UNIVERSIDADE FEDERAL DE UBERLANDIA

Jhalia Graziella de Souza Rodrigues

Validacao de Dependéncias Funcionais em
Grafos

Uberlandia, Brasil

2018



UNIVERSIDADE FEDERAL DE UBERLANDIA

Jhalia Graziella de Souza Rodrigues

Validacao de Dependéncias Funcionais em Grafos

Trabalho de conclusao de curso apresentado
a Faculdade de Computacao da Universidade
Federal de Uberlandia, Minas Gerais, como
requisito exigido parcial a obtencao do grau
de Bacharel em Ciéncia da Computagao.

Orientador: Maria Adriana Vidigal de Lima

Universidade Federal de Uberlandia — UFU
Faculdade de Computacao

Bacharelado em Ciéncia da Computacao

Uberlandia, Brasil
2018



Jhalia Graziella de Souza Rodrigues

Validacao de Dependéncias Funcionais em Grafos

Trabalho de conclusao de curso apresentado
a Faculdade de Computacao da Universidade
Federal de Uberlandia, Minas Gerais, como
requisito exigido parcial a obtencao do grau
de Bacharel em Ciéncia da Computagao.

Trabalho aprovado. Uberlandia, Brasil, 18 de dezembro de 2018:

Maria Adriana Vidigal de Lima
Orientador

Luiz Claudio Theodoro
Convidado 1

Paulo Henrique Ribeiro Gabriel
Convidado 2

Uberlandia, Brasil
2018



Resumo

Dependéncias funcionais (DFs) sao utilizadas no projeto de bancos de dados relacionais
para definir que o valor de um conjunto de atributos deve depender do valor de outro
conjunto de atributos. As DFs integram a teoria das bases de dados e fundamentam o
projeto conceitual de dados, a otimizacao de consultas e a prevencao de inconsisténcias
na atualizacdo de dados. Este trabalho pretende: (i) estudar as dependéncias de dados
no contexto dos bancos de dados em grafos, considerando uma classe de dependéncias
denominada Graph Entity Dependencies (GEDs) e (ii) criar uma API Java para a escrita
e validagao das GEDs utilizando a linguagem Cypher e 0o SGBDG NoSQL Neo4j.

Palavras-chave: dependéncias funcionais, banco de dados, grafos, validagao.



Lista de ilustracoes

Figura 1 — Exemplo de grafo e digrafo. . . . . . ... ... ... ... ... .... 12
Figura 2 — Exemplo de multigrafo e multidigrafo. . . . . . .. ... ... ... .. 13
Figura 3 — Exemplo de grafos etiquetados. . . . . . . ... ... ... 14
Figura 4 — Exemplo de grafo de propriedades Rodriguez e Neubauer (2010).. . . . 15
Figura 5 — Uma pequena rede de usuarios do Twitter (POKORNY, 2015). . ... 17
Figura 6 — Um grafo descrevendo os relacionamentos entre trés amigos (NEO4J,
2016). . . . 20
Figura 7 — Padroes de grafo (FAN; LU, 2017). . . . ... ... ... ... .. ... 22
Figura 8 — Exemplo de grafo. . . . . . . ... ... o 24
Figura 9 — Criagdo de um novo projeto. . . . . . . . . . . . .. ... .. 27
Figura 10 — Criagdo de um novo banco de dados em grafo. . . . . . . .. .. .. .. 27
Figura 11 — Criacao de um banco de dados em grafo local. . . . . . . ... ... .. 28
Figura 12 — Configuragdo de Nome e Senha do novo banco de dados em grafo. . . . 28
Figura 13 — Inicializa¢do do banco de dados em grafo. . . . . . ... .. ... ... 29
Figura 14 — Gerenciamento do banco de dados. . . . . . . . .. ... ... .. ... 30
Figura 15 — Visualizacao dos dados do banco. . . . . . . .. ... .. .. ... ... 31
Figura 16 — Diagrama de classes do projeto. . . . . . . . .. .. ... .. ... ... 32

Figura 17 — Base de dados utilizada. . . . . . .. .. ... ... ... ... ... 48



Lista de tabelas

Tabela 1 — Exemplo de Banco de Dados Relacional . . . . ... ... ... .. ..



Lista de abreviaturas e siglas

ACID Atomicidade, Consisténcia, Isolamento e Durabilidade
API Application Programming Interface

ASCII American Standard Code for Information Interchange
DF Dependéncia Funcional

GDC Graph Denial Constraints

GED Graph Entity Dependency

ID Identificador

IDE Integrated Development Enviornment

SGBD Sistema de Gerenciamento de Banco de Dados

SGBDG Sistema de Gerenciamento de Banco de Dados em Grafo
SGBDR Sistema de Gerenciamento de Banco de Dados Relacional Durabilidade

SQL Structured Query Language

UML Unified Modeling Language



Lista de simbolos

Conjunto vazio
Correspondéncia

Diferenca

Pertence

Valor falso do tipo de dado primitivo Booleano
Letra grega Gama

Igualdade

Implicacao

Conjunto dos nimeros naturais
Letra grega mintscula Phi
Satisfacao

Letra grega Sigma

Para todo

Letra grega Upsilon



1.1
1.2

2.1
2.2
2.3
23.1
2.4
24.1
2.5

3.1
3.2
3.3
3.4
3.5

4.1

4.1.1
4.1.2
413
4.2

421
4.2.2
423
424
4.2.5
4.2.6
4.2.7
4.2.8
429
4.3

Sumario

INTRODUCAO . . . .. ittt e e e et e et e et e 10
Objetivos . . . . . . . . .. 11
Organizacdo do Trabalho . . . . . . . .. ... ... ... .. ..... 11
FUNDAMENTACAO TEORICA . . . .. .. ... ... 12
Grafos . . . . .. 12
Bancodedados . . . . . . .. ..o 15
Restricoes de Integridade . . . . . . . . . ... ... L. 17
Dependéncias Funcionais . . . . . . . . . . . ... ... 18
SGBDG Neodj . . . . . . . . . . . 19
Linguagem Cypher . . . . . . . . . .. 19
Trabalhos correlatos . . . . . . . ... ... ... L. 21
GRAPH ENTITY DEPENDENCIES . . . ... ... ... ...... 22
Padraode Grafo . . . . . . . . . ... . 22
Dependéncia Funcional . . . . . . . ... ... ... . ......... 23
Exemplosde GEDs . . . . . . . . .. ... 24
Satisfatibilidade . . . . . . . .. ... 25
Limitacicoda GED . . . . . . . . ... ..o 25
DESENVOLVIMENTO . . ... . ... . ittt it et 26
Configuracao e conexao ao bancodedados . . . . . . ... ... .. 26
Criacdo de um novo banco de dados em grafo . . . . . . . .. . ... ... 26
Conexdo a um banco de dados ativo . . . . . . .. ... .. ... ..... 29
Adicdo de entidades e relacionamentos ao banco . . . . .. ... ... .. 30
Implementacao . . . . .. .. ... 31
Interface Literal . . . . . . . . . ... 31
Classe ConstantLiteral . . . . . . . . . . ... ... ... ... ...... 32
Classe VariableLiteral . . . . . . . . . . . ... ... ... ..., 34
Classe IdLiteral . . . . . . . . . . . . ... 35
Classe Falseliteral . . . . . . . . . . ... .. . . ... . 36
Classe FunctionalDependency . . . . . . . . ... ... ... ....... 37
Classe GED . . . . . . . . . . 38
Classe Validator . . . . . . . . . . . . . . . . 39
Aplicacdo . . . . .. 40
Testesde GEDs . . . . . . . . . . . ... 46



5

CONCLUSAO

REFERENCIAS



10

1 Introducao

Um grafo é uma abstracao muito ttil na representacao de problemas computacio-
nais e na sua solugao, pois permite estabalecer relacoes de interdependéncia entre elemen-
tos de um conjunto. Um banco de dados para grafos é um sistema de armazenamento que
utiliza estruturas com vértices e arestas para representar e armazenar dados. O modelo
mais comumente utilizado de grafos no contexto de bancos de dados em grafos é o grafo de
propriedades (ROBINSON; WEBBER; EIFREM, 2015; MARGITUS; TAUER,; SUDIT,
2015). Um grafo de propriedadees contém entidades conectadas, sendo que cada entidade
pode possuir um nimero de propriedades (ou atributos) expressos em pares chave-valor.
Vértices e arestas podem ser etiquetados com rotulos que representam os diferentes papéis

(ou tipos) no dominio da aplicagao.

Os bancos de dados em grafos e suas tecnologias, e a analise baseada em grafos
aplicada a grandes conjuntos de dados nao estruturados, foram consideradas por Pokorny
(2015) como umas das mais interessantes areas de pesquisa da atualidade. Como exemplo
de big graph pode-se citar o Facebook com 1 bilhao de nés e 140 bilhoes de ligacoes, neces-
sitando de armazenamento eficiente e algoritmos de processamento especiais (MADAN;

SAXENA, 2014 apud POKORNY, 2015).

Os bancos de dados em grafos tém foco no processamento de dados altamente
conectados, na flexibilidade dos modelos de dados e na performance da recuperacao de
informagao e sao frequentemente incluidos entre as bases de dados NoSQL. As bases de
dados em grafos tém entdao a responsabilidade de processar de forma eficiente densos
conjuntos de dados e de utilizar os relacionamentos entre os dados para prover anélises

de correlagoes e padroes de dados. .

Fan e Lu (2017) propoem uma classe de dependéncia de dados para grafos, de-
nominada Graph Entity Dependency ou GED. Uma GED combina um padrao de grafo
com uma dependéncia de propriedade (ou atributo). Utilizando um formato uniforme, as
GEDs expressam as dependéncias funcionais usando literais constantes (strings) que sao
uteis para capturar inconsisténcias nos dados. Além disso, pode-se definir dependéncias

de dados utilizando atributos identificadores (ids) para distinguir entidades em um grafo.

Neste contexto, o presente trabalho propoe o estudo das dependéncias de dados
GEDs nos bancos de dados em grafos e a implementacao, em linguagem Java, de uma
Application Programming Interface (API) para defini¢do e validacao de GEDs. O ambi-
ente de trabalho proposto utiliza APIs do Sistema de Gerenciamento de Banco de Dados

em Grafos (SGBDG) Neo4j e a sua linguagem de consulta correspondente, denominada
Cypher (NEO4J, 2018).



Capitulo 1. Introdugdo 11

1.1 Objetivos

O objetivo geral deste trabalho é utilizar a teoria de GEDs proposta em Fan e
Lu (2017) para implementar a validacdo de dependéncias funcionais em um banco de
dados em grafo. Para a especificacao das dependéncias funcionais, serao definidas classes
especificas numa API de forma que se possa, em conjunto com o SGBDG Neodj e a
linguagem Cypher, especificar dependéncias baseadas em padroes de grafos e utiliza-las

para analisar a coeréncia e a qualidade dos dados.

1.2 Organizacao do Trabalho

Para uma melhor separacao e compreensao do contetdo, os proximos capitulos

deste trabalho estao organizados da seguinte maneira:

e O Capitulo 2 apresenta os conceitos basicos necessarios para compreensao do tra-

balho, bem como uma breve analise de trabalhos correlatos;

e O Capitulo 3 descreve as GEDs em mais detalhes e apresenta os conceitos especificos

necessarios para entendé-las;

e O Capitulo 4 mostra como o trabalho foi desenvolvido desde a etapa da configuragao
do ambiente até a parte de implementacao do projeto. Nele estao presentes o dia-
grama de classes e todos os codigos-fonte do projeto. Na tltima sessao deste capitulo
sao apresentados os testes realizados afim de verificar a corretude do algoritmo de

validacao;

e O Capitulo 5 expoe as conlusoes e consideragoes finais do trabalho, além de propos-

tas para continuacao do mesmo.



12

2 Fundamentacao Tedrica

2.1 Grafos

Grafo é uma estrutura de dados composta por um conjunto de vértices interligados
por um conjunto de arestas. Dependendo da aplicagao, as arestas podem ou nao ser

direcionadas.

Definig¢ao 2.1.1. Grafo - Um grafo G é um par (V| E), onde

e I/ é um conjunto finito de vértices; e

e F é um conjunto finito de arestas, onde cada par nao-ordenado (v, vs) representa

uma aresta entre vy e vg, vl # v2 e (v1,v9 € V).

Defini¢ao 2.1.2. Digrafo - Um digrafo (ou grafo direcionado) G é um par (V, E) onde

e IV é um conjunto finito de vértices; e

e [ é um conjunto finito de arcos (ou arestas direcionadas), onde cada par ordenado

(v1,v9) representa um arco que parte de v; em diregdo a vq, v1 # v2 e (vy, vy € V).

Grafo Digrafo

Figura 1 — Exemplo de grafo e digrafo.
Em teoria dos grafos, um grafo ou digrafo é simples se ele ndao tem lagos e nao
possui mais de uma aresta ligando dois vértices. Um multigrafo é um grafo que nao é

simples e um multidigrafo é um digrafo que nao é simples, ou seja, em multigrafos e

multidigrafos é permitida a existéncia de lagos e de arestas multiplas.

Definig¢ao 2.1.3. Multigrafo - Um multigrafo G' é um par (V, E), onde

e IV é um conjunto finito de vértices; e



Capitulo 2. Fundamentacio Teorica 13

e [/ é um multiconjunto finito de arestas, onde cada par nao-ordenado (vq,vy) repre-

senta uma aresta entre vy e vy, (v1,v9 € V).

Definig¢ao 2.1.4. Multidigrafo - Um multidigrafo G é um par (V, E) onde

e IV é um conjunto finito de vértices; e

e [ é um multiconjunto finito de arcos (ou arestas direcionadas), onde cada par

ordenado (vq,vy) representa um arco que parte de vy em diregdo a vy, (v1,v2 € V).

Multigrafo Multidigrafo

Figura 2 — Exemplo de multigrafo e multidigrafo.

Um grafo etiquetado é um grafo em que seus vértices ou arestas, ou ambos, possuem

etiquetas. Multigrafos e Multidigrafos também podem ser etiquetados, de modo similar.

Definicao 2.1.5. Grafo Etiquetado - Um grafo etiquetado G é uma séxtupla
(v7 Ev ZV7 ZE; LV, LE) onde

e IV é um conjunto de vértices;

e [ é um conjunto finito de arestas, onde cada par nao-ordenado (vy,vy) representa

uma aresta entre vy e vy, v1 # v2 e (vy,v9 € V);
e Xy e X sao alfabetos finitos de etiquetas de vértices e arestas, respectivamente; e

e Ly e Lg sao fungdes que descrevem a etiquetagem de vértices e aretas, respectiva-

mente.

Um grafo com atributos é um grafo que possui atributos associados aos vértices ou
arestas, ou ambos. De acordo com Margitus, Tauer e Sudit (2015), um grafo com atributos
onde os atributos sao representados no formato chave-valor também é chamado de Grafo

de Propriedades.

Definigao 2.1.6. Grafo com Atributos (MARGITUS; TAUER; SUDIT, 2015) - Um grafo
com atributos G é uma quadrupla (V, E, Ay, Ag) onde



Capitulo 2. Fundamentacio Teorica 14

Figura 3 — Exemplo de grafos etiquetados.

e IV é um conjunto de vértices;

e [/ é um conjunto finito de arestas, onde cada par nao-ordenado (vq,vy) representa

uma aresta entre vy e vy, v1 #£ v2 e (v, v9 € V);

e Ay e Ag sdo conjuntos de atributos sobre os vértices e sobre as arestas, respectiva-

mente.

Um homomorfismo de um grafo G em um grafo G’ é um mapeamento entre os
dois grafos que preserva suas arestas, ou seja, toda aresta que existe em G deve ter uma

aresta correspondente em G'.

Defini¢ao 2.1.7. Homomorfismo - Um homomorfismo de um grafo G = (V, E) em um
grafo G' = (V' E’) é um mapeamento f : V' — V' do conjunto de vértices de G para o
conjunto de vértices de G', tal que se existe uma aresta e = (v1,v9) € E entao deve existir

obrigatoriamente uma aresta ¢’ = (f(vy), f(v2)) € E'.

De acordo com Rodriguez e Neubauer (2010) um grafo de propriedades é um
multigrafo direcionado, etiquetado e com atributos. Ou seja, num grafo de propriedades
as arestas sao direcionadas, podem haver lacos e miultiplas arestas entre dois vértices,
vértices e arestas possuem etiquetas e pares de atributos chave-valor associados, conforme

grafo ilustrado na Figura 4.

Neste trabalho utilizou-se a defini¢do de grafo encontrada em Fan e Lu (2017): um
grafo de propriedades é um grafo em que vértices e arestas possuem etiquetas, porém,
apenas vértices possuem atributos. Além dos conjuntos V e E (para vértices e arestas)
estao presentes também os I', T e U, que sdo conjuntos infinitos contaveis de etiquetas,

atributos e constantes, respectivamente.

Definigao 2.1.8. Grafo (FAN; LU, 2017) - Um grafo G é uma quadrupla (V, E, L, F),

onde



Capitulo 2. Fundamentacio Teorica 15

nam-a Ciongtruct. .. name=3Eraph...
type=article type=article
name=alberto =
type=person ﬂ
inend
e name=marko name=peter
name=rpi ype=persan hype=person
type=university
llaboret
friend collaboretor riand
atiends
ﬁe;u";izm? I'|E|I'I1E=|L'rﬂl'|
t'!n'F*'E FECd

Figura 4 — Exemplo de grafo de propriedades Rodriguez e Neubauer (2010).

e I/ é um conjunto finito de vértices;

e F é um conjunto finito de arestas, onde (vy, [, v9) representa uma aresta direcionada

de vy até vy, (v1,v92 € V') e que possui uma etiqueta | € T';

Cada vértice v € V possui uma etiqueta L(v) € T'; e

Cada vértice v € V' possui uma tupla Fy(v) = (41 = a4,..., A, = a,) de atributos
finita, onde A; € T e a; € U, escrita como v.4; = a;, e A; # Aj se i # j. Cada v

obrigatoriamente possui um atributo especial ud.

2.2 Banco de dados

Um banco de dados ¢ basicamente um conjunto de informacoes organizadas. No
modelo relacional, os dados sao armazenados em uma ou mais tabelas que se relacionam
entre si. A Tabela 1 apresenta parte de um banco de dados relacional que representa um

conjunto de cinemas e filmes.

Segundo Penteado et al. (2014), os Sistemas Gerenciadores de Banco de Dados Re-
lacionais (SGBDRs) dominaram o meio empresarial e académico durante décadas porque
a modelagem de dados no modelo relacional é intuitiva, ha uma linguagem padronizada

de consulta e manipulagdo de dados, e as propriedades ACID (Atomicidade, Consistén-



Capitulo 2. Fundamentacio Teorica 16

Filmes | Titulo Diretor

Os Guardioes da Galaxia James Gunn
Seu Nome Makoto Shinkai
Pantera Negra Ryan Coogler

Horarios | Cinema Tela Titulo
Cinépolis 1 Os Guardioes da Galaxia
Cinépolis 2 Os Guardioes da Galaxia
Cinépolis 3 Pantera Negra
Cinépolis 4 Pantera Negra
Cinemark 1 Seu Nome
Cinemark 2 Seu Nome
Cinemark 3 Pantera Negra
Cinemark 4 Os Guardioes da Galaxia

Tabela 1 — Exemplo de Banco de Dados Relacional

cia, Isolamento e Durabilidade) sdo garantidas em diversas aplicagoes. Mas apesar desses

beneficios, aplica¢oes baseadas em modelos de dados complexos podem ter problemas.

Ainda segundo Penteado et al. (2014), o banco de dados em grafos surgiu como
uma alternativa ao banco de dados relacional parar dar suporte a sistemas cuja interco-
nectividade de dados ¢ importante. De acordo com Pokorny (2015), o modelo de banco
de dados relacional foi inicialmente projetado para representar formularios de papel e
estruturas tabulares e funciona muito bem nesses cendrios, mas tem muita dificuldade
para representar os relacionamentos especificos, irregulares e excepcionais que aparecem

no mundo real.

Formalmente, um grafo é apenas uma colecao de vértices e arestas. Os grafos
representam entidades como vértices e os relacionamentos como arestas. Esta estrutura

expressiva e de proposito geral permite modelar todo e qualquer tipo de cenario.

Por exemplo, as informacoes de redes sociais como Twitter e Facebook podem ser
representadas facilmente com o uso de grafos. Na Figura 5 é representada uma pequena
rede de usuarios do Twitter. Os vértices representam usuarios e possuem a propriedade
“nome” e a etiqueta “usuario”, as arestas representam relacionamentos e possuem a eti-

queta “segue”.

Uma base de dados pode ser representada de diferentes formas dependendo do
modelo de grafo escolhido, e o modelo mais utilizado entre os SGBDGs atuais é o grafo
de propriedades (PENTEADO et al., 2014), descrito na presente segao.



Capitulo 2. Fundamentacio Teorica 17

FOLLOWS

name: Ruth L FOLLOWS

Figura 5 — Uma pequena rede de usuarios do Twitter (POKORNY, 2015).

2.3 Restricoes de Integridade

Em diversas aplicagoes, a qualidade dos dados armazenados ¢ de grande importan-
cia para que resultados precisos e corretos possam ser obtidos através de consultas. O uso
de restrigoes de integridade sobre os dados tem o objetivo de melhorar a qualidade dos
dados e sao aplicadas no momento da insercao dos dados e da modificagdo dos mesmos.
Em qualquer estado do banco de dados, todas as restricoes devem ser satisfeitas para
que os dados estejam de acordo com a qualidade desejada. As restrigoes de integridade
comumente suportadas e utilizadas em bancos de dados convencionais sao as de domi-
nio, integridade de entidade, estrutura de atributo e integridade referencial (ELMASRI;
NAVATHE, 2010).

As restri¢oes de integridade garantem consisténcia dos dados, mas nao a corretude.
Por exemplo, uma restricao de integridade pode ser criada para garantir que um atributo
“idade” seja sempre um numero natural: isso garante que nao haverd idade negativa, mas

nao garante que a idade inserida esteja correta.

O problema de restrigoes de integridade estda bem consolidado na area de bancos
de dados relacionais. Porém, no contexto do armazenamento de dados em grafos, um
novo desafio foi estabelecido para o campo das restri¢oes de integridade considerando
a necessidade de se estabelecer regras capazes de tratar as especificidades dos dados
em grafos e seus relacionamentos (ROBINSON; WEBBER; EIFREM, 2015; SESTAK;
RABUZIN; NOVAK, 2016; FAN; LU, 2017). Em Sestak, Rabuzin e Novak (2016) as
questoes de implementagao de restrigcoes de integridade em grafos sao discutidas e duas
abordagens sao apresentadas: implementagao integrada ao SGBD e implementacao em
uma camada separada. Neste trabalho, optou-se por desenvolver uma API em uma camada
separada, em que pudessem ser utilizados os plugins do SGBDG Neo4j e da linguagem

Cypher.
Angles e Gutierrez (2008 apud SESTAK; RABUZIN; NOVAK, 2016) identificaram



Capitulo 2. Fundamentacio Teorica 18

varios exemplos de restrigoes de integridade importantes para bancos de dados em grafo:

e Consisténcia esquema-instancia: Previne que informagoes incompletas ou nao exis-
tentes sejam inseridas no banco de dados e implica que a instancia deve conter

apenas as entidades e relacionamentos previamente definidos no esquema.

e Redundancia de dados: Reduz a quantidade de informagoes redundantes armazena-

das no banco de dados.

e Integridade de identidade: Similarmente a restricdo de chave primaria do modelo
relacional, garante que cada n6é do banco de dados represente uma entidade tinica
do mundo real que possa ser identificada por um ID ou um conjunto de valores de

atributos.

e Integridade referencial: De forma similar a restricdo de chave secundaria do modelo
relacional, garante que apenas entidades existentes no banco de dados possam ser

referenciadas.

e Dependéncias Funcionais: Permitem testar se o fato de alguma entidade determinar

o valor de outra é respeitado no conjunto dos dados.

2.3.1 Dependéncias Funcionais

Uma dependéncia funcional é uma restricao entre dois subconjuntos de atributos
de um banco de dados. Seja R o conjunto de atributos R = {4, Ay, A3, ... A,} de um

banco de dados relacional e sejam X e Y dois subconjuntos de R.

Define-se que X determina funcionalmente Y (ou que Y depende funcionalmente
de X) se, e somente se, V t1,to € R : 11[X] = t5[X] = t;[Y] = t2[Y]. Denota-se que
X determina funcionalmente Y por X — Y. Por exemplo, na Tabela 1 tem-se que
Titulo — Diretor, pois para cada valor de “Diretor” h4 apenas um valor de “Titulo”

correspondente.

Os SGBDGs atuais para grafos ndo possuem suporte para a definicdo explicita
e o uso de dependéncias funcionais. Segundo Sestak, Rabuzin e Novak (2016), para as
duas linguagens populares utilizadas em bancos de dados em grafos, Cypher e Gremlin,
o suporte para restrigoes de integridade de ambas é minimo. Fan e Lu (2017) apresen-
tam formalmente uma classe de dependéncias funcionais para grafos, chamadas de Graph
Entity Dependencies, que sao capazes de expressar dependéncias funcionais em bancos de

dados em grafos.



Capitulo 2. Fundamentacio Teorica 19

2.4 SGBDG Neo4;

Neo4j ¢ um banco de dados em grafo nativo NoSQL de c6digo aberto implementado
em Java e Scala. Ele comecou a ser implementado em 2003 mas sé se tornou disponivel

publicamente a partir de 2007.

Neo4j é considerado um banco de dados em grafo nativo porque ele implementa
eficientemente o modelo de grafo de propriedades até o nivel de armazenamento. Isso
quer dizer que os dados sao armazenados exatamente como podem ser representados num
quadro branco, e o banco de dados usa ponteiros para navegar e percorrer o grafo. O
Neo4j também fornece caracteristicas completas de banco de dados, como conformidade
as transacoes ACID, suporte a clusters e tolerancia a falhas, tornando adequado usar

grafos de dados em cenarios de producao.

Segundo Neo4j (2018), alguns dos seguintes recursos tornam o Neo4j popular entre

desenvolvedores, arquitetos e administradores de bancos de dados:

e Cypher, uma linguagem de consulta declarativa similar ao SQL, mas otimizada para
grafos. Também utilizada por outros bancos de dados como SAP HANA Graph e
Redis Graph através do projeto openCypher (MARTON; SZARNYAS:; VARRO,
2017).

e Percurso em tempo constante em grafos grandes tanto para percurso em profundi-
dade quanto em largura, devido a representacao eficiente de nés e relacionamentos.

Permite escalar para bilhoes de nés em hardware moderado.

e Esquema de grafo de propriedades flexivel que pode se adaptar ao longo do tempo,
possibilitando materializar e adicionar novos relacionamentos mais tarde, de modo

a acelerar os dados do dominio quando as necessidades do neg6cio mudarem.

e Drivers para linguagens de programacao populares, como Java, JavaScript, .NET,

Python e varias outras.

2.4.1 Linguagem Cypher

Cypher ¢ a linguagem de consulta aberta do Neo4j. A sintaxe do Cypher fornece
uma maneira familiar de combinar padrées de nés e relacionamentos no grafo. E uma
linguagem declarativa de consulta construida sobre os conceitos basicos e clausulas do
SQL, mas com funcionalidades especificas de grafo adicionais, tornando-a simples de se

trabalhar junto a um modelo rico de grafo mas sem ser verbosa demais.

A Cypher foi projetada para ser facilmente lida e compreendida. Ela é simples por-
que corresponde a maneira como sao descritos intuitivamente os grafos usando diagramas.

A nocao basica é permitir que o usuario encontre dados que correspondam a um padrao



Capitulo 2. Fundamentacio Teorica 20

especifico, e a maneira que esse padrao é descrito se parece com um desenho usando arte
em ASCII (NEO4J, 2016).

name:lan |, name: Jim

Figura 6 — Um grafo descrevendo os relacionamentos entre trés amigos (NEO4J, 2016).

Por exemplo, para expressar o padrao do grafo da Figura 6 no Cypher, usa-se a
consulta (emil)<-[:KNOWS]-(jim)-[:KNOWS]->(ian)-[:KNOWS]->(emil).

As restrigoes de integridade que podem ser atualmente suportadas na linguagem

Cypher sobre os vértices sao:

1. Atributo identificador: é possivel definir um (ou mais atributos) como sendo chave,

com a seguinte sintaxe:

CREATE CONSTRAINT ON (E:rotulo_vertice)
ASSERT (E.nome atributo) IS NODE KEY

Define-se o rotulo do vértice que recebera a restricao, associando-o a uma variavel

(E) e define-se o atributo de E que recebera a restricaio NODE KEY.

2. Atributo tnico: pode-se definir um atributo de um rétulo de vértice com valor tinico

a partir da sintaxe:

CREATE CONSTRAINT ON (E:rotulo_vertice)
ASSERT E.nome atributo IS UNIQUE

sendo que E é uma variavel representando o rotulo e apds o termo ASSERT ¢é definido

o atributo que receberd a restricio UNIQUE.

3. Atributo fixo: pode-se definir um atributo com existéncia obrigatéria em um vértice

através da sintaxe:

CREATE CONSTRAINT ON (E:rotulo_vertice)
ASSERT exists(E.nome atributo)



Capitulo 2. Fundamentacio Teorica 21

sendo que E é uma variavel representando o rétulo para simplificar o comando e
define-se o atributo de E que deverd existir e possuir um valor neste determinado

campo.

Mais informagodes sobre a linguagem Cypher podem ser encontradas no seu manual

de referéncial.

2.5 Trabalhos correlatos

Sestak, Rabuzin e Novak (2016) discutem o suporte para restri¢oes de integridade
de bancos de dados em grafo, a partir das linguagens Cypher e Gremlim, as mais popula-
res para SGBDs em grafo, e demonstram que é minimo. O trabalho apresenta os desafios
de implementacao técnica para restrigoes de integridade em grafos, considerando as abor-
dagens em camada e integrada a um SGBD para que restri¢coes de integridade possam ser
definidas e validadas sobre os dados, garantindo mais qualidade e consisténcia as bases
de dados. Foi proposta a implementagao de uma aplicacao web, construida utilizando-se
o framework Spark para Java, com acesso a uma base de dados Neodj e a linguagem
Gremlim para a execugdao de consultas aos dados. Foi implementada uma restricao do

tipo UNIQUE, ainda nao suportada pela linguagem Gremlim.

Em Rabuzin, Konecki e Sestak (2016), uma nova restricdo de integridade é pro-
posta para bases de dados em grafos, denominada check integrity constraint, que previne
que usuarios entrem com valores fora de um intervalo pré-definido para um atributo,

associado a um vértice. Esta restricao ¢ implementada como uma camada adicional ao

SGBDG Neo4j.

O trabalho de Fan e Lu (2017) propoe a classe GED de dependéncias para grafos,
que ¢ definida como a combinagao de um padrao de grafo e uma dependéncia de atributos,
com o objetivo de representar dependéncias funcionais em grafos. O autor aborda os
problemas de satisfagdo, implicacao e validagdo de GEDs e estabelece a complexidade de

cada um. As GEDs foram utilizadas como base para a presente proposta.

L https://neodj.com/docs/cypher-manual /current /



22

3 Graph Entity Dependencies

A proposta deste trabalho é desenvolver a classe GED em Java afim de criar e

validar dependéncias funcionais em grafos. Neste capitulo os conceitos de GED serao
apresentados em mais detalhes.

Uma Graph Entity Dependency (GED) é uma combinagao de um padrao de grafo
() como uma restri¢ao topologica e uma dependéncia funcional X — Y com conjuntos X
e Y de literais de igualdade. O padrao @ identifica um conjunto de entidades no grafo e

a dependéncia funcional X — Y ¢ aplicada sobre essas entidades (FAN; LU, 2017).

Definicao 3.0.1. GEDs (FAN; LU, 2017) Uma GED ¢ ¢ definida como Q[z](X — Y),

onde:

e Q[z] é um padrao de grafo; e

e X — Y é uma dependéncia funcional onde X e Y sdo dois conjuntos (possivelmente
vazios) de literais de Z.

Como mencionado na Secao 2.1, neste trabalho é utilizada a Definicao 2.1.8 de
grafo e existem existem trés conjuntos infinitos contaveis, I', T e U que representam

respectivamente etiquetas, atributos e constantes.

3.1 Padrao de Grafo

Um padrao de grafo é basicamente um conjunto de vértices e arestas etiquetados,

que sao enumerados como um conjunto de varidveis. Na Figura 7 ha alguns exemplos de
padroes de grafo.

y b

I €T ' : x
person — person o account account
[ ] [ ] ' .
: . like
crepte 'is_a| iichild pafent;:
P @ :
l)""‘l.h“'1 b ,-. e : person |1 blog t e blog blog hl()g‘:
T . (,;J.y Cl’}_ly 1y Yy E L wl yk ~1 29
Qv i Q2 “ Q3 Q4 = Qs '

..............................................................................

Figura 7 — Padroes de grafo (FAN; LU, 2017).



Capitulo 3. Graph Entity Dependencies 23

Definigao 3.1.1. Padrao de Grafo (FAN; LU, 2017) Um padrao de grafo é um grafo
direcionado Q[7] = (Vg, Eq, Lg), onde

e 1 ¢ um conjunto finito de vértices do padrao;

e [/ é um conjunto finito de arestas do padrao;

L é uma funcdo que atribui uma etiqueta Lg(v) para cada né v € Vg; e

T denota os vértices em Vy como uma lista de variaveis.

As etiquetas dos vértices e arestas do padrao sao as etiquetas do conjunto I', além

14

da etiqueta coringa “_ 7 que é uma etiqueta especial de ) que corresponde a qualquer

etiqueta em I'.

Defini¢ao 3.1.2. Correspondéncia (FAN; LU, 2017) Dizemos que uma etiqueta l; cor-

2

responde a lo, denotado por [y < Iy, se l1,lb €"ely =1ly,ousels €llely =

Uma correspondéncia do padrao Q[Z] no grafo G é um homomorfismo h de @) para
G, tal que para cada n6é v € Vg, Lg(v) < L(h(u)); e para cada aresta e = (vy,l,v2) em
@), existe uma aresta € = (h(vy),l',h(v2)) em G tal que [ < [I'. Pode-se observar que
quando [; é a etiqueta coringa “_” pode existir mais de uma aresta €’ tal que [ < ['. A

correspondéncia escolhe uma dessas arestas e a denota como h(I}}).

Quando é claro pelo contexto, a correspondéncia também pode ser denotada como
um vetor h(T) de entidades identificadas pelo padrao @ no grafo G, onde h(T) consiste

de h(z) para todas as variaveis x € T.

Por exemplo, considerando o padrao de grafo (); da Figura 7 e o grafo da Figura 8,
onde o vértice verde representa um pais e os vértices amarelos representam cidades que sao
capitais deste pais, as correspondéncias no formato h(z) = (z,y, z) do padrao de grafo Q,

para o grafo da imagem sao h(T) = (country, cityl, city2) e h(T) = (country, city2, cityl).

3.2 Dependéncia Funcional

Dentro da definicdo de GEDs, uma dependéncia funcional X — Y é composta por

dois conjuntos (possivelmente vazios) X e Y de literais de 7.

Um literal de T, para z,y € T pode ser (FAN; LU, 2017):

1. Literal Constante x.A = ¢, onde ¢ é uma constante de U e A é um atributo de T
diferente de id;

2. Literal de Varidvel v.A = y.B, onde A e B sao atributos de T diferentes de id; e

3. Literal de Id x.1d = y.id.



Capitulo 3. Graph Entity Dependencies 24

city 1

country

city2

Figura 8 — Exemplo de grafo.

3.3 Exemplos de GEDs

Fan e Lu (2017) apresentam exemplos de GEDs utilizando os padroes de grafo

definidos na Figura 7 e suas aplicacoes, alguns sao listados abaixo:

1. GED ¢ = Q1[z,y](z.type = “videogame”— y.type = “programmer”) Essa GED
impoe que um videogame s6 pode ser criado por um programador. Isso impede
a atribuicdo da criacdo de um videogame para uma pessoa de outra profissdao, que
coincidentemente tenha alguns atributos semelhantes ao programador que realmente

criou.

2. GED ¢y = Qs[x,y, 2](0 — y.name = z.name) Essa GED impoe que, se existir mais
do que um vértice etiquetado como “Cidade” representando a capital de um pais,
todos esses vértices devem possuir o mesmo nome. Isso impede que um pais possua

mais de uma capital, enquanto permite redundancia de informacoes.

3. GED ¢3 = Qs[z,yl(x.A=2.A — y.A=1x.A) Essa GED diz que, se y “¢é um” z e x

tem a propriedade A, entdao y herda essa propriedade e possui o mesmo valor.

4. GED ¢, = Q4lz,y](0 — false) Essa GED impoe que o padrao de grafo Qs é
invalido, por ser absurdo. Nenhuma “pessoa” pode ser simultaneamente mae e filha

de outra “pessoa”. Essa GED pode ser utilizada para detectar essa falha.

5. GED 5 = Qslz, 2,21, 20,y1, ..., yk] (X5 — Y5), onde X5 = {2'.is_fake = 1,
z1.keyword = ¢, zy.keyword = ¢} e Y5 = {w.is_fake = 1} e ¢ é uma constante.
Essa GED pode ser utilizada pra detectar contas falsas. Para contas e blogs que
correspondam a @5, se a conta z’ for confirmada como falsa e ambos os blogs z1 e

z2 conterem uma keyword especifica ¢, entdo = também é uma conta falsa.



Capitulo 3. Graph Entity Dependencies 25

3.4 Satisfatibilidade

Para interpretar a GED ¢ = Q[z](X — Y), Fan e Lu (2017) utiliza as seguintes
notagoes. Considerando uma correspondéncia h(T) de Q num grafo G, e um literal | de
7. E dito que h(Z) satisfaz I, denotado como h(z) k=1, se:

1. quando [ é um literal constante x.A = ¢, entdo o atributo A existe no né v = h(x)

ev.A=c

2. quando [ é um literal de varidvel z.A = y.B, entdo o atributo A existe em v; = h(z)

e o atributo B existe em vy = h(y) e v1.A = v9.B; e

3. quando [ é um literal de id z.id = y.id, entdo h(x) e h(y) se referem ao mesmo

vértice, ou seja, eles possuem o mesmo conjunto de atributos e arestas.

Denota-se por h(Z) = X se a correspondéncia h(ZT) satisfaz todos os literais [ € X.
Em particular, se X = 0, entdo h(7) E X.

Escreve-se h(Z) = X — Y se h(ZT) = X implica em h(Z) |= Y. Isto significa que,
quando h(Z) = X — Y, se h(ZT) E X entdo obrigatoriamente h(Z) E Y.

Um grafo G satisfaz a GED ¢ = Q[z](X — Y), denotada por G = ¢, se para
todas as correspondéncias h(Z) de Q em G, h(T) E X — Y.

3.5 Limitacao da GED

Pode-se observar que os atributos nao sao especificados no padrao de grafo e que
sao considerados grafos sem esquema. Por isso, para um literal constante z.A = ¢, o n6
h(x) da correspondéncia h(T) ndo possui necessariamente o atributo A. Quando x.A = c é
um literal em X, se h(x) ndo possui o atributo A, entao h(T) trivialmente satisfaz X — Y
pela definigao de satisfacdo (se h(Z) nao satisfaz X, h(T) nao precisa satisfazer Y para
satisfazer X — Y. Mas se x.A = ¢ for um literal em Y, entao para que h(Z) =Y o vértice
h(x) deve ter obrigatoriamente o atributo A. O mesmo ocorre para outros tipos de literais
(FAN; LU, 2017).

Assim é possivel criar uma GED Qz]() — x.A = x.A) para obrigar que todas
as entidades do padrao ) tenham obrigatoriamente o atributo A. Isso é 1til para, por
exemplo, assegurar que todos os vértices de um grafo etiquetados como “Pessoa” possuam
o atributo “nome”, definindo o padrao de grafo () como um tnico vértice com etiqueta
“Pessoa” e o atributo A como “nome”. Mas utilizando apenas GEDs nao é possivel im-
por que o atributo x.A tenha um dominio finito, por exemplo N, o que representa uma

limitacao em relagao a um esquema de banco de dados.



26

4 Desenvolvimento

A implementacao da GED foi feita na linguagem Java utilizando a IDE Eclipse,
a ferramenta Apache Maven' para gerenciar o projeto e o SGBDG Neodj. Um ponto
positivo de trabalhar com o Neo4j ¢ que, utilizando o aplicativo Neo4j Desktop?, é possivel

visualizar o banco de dados e os resultados das consultas.

O plugin Neo4j Java Driver 2 foi utilizado para conectar e interagir com o banco de
dados do Neo4j. Ele é um driver oficialmente suportado pelo Neo4j que se conecta ao banco
de dados utilizando o protocolo binario. Para adicionar o Neo4j Java Driver utilizando o

Maven basta adicionar as seguintes linhas de codigo no arquivo de configuragdo pom.xml:

<groupld>org.neo4j.driver</groupIld>
<artifactId>neo4j-java-driver</artifactId>

<version>1.4.4</version>

O Maven é responsavel por baixar e configurar as bibliotecas do driver automa-
ticamente para que sejam utilizadas no projeto. Com esse driver é possivel se conectar
em um banco de dados do Neodj ativo e executar consultas ou fazer modificagoes nele.

Inicialmente é preciso criar um novo banco de dados no Neo4j.

4.1 Configuracao e conexao ao banco de dados

4.1.1 Criacdo de um novo banco de dados em grafo

Utilizando o aplicativo Neo4j Desktop, cria-se um novo projeto clicando em New

na aba Projects (Figura 9).

https://maven.apache.org/
https://neodj.com/developer/neodj-desktop/
https://neodj.com/developer /java/#neodj-java-driver

2
3



Capitulo 4. Desenvolvimento 27

File Edit View Window Help Developer
‘L.' Projects
Y Project

@

Add Application

NewGraph

Neodj 3.4.1 Nodes 366
Labels &

Relationships 523

Relationship types 12

Active database

Manage Start

Figura 9 — Criagao de um novo projeto.

Em seguida, cria-se um novo banco de dados em grafo nesse novo projeto clicando
em Add Graph (Figura 10).

File Edit View Window Help Developer

m Projects

(% Project

[ Project 1 @

Add Application

Add Graph

Active database

Figura 10 — Criacao de um novo banco de dados em grafo.

O usuario pode escolher entre criar um grafo local ou se conectar a um grafo
remoto, para a implementacao deste trabalho a primeira opc¢ao foi escolhida clicando em

Create a Local Graph (Figura 11).



Capitulo 4. Desenvolvimento 28

File Edit View Window Help Developer

[1] Projects

Y Project
M Project 1 @

Add Application

Create a Local Graph
Connect to Remote Graph

Active database

Cancel

Figura 11 — Criagdo de um banco de dados em grafo local.

Ao criar um grafo local o usuario deve escolher um nome e uma senha para o grafo
e clicar em Create (Figura 12). Neste trabalho foi utilizada a palavra “Graph” como
nome e senha do grafo criado, mas é recomendavel a escolha de uma senha mais segura

se privacidade for uma preocupacao.

File Edit View Window Help Developer
A Projects

[ Project

(™ Project 1

®

Add Application

‘Graph Name

= Graph

Set Password

& eeses

341 -

Active database

Figura 12 — Configuracao de Nome e Senha do novo banco de dados em grafo.

Apés a criagdo do banco de dados, é possivel inicid-lo clicando em Start (Fi-

gura 13). Sé é permitido se conectar a um banco de dados que esteja ativo no momento.



Capitulo 4. Desenvolvimento 29

File Edit View Window Help Developer
Projects

(9 Project

[A Project 1

®

Add Application

Graph @

Neodj 3.4.1 Nodes 0
Labels 0

Relationships 0

Relationship types 0

Active database

7 Manage [ start

Figura 13 — Inicializacao do banco de dados em grafo.

4.1.2 Conexao a um banco de dados ativo

O plugin Neo4j Java Driver foi usado para conectar a um banco de dados ativo.

Todas as informagoes sobre as classes e métodos desse plugin podem ser encontradas em
sua APT 4.

Para isso deve-se criar um novo objeto da interface Driver®, que ¢ um acessador
para um banco de dados especifico do Neo4j, usando como parametros o nimero da porta

Bolt e as informagoes de autentica¢do (nome de usudrio e senha).

Driver driver = GraphDatabase.driver(

bolt_port, AuthTokens.basic(username, password));

O ntimero da porta Bolt do banco de dados pode ser visualizado clicando no botao

Manage do grafo ativo no Neo4j Desktop, na aba Details (Figura 14).

Depois que a conexao é estabelecida, cria-se uma nova sessao. Uma sessao fornece
um contexto de trabalho para interacdes no banco de dados, hospedando uma série de
transacoes que serao realizadas nele. Para isso, basta criar um novo objeto da interface

Session®.

Session session = driver.session();

Consultas e modificagoes no banco de dados podem ser feitas como uma transacao

por meio dessa sessao, enviando um comando na linguagem Cypher para o banco. Observe

4
5
6

https://neodj.com/docs/api/java-driver/current/
https://neodj.com/docs/api/java-driver/current/org/neodj/driver/v1/Driver.html
https://neodj.com/docs/api/java-driver/current/org/neodj/driver/v1/Session.html



Capitulo 4. Desenvolvimento 30

File Edit View Window Help

o

Projects

(" Project

(™ Project 1

Active database

W Project 1

Developer

>

Graph
> ) [[2) Open Folder | + Iff‘.l Open Browser
Details Logs Terminal Settings Plugins Upgrade
Administration
Version 3.4.1 Enterprise
Status RUNNING
Nodes 0

Labels 0
Relationships 0
0

Relationship

types

IP address localhost
Bolt port 7687
HTTP port 1474

HTTPS port 1473

= Graph

Figura 14 — Gerenciamento do banco de dados.

que também é possivel consultar e modificar o banco rodando comandos diretamente no
Neo4j Desktop.

4.1.3 Adicao de entidades e relacionamentos ao banco

Para adicionar entidades e relacionamentos ao banco, a sessao criada anteriormente

¢ utilizada para enviar comandos CREATE pela aplicacao.

Session session =

driver.session();

String query = "CREATE (a:person name: ’Jhulia’, type: ’programmer’)\r"

+

+ + 4+ o+ o+ o+

"CREATE
"CREATE
"CREATE
"CREATE
"CREATE
"CREATE
"CREATE

session.run(query) ;

(b:person name: ’Arthur’, type: ’engineer’)\r"
(c:person name: ’Leticia’, type: ’engineer’)\r"
(x:product name: ’0Olympic’, type: ’videogame’)\r"
(y:product name: ’0livia’, type: ’bridge’)\r"
(a)-[:create]->(x)\r"

(b)-[:create]->(y)\r"

(c)-[:create]->(y)\r";

Apods a execucao do comando run acima o banco de dados possui cinco novas

entidades e trés novos relacionamentos, que podem ser visualizados no Neo4j Desktop

como mostrado na Figura 15.



(@23

~N O

Capitulo 4. Desenvolvimento 31

File Edit Wiew Window Help Developer

$ MATCH (n) RETURN n w0 A~ 00 X
Lersoncs)

Displaying 5 nodes, 3 relationships

Figura 15 — Visualizacao dos dados do banco.

4.2 Implementacao

Nesta sessao serao descritas todas as classes criadas no projeto, toda a implemen-
tacdo foi feita na linguagem Java. E possivel ter uma visio geral da API observando o

diagrama de classes UML da Figura 16.

4.2.1 Interface Literal

A interface Literal define um método que todas as classes que a implementa-
rem devem definir. O método isSatisfiedBy(Record r) verifica se a correspondéncia r

satisfaz o literal ou nao.

Listing 4.1 — "Literal.java"
1 package pg.graph;

3 import org.neo4dj.driver.vl.Record;

public interface Literal {
public boolean isSatisfiedBy (Record r);



Capitulo 4. Desenvolvimento 32

==lava Class»»

==Java Class== @GED
©App pg-graph
pg-graph

o graphPatternc String

g?n::fj()'mid GCGED(String  FunctionalDependency )
GSW[HHQD}:VG‘CI @ getGraphPattern{)-Siring

— @ getFunciionalDependency():FunctionalDependency
@ setGraphPattern(String):void

<<java Class>> @ setFunciionalDependency(FunctionalDependency ) v oid
(= validator
pg-graph
& Validator()
@ validate(Session GED)boolean -functionalDependency (0.1
=<Java Class>>
<<lava Class>= (9 FunctionalDependency
(S Helper pg-graph
o gren @ FunctionalDe pendency({Literall] Lierall])
GCHBI per() scFunctiﬂnaIDB pendency(AmraylList=Literal> ArrayList=<Literak)
espars eLiteralFromSiring( String)-Literal @ getLeftSet{).ArrayList<Literal>
@'formatl it erals(ArrayList=Literal=):Siring @ getRightSet()-ArrayList<Literal>
GsprintGED(GED} vaid @ sefl efiSet{ArrayList<Lkerak=)-void
as example1()-GED @ setRightSet{ArrayList<Literak-):void
e'exa miple2():GED @ leftSetls SatisfiedBy{Record)-boolean
esexa mple3()-GED @ rightSetks SatisfiedBy(Record):boolean
Gsexa miple4()-GED @ isSatisfiedBy(Record)-boolean

==lava Class=»
(® VariableLiteral «<Java nterfaces=
pg-graph leftset @3 Literal —rightSet
o label: String 0 Pa.graph 0+
lattinitcllShg 1] @ isSatisfiedBy(Record)-toolean
o label2: String «{1 B SV
o atiribute2: String ==Java Class>>
gc\fariabJBLitBral(String | String, Siring, Siring) I ) @ FalseLiteral
© getLabel1()String e
@ getAtiributel{):String <=Java Class>= <<Java Class== (;cFaIseLitBral()
@ getl abel?()-String G ConstantLiteral GldLiteral @ isSatisfiedBy(Record):boolean
@ getAtiribute2():Skring g green B @ toString()-String
@ setlabali(String) waid o labek Siring o label: Siring
© sethtiribute 1 (String) v aid o affribute: String o label2: String
@ setLabel2(String)-vaid BT ety o IdLiteralString, String)
@ setAttribute2(String):void GEGunstauntL'rteral(String ,String, String) || @ getLabel {):Siring
@ isSatisfiedBy(Record):boolean @ geflabel):Siring @ getl abel2():Siring
@ toSiring():Siring @ getAttribute():Siring @ sefLabel (String):void
@ gef\Value()-Siring @ sefl abel2(Siring):void
@ sefl abel(String)-void @ isS5atisfiedBy(Record):boolean
@ setAtribute(String):void @ toString():Siring
@ sefValue(Siring)-void
@ isSatisfiedBy(Record):boolean
@ toSiring():Siring

Figura 16 — Diagrama de classes do projeto.

4.2.2 C(lasse ConstantLiteral

A classe ConstantLiteral implementa a interface Literal e representa um literal
constante x.A = c. Ela possui como atributos trés Strings label, attribute e value, que

representam a etiqueta, o nome do atributo e o valor da constante do literal constante.



1
2
3
1

5

6

-~

Capitulo 4. Desenvolvimento 33

Por exemplo, para z.A = ¢, temos label =“2", attribute =“A" e value =“c”. Ela sobres-

creve o método isSatisfiedBy(Record r) da interface Literal e possui um método
toString() que retorna uma String com seus atributos no formato “label.attribute =

value”.

Listing 4.2 — "ConstantLiteral.java"
package pg.graph;

import org.neo4j.driver.vl.Record;

import org.neo4j.driver.vl.Value;

public class ConstantLiteral implements Literal {
private String label;
private String attribute;

private String value;

public ConstantLiteral (String label, String attribute, String value) {
this.label = label;
this.attribute = attribute;
this.value = value;

}

public String getLabel() {
return this.label;

}

public String getAttribute () {
return this.attribute;

}

public String getValue() {
return this.value;

}

public void setLabel(String label) {
this.label = label;

}

public void setAttribute(String attribute) {
this.attribute = attribute;

}

public void setValue(String value) {
this.value = value;

}

public boolean isSatisfiedBy (Record r) {
Value v = r.get(this.label);
if (v.isNull()) return false;

Value a = v.get(this.attribute);
if (a.isNull()) return false;

return a.toString () .equals(this.value);



Capitulo 4. Desenvolvimento 34

12 public String toString() {
3 return this.label + "." 4+ this.attribute + " = " 4+ this.value;

4.2.3 Classe VariableLiteral

A classe VariableLiteral implementa a interface Literal e representa um li-
teral de variavel .A = y.B. Ela possui como atributos quatro Strings labell, label?2,
attributel e attribute2, que representam as etiquetas e os nomes dos atributos do
literal de varidavel. Por exemplo, para x.A = y.B, temos labell =“z", label2 =“y",
attributel =“A" e attribute2 =“B". Ela sobrescreve o método isSatisfiedBy(Record
r) da interface Literal e possui um método toString() que retorna uma String com

seus atributos no formato “labell.attributel = label2.attribute2”.

Listing 4.3 — "VariableLiteral
I package pg.graph;
2
3 import org.neodj.driver.vl.Record;
1 import org.neo4j.driver.vl.Value;
5
6 public class VariableLiteral implements Literal {

private String labell;

8 private String attributel;

9 private String label2;

10 private String attribute2;

12 public VariableLiteral (String labell , String attributel ,
13 String label2, String attribute2) {
14 this.labell = labell;

5 this.attributel = attributel;
16 this.label2 = label2;
17 this.attribute2 = attribute2;

18 }

19 public String getLabell () {

20 return this.labell;

21 }

22 public String getAttributel () {
23 return this.attributel;

24 }

25 public String getLabel2 () {

26 return this.label2;

o7 }

28 public String getAttribute2() {
29 return this.attribute2;



1
2
3
1

at

Capitulo 4. Desenvolvimento

35

public void setLabell (String label) {
this.labell = label;

}

public void setAttributel (String attribute) {

this.attributel = attribute;

}

public void setLabel2(String label) {
this.label2 = label;

}

public void setAttribute2 (String attribute) {

this.attribute2 = attribute;

}

public boolean isSatisfiedBy (Record r) {

Value vl = r.get(this.labell);
Value v2 = r.get(this.label2);

if (vl1.isNull() || v2.isNull()) return false;

Value al = vl.get(this.attributel);
Value a2 = v2.get(this.attribute2);

if (al.isNull() || a2.isNull()) return false;
return al.equals(a2);
}
public String toString() {
return this.labell + "." + this.attributel +
4+ this.label2 + "." 4+ this.attribute?2;

4.2.4 C(Classe IdLiteral

A classe IdLiteral implementa a interface Literal e representa um literal de id

x.id = y.id. Ela possui como atributos duas Strings labell e label2, que representam as

etiquetas do literal de id. Por exemplo, para x.id = y.id, temos labell =“z", label2

(1w ii

Ela sobrescreve o método isSatisfiedBy(Record r) da interface Literal e possui um

método toString() que retorna uma String com seus atributos no formato “labell.id =

label2.id™.

Listing 4.4 — "IdLiteral.java"

package pg.graph;

import org.neo4j.driver.vl.Record;

import org.neo4j.driver.vl.Value;

i public class IdLiteral implements Literal {

private String labell;
private String label2;



Capitulo 4. Desenvolvimento

36

10 public IdLiteral(String labell , String label2) {
11 this.labell = labell;

12 this.label2 = label2;

13 }

14 public String getLabell () {

15 return this.labell;

16 }

17 public String getLabel2 () {

18 return this.label2;

19 }

20 public void setLabell (String label) {

21 this.labell = label;

22 }

23 public void setLabel2(String label) {

24 this.label2 = label;

25 }

26 public boolean isSatisfiedBy (Record r) {

27 Value vl = r.get(this.labell);

28 Value v2 = r.get(this.label2);

29 if (v1.isNull() || v2.isNull()) return false;
30

31 Value al = vl.get("id");

32 Value a2 = v2.get("id");

33 if (al.isNull() || a2.isNull()) return false;
34 return al.equals(a2);

35 }

36 public String toString() {

37 return this.labell + ".id = " + this.label2 + ".id";
38 }

39 }

425 C(lasse Falseliteral

A classe FalseLiteral implementa a interface Literal e representa um literal

especial que nao é satisfeito por nenhuma correspondéncia. Ele é 1til para invalidar GEDs

que tenham padroes de grafo absurdos, como no exemplo da GED ¢, na Secao 3.3.

Ela sobrescreve o método isSatisfiedBy(Record r) da interface Literal e possui um

método toString() que retorna a String “false”.

Listing 4.5 — "FalseLiteral.java'
1 package pg.graph;

3 import org.neo4j.driver.vl.Record;

5 public class FalseLiteral implements Literal{



1
2
3
A
5
6

[
8
9

10

11

12

Capitulo 4. Desenvolvimento 37

public boolean isSatisfiedBy (Record r) {

return false;

}

public String toString () {

return "false";

4.2.6 Classe FunctionalDependency

Uma dependéncia funcional X — Y é composta por dois conjuntos de literais X
e Y. A classe FunctionalDependency possui como atributos dois conjuntos de literais,
leftSet e rightSet.

Além dos construtores, getters e setters, a classe possui os métodos
leftSetIsSatisfiedBy(Record) e rightSetIsSatisfiedBy(Record r), que verificam
se a correspondéncia em r satisfaz o conjunto de literais leftSet e rightSet, respectiva-
mente, e 0o método isSatisfiedBy(Record r) que verifica se a correspondéncia r satisfaz

a dependéncia funcional.

Uma correspondéncia satisfaz a dependéncia funcional quando se o conjunto de li-
terais em leftSet for satisfeito, o conjunto de literais em rightSet também for satisfeito.
Isso significa que se o conjunto de literais em leftSet nao for satisfeito, a dependéncia

funcional é automaticamente satisfeita.

Listing 4.6 — "FunctionalDependency.java'

package pg.graph;

import java.util.ArrayList;

import java.util.Arrays;
import org.neo4j.driver.vl.Record;

public class FunctionalDependency {
private ArrayList<Literal> leftSet;
private ArrayList<Literal> rightSet;

public FunctionalDependency (Literal[] left , Literal[] right) {
this.leftSet = new ArrayList<Literal >(Arrays.asList(left));
this.rightSet = new ArrayList<Literal >(Arrays.asList(right));

}

public FunctionalDependency (ArrayList<Literal> left ,

ArrayList<Literal> right) {

this.leftSet = left;
this.rightSet = right;



Capitulo 4. Desenvolvimento 38

21 public ArrayList<Literal> getLeftSet () {

22 return this.leftSet;

23 }

24 public ArrayList<Literal> getRightSet () {

25 return this.rightSet;

26 }

27 public void setLeftSet (ArrayList<Literal> 1) {
28 this.leftSet = 1;

29 }

30 public void setRightSet (ArrayList<Literal> r) {
31 this.rightSet = r;

32 }

33 public boolean leftSetIsSatisfiedBy (Record r) {
34 for (Literal 1| : this.leftSet) {

35 if (!1.isSatisfiedBy(r)) {

36 return false;

37 }

38 }

39 return true;

40 }

41 public boolean rightSetIsSatisfiedBy (Record r) {
42 for (Literal 1 : this.rightSet) {

43 if (!1.isSatisfiedBy(r)) {

14 return false;

15 }

46 }

47 return true;

A8 }

49 public boolean isSatisfiedBy (Record r) {

50 return (!leftSetIsSatisfiedBy (r) || rightSetIsSatisfiedBy(r));
51 }

52 }

427 Classe GED

Uma GED ¢é uma combinacao de um padrao de grafo () e uma dependéncia fun-
cional X — Y, entdo naturalmente a classe GED possui como atributos esses dois itens.

A classe possui como métodos apenas um construtor e os getters e setters padroes.

O padrao de grafo graphPattern é uma String simples de Java, representando
uma consulta em Cypher que retorna as correspondéncias ao padrao desejado. A depen-

déncia funcional functionalDependency ¢ um objeto da classe FunctionalDependency.

Listing 4.7 — "GED.java'

1 package pg.graph;
2



2
o

1

at

22
23

Capitulo 4. Desenvolvimento 39

public class GED {
private String graphPattern;

private FunctionalDependency functionalDependency ;

public GED(String pattern, FunctionalDependency fd) {
this.graphPattern = pattern;
this.functionalDependency = fd;

¥

public String getGraphPattern () {
return this.graphPattern;

}

public FunctionalDependency getFunctionalDependency () {
return this.functionalDependency ;

¥

public void setGraphPattern(String graphPattern) {
this.graphPattern = graphPattern;

}

public void setFunctionalDependency (FunctionalDependency fd) {
this. functionalDependency = fd;

}

4.2.8 Classe Validator

A classe Validator serve apenas como um validador de GEDs. Ela possui um
Unico método estatico validate(Session s, GED ged) que verifica se a GED é vélida

para o grafo conectado na sessao ativa.

Listing 4.8 — "Validator.java'
package pg.graph;

import java.util.List;

import org.neo4j.driver.vl.Record;
import org.neo4j.driver.vl. Session;

import org.neo4j.driver.vl.StatementResult;

public class Validator ({
public static boolean validate (Session s, GED ged) {
StatementResult res = s.run(ged.getGraphPattern());
List <Record> records = res.list ();
for (Record r : records) {
if (!ged.getFunctionalDependency ().isSatisfiedBy (r))
return false;

}

return true;



Capitulo 4. Desenvolvimento 40

18 }
19 }

429 Aplicacao

A classe Helper foi criada para agrupar um conjunto de métodos estaticos de
utilidade para auxiliar na criagao da aplicagdo. Nesta classe ha métodos para imprimir
GEDs de maneira organizada, um parser para criar um Literal a partir de uma String

e um conjunto de métodos que criam as GEDs ¢ — 4 listadas na Secao 3.3.

Listing 4.9 — "Helper.java"
I package pg.graph;
2
3 import java.util.ArrayList;
A
5 public class Helper {

6 public static Literal parseLiteralFromString(String s) {

7 s = s.replaceAll("\\s+",""); // remove empty spaces

8 String symbols = "";

9 for (int i=0; i<s.length(); i++) {

10 if (s.charAt(i) = ’.’ || s.charAt(i) = '=") {

11 symbols += s.charAt(i);

12 }

13 }

14 if (symbols.equals("")) { // this must be a FalseLiteral

15 if (s.equals('False") || s.equals("false"))

16 return new FalseLiteral();

17 } else if (symbols.equals(".=")) { // this must be a
ConstantLiteral

18 int i = 0;

19 String label = "";

20 String attribute = "";

21 String value = "";

22 while (i < s.length() && s.charAt(i) != ’."7)

23 label += s.charAt(i++);

24 i++;

25 while (i < s.length() && s.charAt(i) = '=")

26 attribute 4= s.charAt(i++);

27 i+

28 while (i < s.length())

29 value += s.charAt(i++);

30

31 if (!label.isEmpty() && !attribute.isEmpty ())

32 return new ConstantLiteral(label, attribute, value);

33 } else if (symbols.equals(".=.")) { // this may be a

VariableLiteral



I~
w

IN|
at

Capitulo 4. Desenvolvimento

41

int i = 0; // or an IdLiteral
String labell = "";

String attributel = "";

String label2 = "";

String attribute2 = "";

while (i < s.length() && s.charAt(i) != ’.")
labell 4= s.charAt(i++);

i+

while (i < s.length() && s.charAt(i) != '=")
attributel 4= s.charAt(i++);

i++;

while (i < s.length() && s.charAt(i) != ’.7)
label2 += s.charAt(i++);

i++;

while (i < s.length())
attribute2 4= s.charAt(i++);

if (!labell.isEmpty() && lattributel .isEmpty ()
&& !label2.isEmpty () && lattribute2.isEmpty()) {
if (attributel.equals("id") && attribute2.equals("id"))
return new IdLiteral(labell , label2);
if (lattributel.equals('"id") && !attribute2.equals("id"))
return new VariableLiteral (labell , attributel ,
label2 , attribute2);

}

return null; // couldn’t parse String s
}
public static String formatLiterals(ArrayList<Literal> literals) {
if (literals.isEmpty()) {
return "{}";
¥
String formatedLiterals = literals.get(0).toString();
for (int i=1; i<literals.size(); i++) {
formatedLiterals 4= ", " 4 literals.get(1l).toString();

}

return "{" 4+ formatedLiterals + "}";
¥
public static void printGED (GED ged) {
System.out.println ("Graph pattern: " + ged.getGraphPattern());
System.out.println ("Functional dependency: ");
System.out.println ("Left side: " + formatLiterals(
ged.getFunctionalDependency () . getLeftSet ()));
System.out.println ("Right side: " + formatLiterals(
ged . getFunctionalDependency () . getRightSet ()));

}
public static GED examplel () {



Capitulo 4. Desenvolvimento

42

90

String graphPattern =

"MATCH (x:product)<—[:create]—(y:person) RETURN x, y"';

FunctionalDependency fd = new FunctionalDependency (
new Literal []{new
ConstantLiteral ("x", "type", "videogame')},
new Literal []{new
ConstantLiteral("y", "type", '"programmer")});
return new GED(graphPattern, fd);

}

public static GED example2() {

String graphPattern = "MATCH (y:city)<—[:capital]—(x:country)"

+ " —[:capital]—>(z:city) RETURN x, y, z";
FunctionalDependency fd = new FunctionalDependency (
new Literal [] {},
new Literal [] {mew VariableLiteral("y", "name",
"z", "name")});

return new GED(graphPattern, fd);

}
public static GED example3 () {
String graphPattern = "MATCH (x)<-—[:is_a]—(y) RETURN x, y";
FunctionalDependency fd = new FunctionalDependency (
new Literal [] {new VariableLiteral ("x", "can_fly",
"x", "can_fly")},
new Literal [] {new VariableLiteral("y", "can_ fly",
"x", "can_fly")});
return new GED(graphPattern, fd);
¥
public static GED exampled () {
String graphPattern = 'MATCH (x:person)<-—[:child]—(y:person)"
+ " WHERE (x)<—[:parent]—(y) RETURN x, y";
FunctionalDependency fd = new FunctionalDependency (
new Literal [] {},

new Literal [] {new FalseLiteral()});
return new GED(graphPattern, fd);

A classe App que possui o método main() do projeto representa uma aplicagao

interativa simples para testar as classes. Ela se conecta a um banco de dados especifico

do Neodj e permite a criacdo e validacdo de novas GEDs pelo usuario, a execucao de

comandos Cypher no banco e a validagao dos exemplos de GEDs criados por métodos da

classe Helper.

Listing 4.10 — "App.java'

I package pg.graph;

2

3 import java.util.ArrayList;



Capitulo 4. Desenvolvimento 43

4 import java.util.Scanner;

6 import org.neo4j.driver.vl.AuthTokens;
7 import org.neo4j.driver.vl.Driver;
§ import org.neo4dj.driver.vl.GraphDatabase;

9 import org.neo4dj.driver.vl.Session;

11 public class App

12 {

13 public static void menu() {

14 System.out.println (" ")
15 System.out.println("| 1) Avaliar GED exemplo | ")
16 System.out.println ("] 2) Avaliar GED criada pelo usudrio |");
17 System.out.println("| 3) Listar GEDs exemplo |");
18 System.out.println("| 4) Listar GEDs criadas pelo usudrio |");
19 System.out.println ("] 5) Criar uma nova GED ") ;
20 System.out.println("| 6) Executar um comando no banco | ") ;
21 System.out.println("| 0) Encerrar | ") ;
22 System.out.println (" ")
23 System.out.print ("Escolha uma opgao: ");

24 }

25 public static void main(String [] args)

26 {

27 try{

28 Driver driver = GraphDatabase.driver ("bolt://localhost:7687",
29 AuthTokens. basic("neo4j", "Graph"));

30 Session session = driver.session ();

31 Scanner sc = new Scanner (System.in);

32 int op;

33

34 GED|[] example geds = new GED[] {Helper.examplel (),

35 Helper.example2 (), Helper.example3 (),

36 Helper.exampled () };

37 ArrayList<GED> user_created geds = new ArrayList<GED>();
38

39 do {

40 menu () ;

41 op = sc.nextInt (); sc.nextLine();

42 switch (op) {

43 case 1:

14 System.out.println ("Digite o id [1, 4] da GED'
45 + " exemplo que deseja avaliar: ");

46 int id = sc.nextInt(); sc.nextLine();

47 if (id >= 1 && id <= 4) {

48 Helper . printGED (example__geds[id —1]);

19 System.out.println (Validator. validate (

50 session , example geds[id —1]) ?



66

68

80

Capitulo 4. Desenvolvimento
"GED vé4lida." : "GED invalida.");
} else {
System.out.println ("Indice invélido.");
¥
break;
case 2:
System.out.print ("Digite o id [0, "
+ user_ created_geds.size() + "] da GED'
+ " criada por usuario que deseja'
+ " avaliar: ");
id = sc.nextInt(); sc.nextLine();
if (id >= 0 && id < user_created__geds.size ()) {
Helper . printGED (user__created__geds.get (id));
System.out.println (Validator.validate (
session , user_created_geds.get(id)) ?
"GED vé4lida." : "GED invalida.");
} else {
System.out.println ("Indice invélido.");
}
break;
case 3:
System.out.println ("Lista de GEDs exemplo:");
for (int i=1; i<=4; i++) {
System.out.println ("GED exemplo " + i + ":");
Helper . printGED (example_geds[i—1]);
}
break;
case 4:
System.out.println ("Lista de GEDs criadas pelo"
+ "usudrio:");
for (int i=0; i<user_ created geds.size(); i++) {
System.out.println ("GED criada pelo usudrio "
+ i+ ")
Helper . printGED (user_ created _geds.get (1)) ;
}
break;
case 9:

System.out.print ("Digite a consulta em Cypher que"
+ " retorna o padrdo de grafo da GED: ");
String graphPattern = sc.nextLine();

System.out.print ("Digite a quantidade de literais"
+ " no conjunto esquerdo: ");
int n = sc.nextInt(); sc.nextLine();
ArrayList<Literal> leftSet =
new ArrayList<Literal >();
for (int i=0; i<n; i++) {



Capitulo 4. Desenvolvimento

45

System.out.print ("Digite o literal " + i
TRERE
Literal literal = Helper.
parseLiteralFromString (sc.nextLine());
if (literal = null) {
System.out.println ("Nao foi possivel'
+ " parsear a string para um'
+ " literal.");
} else {
leftSet .add(literal);

System.out.print ("Digite a quantidade de literais"
+ " no conjunto direito: ");
n = sc.nextInt(); sc.nextLine();
ArrayList<Literal> rightSet =
new ArrayList<Literal >();
for (int i=0; i<n; i++) {
System.out.print ("Digite o literal " + i
+ " ")
Literal literal = Helper.
parseLiteralFromString (sc.nextLine());
if (literal = null) {
System.out.println ("Nao foi possivel'
+ " parsear a string para um'
+ " literal.");
} else {
rightSet.add(literal);

}

user_ created__geds.add (new GED(graphPattern , new
FunctionalDependency (leftSet , rightSet)));
break;

case 6:

System.out.print ("Digite o comando que deseja'
+ " executar: ");
String query = sc.nextLine();
try {
session .run(query);
System.out. println ("Comando executado com'
+ " sucesso.");
} catch(Exception e) {
System.out.println (e.getMessage () );
System.out.println ("Falha na execug¢ao.");

}
break;



Capitulo 4. Desenvolvimento 46

}

case 0:
System.out.println ("O programa serd encerrado.');
session . close () ;
driver.close();
sc.close();
break;
default:
System.out.println ("Opgao invédlida.");

}
while(op != 0);

} catch(Exception e) {
System.out.println (e.getMessage () );

e

.getStackTrace () ;

4.3 Testes de GEDs

Foi criada uma base de dados consistente, de modo a propositalmente satisfazer to-

das as GEDs inicialmente, para testar a validacao das GEDs ¢ — ¢, listadas na Se¢ao 3.3.

A base de dados foi criada executando o comando Cypher abaixo no Neo4j Desktop e pode

ser visualizada na Figura 17.

// Sample data for example 1:

CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE

(a:person {name: ‘Jhulia’, type: ‘programmer’})

(b:person {name: ‘Leticia’, type: ‘engineer’})

(c:person {name: ‘Arthur’, type:‘engineer’})

(d:person {name: ‘Marcos’, type: ‘programmer’})

(e:person {name: ‘Felipe’, type: ‘engineer’})

(f:product {name: ‘Olympic’, type: ‘videogame’})

(g:product {name: ‘0Olivia’, type: ‘bridge’})

(h:product {name: ‘Armor System Rework Mod’, type: ‘videogame mod’})

(a)-L[:
(b)-[:
(c)-[:
(d)-I[:
(e)-L[:

create] ->(f)
create] ->(g)
create] ->(g)
create] ->(f)
create] ->(h)

// Sample data for example 2:
CREATE (i:country {name: ‘Brasil’})
CREATE (j:city {name: ‘Brasilia’})



Capitulo 4. Desenvolvimento 47

CREATE (k:city {name: ‘Brasilia’})

CREATE (1l:city {name: ‘Brasilia’})

CREATE (i)-[:capitall->(j)

CREATE (i)-[:capitall->(k)

CREATE (i)-[:capitall->(1)

CREATE (m:country {name: ‘Some Country’l})

CREATE (n:city {name: ‘Some Country\’s Capital’})
CREATE (o:city {name: ‘Some Country\’s Capital’})
CREATE (m)-[:capitall->(n)

CREATE (m)-[:capitall->(o)

// Sample data for example 3:

CREATE (p:bird {name: ‘Bird’, can_fly: ‘true’})
CREATE (q:eagle {name:‘Eagle’, can_fly: ‘true’})
CREATE (q)-[:is_al->(p)

CREATE (r:toy {name: ‘Toy’, playable:true})

CREATE (s:doll {name: ‘Woody’, playable:true})
CREATE (t:doll {name: ‘Buzz Lightyear’, playable:true})
CREATE (u:lego {name: ‘Batman Lego’, playable:truel})
CREATE (s)-[:is_al->(r)

CREATE (t)-[:is_al->(r)

CREATE (w)-[:is_al->(r)

// Sample data for example 4:
CREATE (v:person {name: ‘Helena’})
CREATE (w:person {name: ‘Domingas’})
CREATE (x:person {name: ‘Fulano’})
CREATE (y:person {name: ‘Ciclano’})
CREATE (v)-[:parent]->(a)

CREATE (v)-[:parent]->(c)

CREATE (w)-[:parent]->(v)

CREATE (x)-[:parent]->(y)

CREATE (a)-[:child]->(v)

CREATE (c)-[:child]->(v)

CREATE (v)-[:child]->(w)

CREATE (y)-[:child]->(x)

Para verificar a corretude do algoritmo, foi verificado se o grafo inicial validou todas

as GEDs e foram feitas pequenas alteracoes no grafo, sempre verificando se o resultado das



Capitulo 4. Desenvolvimento 48

Buzz L
Lightyear,
o é
e

i
g

— pamned -

o
=
a

Figura 17 — Base de dados utilizada.

validagbes estava coerente com o esperado. A seguir estao listados alguns testes realizados:

1. O grafo inicial validou corretamente todas as GEDs.

2. O atributo type da entidade person com nome “Jhulia” foi alterado de “program-
mer” para “student” com o comando:
MATCH (x:person {name: ‘Jhulia’}) SET x.type = ‘student’

A GED ¢, se tornou invalida (como esperado) e a alteragao foi desfeita com o

comando:
MATCH (x:person {name:‘Jhulia’}) SET x.type = ‘programmer’

3. O atributo type da entidade product com nome “Olivia” foi alterada de “bridge”
para “videogame” com o comando:

MATCH (x:product {name:‘0Olivia’}) SET x.type = ‘videogame’



Capitulo 4. Desenvolvimento 49

A GED ¢ se tornou invélida. Entao o atributo type de uma das criadoras da ponte

“Olivia” foi alterado para “programmer” com o comando:
MATCH (x:person {name: ‘Leticia’}) SET x.type = ‘programmer’

A GED $varphi, continuou invélida, pois ainda havia outro criador que nao era do

tipo programmer. Entao o atributo type do outro criador também foi alterado:
MATCH (x:person {name: ‘Arthur’}) SET x.type = ‘programmer’

Como ambos os criadores do “videogame” chamado “Olivia” se tornaram progra-

madores, a GED ¢; voltou a ser valida. No final as alteragoes foram desfeitas:

MATCH (x:product {name:‘Olivia’}) SET x.type = ‘bridge’

MATCH (x:person {name: ‘Leticia’}) SET x.type = ‘engineer’
MATCH (x:person {name: ‘Arthur’}) SET x.type = ‘engineer’

4. Foi criada uma nova entidade city com nome “Other Country’s Capital” e um novo
relacionamento dizendo que esta nova entidade é a capital do pais de nome “Some

Country” com o comando:

MATCH (x:country {name: ‘Some Country’})
CREATE (y:city {name: ‘Other Country\’s Capital’})
CREATE (x)-[:capitall->(y)

E entdao a GED ¢y se tornou invalida, pois existiam duas capitais de um mesmo
)
pais com nomes diferentes. Em seguida o atributo name da nova entidade criada foi

deletado com o comando:
MATCH (x:city {name: ‘Other Country\’s Capital’}) REMOVE x.name

E a GED continuou invalida, porque nessa GED a existéncia do atributo name
¢ obrigatoério nas entidades etiquetadas como city. A GED voltou a ser valida
quando o atributo name da nova entidade foi criado novamente, com o valor “Some

Country’s Capital”, usando o comando:

MATCH (x:city) WHERE NOT EXISTS (x.name)

SET x.name = ‘Some Country\’s Capital’

5. O atributo can_f1ly foi deletado das entidade de tipo bird com o comando:
MATCH (x:bird) REMOVE x.can_fly

A GED ¢35 continuou valida, pois nessa situagao a existéncia do atributo can_£f1ly
nao é obrigatoéria na entidade que corresponde ao vértice x do padrao. Em seguida
essa alteracao foi revertida e o atributo can_f1y foi removido das entidades de tipo

eagle com os comandos:

MATCH (x:bird) SET x.can_fly = true
MATCH (x:eagle) REMOVE x.can_fly



Capitulo 4. Desenvolvimento 50

E entdao a GED ¢3 se tornou invalida, pois a existéncia do atributo can_fly é
obrigatoéria na entidade que corresponde ao vértice y do padrao. A GED voltou a

ser valida quando a alteracao foi desfeita com o comando:

MATCH (x:eagle) SET x.can_fly = true

6. Foi criada uma nova GED ¢4 semelhante a GED 3 utilizando a aplicacao. A GED
e possui o mesmo padrao de grafo MATCH (x)<-[:is_al-(y) RETURN x, y que a
GED ¢3, mas sua dependéncia funcional é diferente ({x.playable = z.playable} —
{y.playable = x.playable}). A GED ¢g é valida inicialmente, mas deixa de ser
quando o valor do atributo playable das entidades com etiqueta doll é alterado

para “false” com o comando:
MATCH (x:doll) SET x.playable = false

Em seguida o valor do atributo playable das entidades com etiqueta toy também foi

alterado para “false” com o comando: MATCH (x:toy) SET x.playable = false

A GED yg continuou invalida pois ainda existia uma correspondéncia que nao a
satifazia: a entidade lego ainda possuia o atributo playable com valor verdadeiro.
Apés alterar o valor do atributo playable das entidades com etiqueta lego para
falso a GED voltou a ser valida. No final as alteracoes foram revertidas com o

comando:

MATCH (x {playable:false}) SET x.playable = true

7. A GED ¢4 possui um padrao de grafo absurdo, onde uma pessoa é simultaneamente
pai e filha de outra, e é invalida caso alguma correspondéncia exista. A pessoa de
nome “Fulano” é pai da pessoa de nome “Ciclano”, entdo cria-se um novo relacio-

namento entre os dois dizendo que “Fulano” é filho de “Ciclano” com o comando:

MATCH (x:person {name: ‘Fulano’}), (y:person {name:‘Ciclano’})
CREATE (x)-[:child]->(y)

E a GED ¢, tornou-se invalida. Entao as altera¢oes foram revertidas com o comando:

MATCH (x:person {name: ‘Fulano’})-[a:child]->(y:person) DELETE a

Como todos os testes acima corresponderam ao comportamento esperado, conclui-
se que o codigo produzido pode ser utilizado para validar alguns tipos de dependéncias
funcionais em grafo. O c6digo também pode ser estendido para outros tipos de FDs, como

por exemplo as Graph Denial Contraints (GDCs), também propostas em Fan e Lu (2017).



o1

5 Conclusao

O armazenamento de dados em bancos de dados em grafo é uma boa alternativa
quando se trabalha com uma base de dados densa e interconectada. Por sua estrutura
expressiva e de proposito geral, a estrutura de grafo permite a modelagem de qualquer

tipo de cenario.

A inserc¢ao e modificacao de dados em uma base de dados sdo processos importantes
que devem ser gerenciados e controlados para garantir que os dados estejam consistentes

e para que as restrigcoes de integridade estejam sempre satisfeitas.

Porém o suporte para restricoes de integridade em bancos de dados em grafo,
considerando grafos de propriedades, ainda é pequeno. Restri¢oes de integridade sdo muito
importantes por prevenirem que informagoes inconsistentes ou de baixa qualidade sejam

armazenadas no grafo, e o baixo suporte a elas caracteriza um problema.

A implementacao de restri¢coes de integridade pode ser feita de forma integrada
ou por meio de uma nova camada de aplicagdo. Neste trabalho, foi implementado um
projeto, utilizado como uma nova camada de aplicacao, que permite a criacao de algumas
restrigoes de integridade (FDs que podem ser representadas como GEDs) e sua validagao

em relacao a um grafo.

Como parte de trabalhos futuros pode-se vislumbrar a criagdo de uma aplicacao
que permita a definicdo de GEDs em mais alto nivel. Da maneira como foi implementada,
o usuario deve conhecer sobre a linguagem Cypher e digitar uma consulta que corresponda
perfeitamente ao padrio de grafo desejado. E desejavel que usudrios sem muito conheci-
mento de Cypher consigam criar GEDs. Além disso é proposta uma extensao do trabalho
que propicie a inclusdo das Graph Denial Constraints (GDCs), também propostas por
Fan e Lu (2017), que representam restrigoes ainda mais gerais, permitindo por exemplo

criar restricdes sobre o dominio de valores dos atributos, dentre outros.



52

Referencias

ANGLES, R.; GUTIERREZ, C. Survey of graph database models. ACM Comput.
Surv., ACM, New York, NY, USA, v. 40, n. 1, p. 1:1-1:39, fev. 2008. ISSN 0360-0300.
Disponivel em: <http://doi.acm.org/10.1145/1322432.1322433>. Citado na pégina 17.

ELMASRI, R.; NAVATHE, S. Fundamentals of database systems. [S.1.]: Addison-Wesley
Publishing Company, 2010. Citado na pagina 17.

FAN, W.; LU, P. Dependencies for graphs. In: Proceedings of the 36th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems. New York, NY,
USA: ACM, 2017. (PODS ’17), p. 403-416. ISBN 978-1-4503-4198-1. Disponivel em:
<http://doi.acm.org/10.1145/3034786.3056114>. Citado 13 vezes nas paginas 4, 10,
11, 14, 17, 18, 21, 22, 23, 24, 25, 50 e 51.

MADAN, P.; SAXENA, A. Graph databases. International Journal, v. 4, n. 5, p.
195-200, 2014. Citado na pagina 10.

MARGITUS, M. R.; TAUER, G.; SUDIT, M. RDF versus attributed graphs: The war
for the best graph representation. In: 18th International Conference on Information
Fusion, FUSION 2015, Washington, DC, USA, July 6-9, 2015. [s.n.], 2015. p. 200—-206.
Disponivel em: <http://ieeexplore.ieee.org/document/7266563/>. Citado 2 vezes nas
paginas 10 e 13.

MARTON, J.; SZARNYAS, G.; VARRO, D. Formalising opencypher graph queries
in relational algebra. In: KIRIKOVA, M.; NORVAG, K.;: PAPADOPOULOS, G. A.
(Ed.). Advances in Databases and Information Systems. Cham: Springer International
Publishing, 2017. p. 182-196. ISBN 978-3-319-66917-5. Citado na péagina 19.

NEO4J. The definitive guide to graph databases for the rdbms developer. In: . [s.n.],
2016. cap. Query Languages: SQL vs. Cypher. Disponivel em: <https://go.neodj.com/rs/
710-RRC-335/images/Definitive- Guide- Graph-Databases-for-RDBMS-Developer.pdf>.
Citado 2 vezes nas paginas 4 e 20.

NEO4J. What is Neo4j? 2018. <https://neodj.com/developer/graph-database/>.
[Online; accessed 29-November-2018]. Citado 2 vezes nas paginas 10 e 19.

PENTEADO, R. R. M. et al. Um estudo sobre bancos de dados em grafos
nativos. X ERBD - Escola Regional de Banco de Dados, 2014. Disponivel em:
<http://www.inf.ufpr.br/carmem/pub/erbd2014-artigo.pdf>. Citado 2 vezes nas
paginas 15 e 16.

POKORNY, J. Graph databases: their power and limitations. In: SPRINGER. IFIP
International Conference on Computer Information Systems and Industrial Management.
[S.1.], 2015. p. 58-69. Citado 4 vezes nas péaginas 4, 10, 16 e 17.

RABUZIN, K.; KONECKI, M.; SESTAK, M. Implementing check integrity constraint
in graph databases. In: IIER 105th International Conference on Recent Innovations in
Engineering and Technology. [S.1.: s.n.], 2016. Citado na pagina 21.


http://doi.acm.org/10.1145/1322432.1322433
http://doi.acm.org/10.1145/3034786.3056114
http://ieeexplore.ieee.org/document/7266563/
https://go.neo4j.com/rs/710-RRC-335/images/Definitive-Guide-Graph-Databases-for-RDBMS-Developer.pdf
https://go.neo4j.com/rs/710-RRC-335/images/Definitive-Guide-Graph-Databases-for-RDBMS-Developer.pdf
https://neo4j.com/developer/graph-database/
http://www.inf.ufpr.br/carmem/pub/erbd2014-artigo.pdf

Referéncias 53

ROBINSON, I.; WEBBER, J.; EIFREM, E. Graph Databases: New Opportunities
for Connected Data. O’Reilly Media, 2015. ISBN 9781491930861. Disponivel em:
<https://books.google.com.br/books?id=RTvcCQAAQBAJ>. Citado 2 vezes nas
paginas 10 e 17.

RODRIGUEZ, M. A.; NEUBAUER, P. Constructions from dots and lines. CoRR,
abs/1006.2361, 2010. Disponivel em: <http://arxiv.org/abs/1006.2361>. Citado 3 vezes
nas paginas 4, 14 e 15.

SESTAK, M.; RABUZIN, K.; NOVAK, M. Integrity constraints in graph databases -
implementation challenges. 2016. Disponivel em: <https://bib.irb.hr/datoteka/833711.
Integrity constraints_in_ graph_databases implementation_ challenges.pdf>. Citado
3 vezes nas paginas 17, 18 e 21.


https://books.google.com.br/books?id=RTvcCQAAQBAJ
http://arxiv.org/abs/1006.2361
https://bib.irb.hr/datoteka/833711.Integrity_constraints_in_graph_databases_implementation_challenges.pdf
https://bib.irb.hr/datoteka/833711.Integrity_constraints_in_graph_databases_implementation_challenges.pdf

	Folha de rosto
	Folha de aprovação
	Resumo
	Lista de ilustrações
	Lista de tabelas
	Lista de abreviaturas e siglas
	Lista de símbolos
	Sumário
	Introdução
	Objetivos
	Organização do Trabalho

	Fundamentação Teórica
	Grafos
	Banco de dados
	Restrições de Integridade
	Dependências Funcionais

	SGBDG Neo4j
	Linguagem Cypher

	Trabalhos correlatos

	Graph Entity Dependencies
	Padrão de Grafo
	Dependência Funcional
	Exemplos de GEDs
	Satisfatibilidade
	Limitação da GED

	Desenvolvimento
	Configuração e conexão ao banco de dados
	Criação de um novo banco de dados em grafo
	Conexão a um banco de dados ativo
	Adição de entidades e relacionamentos ao banco

	Implementação
	Interface Literal
	Classe ConstantLiteral
	Classe VariableLiteral
	Classe IdLiteral
	Classe FalseLiteral
	Classe FunctionalDependency
	Classe GED
	Classe Validator
	Aplicação

	Testes de GEDs

	Conclusão
	Referências

