github Actions possui uma versão gratuita e é facilmente integrado com o Github(ferramenta de
versionamento mais utilizada, de acordo com a pesquisa), facilitando o uso pessoal, enquanto o Jenkins é
uma ferramenta mais robusta, com vários plugins e que pode ser auto-hospedada, o que facilita o uso
profissional devido a questões de infraestrutura e possibilidade de customização.

Vantagens e Desvantagens
Na tabela abaixo, são listadas algumas vantagens e desvantagens da utilização de CI/CD.

Vantagens Desvantagens

Risco reduzido Necessidade de mudanças culturais e organizacionais

Tempo de Revisão mais curto

Caminho mais suave para a produção

Correções de bug mais rápidas

Infraestrutura eficiente

Progresso mensurável

Loops de feedback mais curtos

Colaboração e comunicação

Fonte: Quais são os benefícios da CI/CD?

Implementando CI/CD com Github Actions
Após listadas as diversas ferramentas CI/CD, será demonstrado como implementar um fluxo utilizando o
Github Actions. O Github Actions é uma ferramenta de CI/CD que permite a criação de fluxos de CI/CD de
forma simples e integrada com o Github, permitindo a execução de builds, testes, deploy, etc. em diversas
plataformas, como Linux, Windows e macOS. Como foi visto anteriormente, o Github Actions é a ferramenta
mais utilizada para CI/CD para uso pessoal, devido à sua facilidade de uso e integração com o Github.

Para isso, será utilizado um projeto simples em Java, que pode ser encontrado no link a seguir:

github-actions-ci-cd

https://www.jetbrains.com/lp/devecosystem-2023/team-tools/
https://www.jetbrains.com/pt-br/teamcity/ci-cd-guide/benefits-of-ci-cd/
https://github.com/DaviLacerda/github-actions-ci-cd

O projeto consiste no desenvolvimento de um contador simples e foram feitos alguns testes unitários para
validar seu funcionamento. O contador e seus respectivos testes podem ser encontrados nos seguintes
arquivos:

Contador: Counter.java
Testes: CounterTest.java

Criando um fluxo de CI/CD

Para criar um fluxo de CI/CD utilizando o Github Actions, é necessário criar um arquivo de configuração do
fluxo. Esse arquivo deve ser criado no diretório .github/workflows do repositório. O nome do arquivo deve
seguir o padrão nome-do-fluxo.yml.

Dentro desse repositório, já existe um diretório .github/workflows, que contém os arquivos de
configuração do Github Actions. O arquivo build-and-publish.yml contém o fluxo de CI/CD que será
utilizado.

Para executá-lo da maneira que foi pensado, é necessário criar algumas chaves de acesso no GitHub.

Criando chave de acesso ao Github Packages

Para criar um token de acesso ao Github Packages, deve-se seguir os seguintes passos:

1. Acessar as configurações do Github
2. Acessar a aba Developer settings
3. Acessar a aba Personal access tokens / Tokens (classic)
4. Clicar em Generate new token / Generate new token (classic)
5. Preencher o campo Note com MAVEN_TOKEN_KEY
6. Marcar a opção write:packages
7. Clicar em Generate token

Configurando uma variável de ambiente

Um variável de ambiente MAVEN_TOKEN_KEY deve ser criada no repositório, contendo um token de acesso ao
Github Packages(criado no passo anterior). Para isso, deve-se seguir os seguintes passos:

1. Acessar as configurações do repositório
2. Acessar a aba Secrets and variables
3. Clicar em New repository secret
4. Preencher o campo Name com MAVEN_TOKEN_KEY
5. Preencher o campo Value com um token de acesso ao Github Packages
6. Clicar em Add secret

Configurando o fluxo

O arquivo build-and-publish.yml contém o seguinte conteúdo:

name: Build and Publish Java Packages

https://github.com/DaviLacerda/github-actions-ci-cd/blob/main/src/main/java/com/example/github_actions/Counter.java
https://github.com/DaviLacerda/github-actions-ci-cd/blob/main/src/test/java/com/example/github_actions/CounterTest.java

on:
 push:
 branches: ["main"]
 pull_request:
 branches: ["main"]

jobs:
 build:
 runs-on: ubuntu-latest
 steps:
 - uses: actions/checkout@v3
 - name: Set up JDK 17
 uses: actions/setup-java@v3
 with:
 java-version: "17"
 distribution: "temurin"
 - name: Build with Maven
 run: mvn -B package --file pom.xml
 publish:
 needs: build
 runs-on: ubuntu-latest
 permissions:
 packages: write
 contents: read
 steps:
 - uses: actions/checkout@v3
 - name: Set up JDK 17
 uses: actions/setup-java@v3
 with:
 java-version: "17"
 distribution: "temurin"
 - name: Publish to GitHub Packages Apache Maven
 run: mvn --batch-mode deploy
 env:
 GITHUB_TOKEN: ${{ secrets.MAVEN_TOKEN_KEY }}

O arquivo acima contém as seguintes configurações:

name: Nome do fluxo
on: Eventos que disparam o fluxo

push: Push no repositório
branches: Branches que disparam o fluxo

pull_request: Pull Request no repositório
branches: Branches que disparam o fluxo

jobs: Jobs que serão executados
build: Nome do job

runs-on: Sistema operacional que o job será executado(ubuntu-latest: executado em uma
máquina virtual com Ubuntu)
steps: Passos que serão executados

uses: Ação que será executada
name: Nome do passo

with: Parâmetros da ação
run: Comando que será executado

publish: Nome do job
needs: Job que deve ser executado antes desse job
runs-on: Sistema operacional que o job será executado(ubuntu-latest: executado em uma
máquina virtual com Ubuntu)
permissions: Permissões que o job terá

packages: Permissões de acesso ao Github Packages
contents: Permissões de acesso ao repositório

steps: Passos que serão executados
uses: Ação que será executada
name: Nome do passo
with: Parâmetros da ação
run: Comando que será executado
env: Variáveis de ambiente que serão utilizadas

Resultados

Após a criação do fluxo, ao realizar um push no repositório/pull request no repositório, o fluxo será
executado. O resultado da execução pode ser visto na imagem abaixo:

Ao clicar em uma das execuções, é possível ver um resumo dos jobs executados, como na imagem abaixo:

Nele, é possível ver que o job publish foi executado após o job build, devido à configuração needs:
build.

Além disso, ao ir na aba Packages do repositório(na seção Code), é possível ver que o pacote foi publicado
no Github Packages, como na imagem abaixo:

Referências
What is CI/CD?
Team Tools - The State of Developer Ecosystem in 2022 Infographic
Team Tools - The State of Developer Ecosystem in 2023 Infographic
TeamCity CI/CD Guide
CI/CD explicados: suas diferenças e o que você precisa saber | Unity
What is CI? - Continuous Integration Explained - AWS
What is continuous deployment? | IBM
Integração contínua vs. Entrega contínua vs. Implementação contínua

https://www.redhat.com/en/topics/devops/what-is-ci-cd
https://www.jetbrains.com/lp/devecosystem-2022/team-tools/
https://www.jetbrains.com/lp/devecosystem-2023/team-tools/
https://www.jetbrains.com/teamcity/ci-cd-guide/
https://unity.com/pt/solutions/what-is-ci-cd
https://aws.amazon.com/devops/continuous-integration/?nc1=h_ls
https://www.ibm.com/br-pt/topics/continuous-deployment
https://www.atlassian.com/br/continuous-delivery/principles/continuous-integration-vs-delivery-vs-deployment

