
UNIVERSIDADE FEDERAL DE UBERLÂNDIA

Jhúlia Graziella de Souza Rodrigues

Validação de Dependências Funcionais em
Grafos

Uberlândia, Brasil

2018

UNIVERSIDADE FEDERAL DE UBERLÂNDIA

Jhúlia Graziella de Souza Rodrigues

Validação de Dependências Funcionais em Grafos

Trabalho de conclusão de curso apresentado
à Faculdade de Computação da Universidade
Federal de Uberlândia, Minas Gerais, como
requisito exigido parcial à obtenção do grau
de Bacharel em Ciência da Computação.

Orientador: Maria Adriana Vidigal de Lima

Universidade Federal de Uberlândia – UFU

Faculdade de Computação

Bacharelado em Ciência da Computação

Uberlândia, Brasil
2018

Jhúlia Graziella de Souza Rodrigues

Validação de Dependências Funcionais em Grafos

Trabalho de conclusão de curso apresentado
à Faculdade de Computação da Universidade
Federal de Uberlândia, Minas Gerais, como
requisito exigido parcial à obtenção do grau
de Bacharel em Ciência da Computação.

Trabalho aprovado. Uberlândia, Brasil, 18 de dezembro de 2018:

Maria Adriana Vidigal de Lima
Orientador

Luiz Cláudio Theodoro
Convidado 1

Paulo Henrique Ribeiro Gabriel
Convidado 2

Uberlândia, Brasil
2018

Resumo
Dependências funcionais (DFs) são utilizadas no projeto de bancos de dados relacionais
para definir que o valor de um conjunto de atributos deve depender do valor de outro
conjunto de atributos. As DFs integram a teoria das bases de dados e fundamentam o
projeto conceitual de dados, a otimização de consultas e a prevenção de inconsistências
na atualização de dados. Este trabalho pretende: (i) estudar as dependências de dados
no contexto dos bancos de dados em grafos, considerando uma classe de dependências
denominada Graph Entity Dependencies (GEDs) e (ii) criar uma API Java para a escrita
e validação das GEDs utilizando a linguagem Cypher e o SGBDG NoSQL Neo4j.

Palavras-chave: dependências funcionais, banco de dados, grafos, validação.

Lista de ilustrações

Figura 1 – Exemplo de grafo e digrafo. 12
Figura 2 – Exemplo de multigrafo e multidigrafo. 13
Figura 3 – Exemplo de grafos etiquetados. 14
Figura 4 – Exemplo de grafo de propriedades Rodriguez e Neubauer (2010). 15
Figura 5 – Uma pequena rede de usuários do Twitter (POKORNỲ, 2015). 17
Figura 6 – Um grafo descrevendo os relacionamentos entre três amigos (NEO4J,

2016). 20
Figura 7 – Padrões de grafo (FAN; LU, 2017). 22
Figura 8 – Exemplo de grafo. 24
Figura 9 – Criação de um novo projeto. 27
Figura 10 – Criação de um novo banco de dados em grafo. 27
Figura 11 – Criação de um banco de dados em grafo local. 28
Figura 12 – Configuração de Nome e Senha do novo banco de dados em grafo. . . . 28
Figura 13 – Inicialização do banco de dados em grafo. 29
Figura 14 – Gerenciamento do banco de dados. 30
Figura 15 – Visualização dos dados do banco. 31
Figura 16 – Diagrama de classes do projeto. 32
Figura 17 – Base de dados utilizada. 48

Lista de tabelas

Tabela 1 – Exemplo de Banco de Dados Relacional 16

Lista de abreviaturas e siglas

ACID Atomicidade, Consistência, Isolamento e Durabilidade

API Application Programming Interface

ASCII American Standard Code for Information Interchange

DF Dependência Funcional

GDC Graph Denial Constraints

GED Graph Entity Dependency

ID Identificador

IDE Integrated Development Enviornment

SGBD Sistema de Gerenciamento de Banco de Dados

SGBDG Sistema de Gerenciamento de Banco de Dados em Grafo

SGBDR Sistema de Gerenciamento de Banco de Dados Relacional Durabilidade

SQL Structured Query Language

UML Unified Modeling Language

Lista de símbolos

∅ Conjunto vazio

≍ Correspondência

̸= Diferença

∈ Pertence

𝑓𝑎𝑙𝑠𝑒 Valor falso do tipo de dado primitivo Booleano

Γ Letra grega Gama

= Igualdade

→ Implicação

N Conjunto dos números naturais

𝜙 Letra grega minúscula Phi

|= Satisfação

𝜎 Letra grega Sigma

∀ Para todo

ϒ Letra grega Upsilon

Sumário

1 INTRODUÇÃO . 10
1.1 Objetivos . 11
1.2 Organização do Trabalho . 11

2 FUNDAMENTAÇÃO TEÓRICA . 12
2.1 Grafos . 12
2.2 Banco de dados . 15
2.3 Restrições de Integridade . 17
2.3.1 Dependências Funcionais . 18
2.4 SGBDG Neo4j . 19
2.4.1 Linguagem Cypher . 19
2.5 Trabalhos correlatos . 21

3 GRAPH ENTITY DEPENDENCIES 22
3.1 Padrão de Grafo . 22
3.2 Dependência Funcional . 23
3.3 Exemplos de GEDs . 24
3.4 Satisfatibilidade . 25
3.5 Limitação da GED . 25

4 DESENVOLVIMENTO . 26
4.1 Configuração e conexão ao banco de dados 26
4.1.1 Criação de um novo banco de dados em grafo 26
4.1.2 Conexão a um banco de dados ativo . 29
4.1.3 Adição de entidades e relacionamentos ao banco 30
4.2 Implementação . 31
4.2.1 Interface Literal . 31
4.2.2 Classe ConstantLiteral . 32
4.2.3 Classe VariableLiteral . 34
4.2.4 Classe IdLiteral . 35
4.2.5 Classe FalseLiteral . 36
4.2.6 Classe FunctionalDependency . 37
4.2.7 Classe GED . 38
4.2.8 Classe Validator . 39
4.2.9 Aplicação . 40
4.3 Testes de GEDs . 46

5 CONCLUSÃO . 51

REFERÊNCIAS . 52

10

1 Introdução

Um grafo é uma abstração muito útil na representação de problemas computacio-
nais e na sua solução, pois permite estabalecer relações de interdependência entre elemen-
tos de um conjunto. Um banco de dados para grafos é um sistema de armazenamento que
utiliza estruturas com vértices e arestas para representar e armazenar dados. O modelo
mais comumente utilizado de grafos no contexto de bancos de dados em grafos é o grafo de
propriedades (ROBINSON; WEBBER; EIFREM, 2015; MARGITUS; TAUER; SUDIT,
2015). Um grafo de propriedadees contém entidades conectadas, sendo que cada entidade
pode possuir um número de propriedades (ou atributos) expressos em pares chave-valor.
Vértices e arestas podem ser etiquetados com rótulos que representam os diferentes papéis
(ou tipos) no domínio da aplicação.

Os bancos de dados em grafos e suas tecnologias, e a análise baseada em grafos
aplicada à grandes conjuntos de dados não estruturados, foram consideradas por Pokornỳ
(2015) como umas das mais interessantes áreas de pesquisa da atualidade. Como exemplo
de big graph pode-se citar o Facebook com 1 bilhão de nós e 140 bilhões de ligações, neces-
sitando de armazenamento eficiente e algoritmos de processamento especiais (MADAN;
SAXENA, 2014 apud POKORNỲ, 2015).

Os bancos de dados em grafos têm foco no processamento de dados altamente
conectados, na flexibilidade dos modelos de dados e na performance da recuperação de
informação e são frequentemente incluídos entre as bases de dados NoSQL. As bases de
dados em grafos têm então a responsabilidade de processar de forma eficiente densos
conjuntos de dados e de utilizar os relacionamentos entre os dados para prover análises
de correlações e padrões de dados. .

Fan e Lu (2017) propõem uma classe de dependência de dados para grafos, de-
nominada Graph Entity Dependency ou GED. Uma GED combina um padrão de grafo
com uma dependência de propriedade (ou atributo). Utilizando um formato uniforme, as
GEDs expressam as dependências funcionais usando literais constantes (strings) que são
úteis para capturar inconsistências nos dados. Além disso, pode-se definir dependências
de dados utilizando atributos identificadores (ids) para distinguir entidades em um grafo.

Neste contexto, o presente trabalho propõe o estudo das dependências de dados
GEDs nos bancos de dados em grafos e a implementação, em linguagem Java, de uma
Application Programming Interface (API) para definição e validaçao de GEDs. O ambi-
ente de trabalho proposto utiliza APIs do Sistema de Gerenciamento de Banco de Dados
em Grafos (SGBDG) Neo4j e a sua linguagem de consulta correspondente, denominada
Cypher (NEO4J, 2018).

Capítulo 1. Introdução 11

1.1 Objetivos
O objetivo geral deste trabalho é utilizar a teoria de GEDs proposta em Fan e

Lu (2017) para implementar a validação de dependências funcionais em um banco de
dados em grafo. Para a especificação das dependências funcionais, serão definidas classes
específicas numa API de forma que se possa, em conjunto com o SGBDG Neo4j e a
linguagem Cypher, especificar dependências baseadas em padrões de grafos e utilizá-las
para analisar a coerência e a qualidade dos dados.

1.2 Organização do Trabalho
Para uma melhor separação e compreensão do conteúdo, os próximos capítulos

deste trabalho estão organizados da seguinte maneira:

∙ O Capítulo 2 apresenta os conceitos básicos necessários para compreensão do tra-
balho, bem como uma breve análise de trabalhos correlatos;

∙ O Capítulo 3 descreve as GEDs em mais detalhes e apresenta os conceitos específicos
necessários para entendê-las;

∙ O Capítulo 4 mostra como o trabalho foi desenvolvido desde a etapa da configuração
do ambiente até a parte de implementação do projeto. Nele estão presentes o dia-
grama de classes e todos os códigos-fonte do projeto. Na última sessão deste capítulo
são apresentados os testes realizados afim de verificar a corretude do algoritmo de
validação;

∙ O Capítulo 5 expõe as conlusões e considerações finais do trabalho, além de propos-
tas para continuação do mesmo.

12

2 Fundamentação Teórica

2.1 Grafos
Grafo é uma estrutura de dados composta por um conjunto de vértices interligados

por um conjunto de arestas. Dependendo da aplicação, as arestas podem ou não ser
direcionadas.

Definição 2.1.1. Grafo - Um grafo 𝐺 é um par (𝑉, 𝐸), onde

∙ 𝑉 é um conjunto finito de vértices; e

∙ 𝐸 é um conjunto finito de arestas, onde cada par não-ordenado (𝑣1, 𝑣2) representa
uma aresta entre 𝑣1 e 𝑣2, 𝑣1 ̸= 𝑣2 e (𝑣1, 𝑣2 ∈ 𝑉).

Definição 2.1.2. Digrafo - Um digrafo (ou grafo direcionado) 𝐺 é um par (𝑉, 𝐸) onde

∙ 𝑉 é um conjunto finito de vértices; e

∙ 𝐸 é um conjunto finito de arcos (ou arestas direcionadas), onde cada par ordenado
(𝑣1, 𝑣2) representa um arco que parte de 𝑣1 em direção a 𝑣2, 𝑣1 ̸= 𝑣2 e (𝑣1, 𝑣2 ∈ 𝑉).

Figura 1 – Exemplo de grafo e digrafo.

Em teoria dos grafos, um grafo ou digrafo é simples se ele não tem laços e não
possui mais de uma aresta ligando dois vértices. Um multigrafo é um grafo que não é
simples e um multidigrafo é um digrafo que não é simples, ou seja, em multigrafos e
multidigrafos é permitida a existência de laços e de arestas múltiplas.

Definição 2.1.3. Multigrafo - Um multigrafo 𝐺 é um par (𝑉, 𝐸), onde

∙ 𝑉 é um conjunto finito de vértices; e

Capítulo 2. Fundamentação Teórica 13

∙ 𝐸 é um multiconjunto finito de arestas, onde cada par não-ordenado (𝑣1, 𝑣2) repre-
senta uma aresta entre 𝑣1 e 𝑣2, (𝑣1, 𝑣2 ∈ 𝑉).

Definição 2.1.4. Multidigrafo - Um multidigrafo 𝐺 é um par (𝑉, 𝐸) onde

∙ 𝑉 é um conjunto finito de vértices; e

∙ 𝐸 é um multiconjunto finito de arcos (ou arestas direcionadas), onde cada par
ordenado (𝑣1, 𝑣2) representa um arco que parte de 𝑣1 em direção a 𝑣2, (𝑣1, 𝑣2 ∈ 𝑉).

Figura 2 – Exemplo de multigrafo e multidigrafo.

Um grafo etiquetado é um grafo em que seus vértices ou arestas, ou ambos, possuem
etiquetas. Multigrafos e Multidigrafos também podem ser etiquetados, de modo similar.

Definição 2.1.5. Grafo Etiquetado - Um grafo etiquetado 𝐺 é uma sêxtupla
(𝑉 , 𝐸, Σ𝑉 , Σ𝐸, 𝐿𝑉 , 𝐿𝐸) onde

∙ 𝑉 é um conjunto de vértices;

∙ 𝐸 é um conjunto finito de arestas, onde cada par não-ordenado (𝑣1, 𝑣2) representa
uma aresta entre 𝑣1 e 𝑣2, 𝑣1 ̸= 𝑣2 e (𝑣1, 𝑣2 ∈ 𝑉);

∙ Σ𝑉 e Σ𝐸 são alfabetos finitos de etiquetas de vértices e arestas, respectivamente; e

∙ 𝐿𝑉 e 𝐿𝐸 são funções que descrevem a etiquetagem de vértices e aretas, respectiva-
mente.

Um grafo com atributos é um grafo que possui atributos associados aos vértices ou
arestas, ou ambos. De acordo com Margitus, Tauer e Sudit (2015), um grafo com atributos
onde os atributos são representados no formato chave-valor também é chamado de Grafo
de Propriedades.

Definição 2.1.6. Grafo com Atributos (MARGITUS; TAUER; SUDIT, 2015) - Um grafo
com atributos 𝐺 é uma quádrupla (𝑉, 𝐸, 𝐴𝑉 , 𝐴𝐸) onde

Capítulo 2. Fundamentação Teórica 14

Figura 3 – Exemplo de grafos etiquetados.

∙ 𝑉 é um conjunto de vértices;

∙ 𝐸 é um conjunto finito de arestas, onde cada par não-ordenado (𝑣1, 𝑣2) representa
uma aresta entre 𝑣1 e 𝑣2, 𝑣1 ̸= 𝑣2 e (𝑣1, 𝑣2 ∈ 𝑉);

∙ 𝐴𝑉 e 𝐴𝐸 são conjuntos de atributos sobre os vértices e sobre as arestas, respectiva-
mente.

Um homomorfismo de um grafo 𝐺 em um grafo 𝐺′ é um mapeamento entre os
dois grafos que preserva suas arestas, ou seja, toda aresta que existe em 𝐺 deve ter uma
aresta correspondente em 𝐺′.

Definição 2.1.7. Homomorfismo - Um homomorfismo de um grafo 𝐺 = (𝑉, 𝐸) em um
grafo 𝐺′ = (𝑉 ′, 𝐸 ′) é um mapeamento 𝑓 : 𝑉 → 𝑉 ′ do conjunto de vértices de 𝐺 para o
conjunto de vértices de 𝐺′, tal que se existe uma aresta 𝑒 = (𝑣1, 𝑣2) ∈ 𝐸 então deve existir
obrigatoriamente uma aresta 𝑒′ = (𝑓(𝑣1), 𝑓(𝑣2)) ∈ 𝐸 ′.

De acordo com Rodriguez e Neubauer (2010) um grafo de propriedades é um
multigrafo direcionado, etiquetado e com atributos. Ou seja, num grafo de propriedades
as arestas são direcionadas, podem haver laços e múltiplas arestas entre dois vértices,
vértices e arestas possuem etiquetas e pares de atributos chave-valor associados, conforme
grafo ilustrado na Figura 4.

Neste trabalho utilizou-se a definição de grafo encontrada em Fan e Lu (2017): um
grafo de propriedades é um grafo em que vértices e arestas possuem etiquetas, porém,
apenas vértices possuem atributos. Além dos conjuntos V e E (para vértices e arestas)
estão presentes também os Γ, ϒ e 𝑈 , que são conjuntos infinitos contáveis de etiquetas,
atributos e constantes, respectivamente.

Definição 2.1.8. Grafo (FAN; LU, 2017) - Um grafo 𝐺 é uma quádrupla (𝑉, 𝐸, 𝐿, 𝐹𝐴),
onde

Capítulo 2. Fundamentação Teórica 15

Figura 4 – Exemplo de grafo de propriedades Rodriguez e Neubauer (2010).

∙ 𝑉 é um conjunto finito de vértices;

∙ 𝐸 é um conjunto finito de arestas, onde (𝑣1, 𝑙, 𝑣2) representa uma aresta direcionada
de 𝑣1 até 𝑣2, (𝑣1, 𝑣2 ∈ 𝑉) e que possui uma etiqueta 𝑙 ∈ Γ;

∙ Cada vértice 𝑣 ∈ 𝑉 possui uma etiqueta 𝐿(𝑣) ∈ Γ; e

∙ Cada vértice 𝑣 ∈ 𝑉 possui uma tupla 𝐹𝐴(𝑣) = (𝐴1 = 𝑎1, . . . , 𝐴𝑛 = 𝑎𝑛) de atributos
finita, onde 𝐴𝑖 ∈ ϒ e 𝑎𝑖 ∈ 𝑈 , escrita como 𝑣.𝐴𝑖 = 𝑎𝑖, e 𝐴𝑖 ̸= 𝐴𝑗 se 𝑖 ̸= 𝑗. Cada 𝑣

obrigatoriamente possui um atributo especial 𝑖𝑑.

2.2 Banco de dados
Um banco de dados é basicamente um conjunto de informações organizadas. No

modelo relacional, os dados são armazenados em uma ou mais tabelas que se relacionam
entre si. A Tabela 1 apresenta parte de um banco de dados relacional que representa um
conjunto de cinemas e filmes.

Segundo Penteado et al. (2014), os Sistemas Gerenciadores de Banco de Dados Re-
lacionais (SGBDRs) dominaram o meio empresarial e acadêmico durante décadas porque
a modelagem de dados no modelo relacional é intuitiva, há uma linguagem padronizada
de consulta e manipulação de dados, e as propriedades ACID (Atomicidade, Consistên-

Capítulo 2. Fundamentação Teórica 16

Filmes Título Diretor
Os Guardiões da Galáxia James Gunn
Seu Nome Makoto Shinkai
Pantera Negra Ryan Coogler

Horários Cinema Tela Título
Cinépolis 1 Os Guardiões da Galáxia
Cinépolis 2 Os Guardiões da Galáxia
Cinépolis 3 Pantera Negra
Cinépolis 4 Pantera Negra
Cinemark 1 Seu Nome
Cinemark 2 Seu Nome
Cinemark 3 Pantera Negra
Cinemark 4 Os Guardiões da Galáxia

Tabela 1 – Exemplo de Banco de Dados Relacional

cia, Isolamento e Durabilidade) são garantidas em diversas aplicações. Mas apesar desses
benefícios, aplicações baseadas em modelos de dados complexos podem ter problemas.

Ainda segundo Penteado et al. (2014), o banco de dados em grafos surgiu como
uma alternativa ao banco de dados relacional parar dar suporte a sistemas cuja interco-
nectividade de dados é importante. De acordo com Pokornỳ (2015), o modelo de banco
de dados relacional foi inicialmente projetado para representar formulários de papel e
estruturas tabulares e funciona muito bem nesses cenários, mas tem muita dificuldade
para representar os relacionamentos específicos, irregulares e excepcionais que aparecem
no mundo real.

Formalmente, um grafo é apenas uma coleção de vértices e arestas. Os grafos
representam entidades como vértices e os relacionamentos como arestas. Esta estrutura
expressiva e de propósito geral permite modelar todo e qualquer tipo de cenário.

Por exemplo, as informações de redes sociais como Twitter e Facebook podem ser
representadas facilmente com o uso de grafos. Na Figura 5 é representada uma pequena
rede de usuários do Twitter. Os vértices representam usuários e possuem a propriedade
“nome” e a etiqueta “usuário”, as arestas representam relacionamentos e possuem a eti-
queta “segue”.

Uma base de dados pode ser representada de diferentes formas dependendo do
modelo de grafo escolhido, e o modelo mais utilizado entre os SGBDGs atuais é o grafo
de propriedades (PENTEADO et al., 2014), descrito na presente seção.

Capítulo 2. Fundamentação Teórica 17

Figura 5 – Uma pequena rede de usuários do Twitter (POKORNỲ, 2015).

2.3 Restrições de Integridade
Em diversas aplicações, a qualidade dos dados armazenados é de grande importân-

cia para que resultados precisos e corretos possam ser obtidos através de consultas. O uso
de restrições de integridade sobre os dados tem o objetivo de melhorar a qualidade dos
dados e são aplicadas no momento da inserção dos dados e da modificação dos mesmos.
Em qualquer estado do banco de dados, todas as restrições devem ser satisfeitas para
que os dados estejam de acordo com a qualidade desejada. As restrições de integridade
comumente suportadas e utilizadas em bancos de dados convencionais são as de domí-
nio, integridade de entidade, estrutura de atributo e integridade referencial (ELMASRI;
NAVATHE, 2010).

As restrições de integridade garantem consistência dos dados, mas não a corretude.
Por exemplo, uma restrição de integridade pode ser criada para garantir que um atributo
“idade” seja sempre um numero natural: isso garante que não haverá idade negativa, mas
não garante que a idade inserida esteja correta.

O problema de restrições de integridade está bem consolidado na área de bancos
de dados relacionais. Porém, no contexto do armazenamento de dados em grafos, um
novo desafio foi estabelecido para o campo das restrições de integridade considerando
a necessidade de se estabelecer regras capazes de tratar as especificidades dos dados
em grafos e seus relacionamentos (ROBINSON; WEBBER; EIFREM, 2015; ŠESTAK;
RABUZIN; NOVAK, 2016; FAN; LU, 2017). Em Šestak, Rabuzin e Novak (2016) as
questões de implementação de restrições de integridade em grafos são discutidas e duas
abordagens são apresentadas: implementação integrada ao SGBD e implementação em
uma camada separada. Neste trabalho, optou-se por desenvolver uma API em uma camada
separada, em que pudessem ser utilizados os plugins do SGBDG Neo4j e da linguagem
Cypher.

Angles e Gutierrez (2008 apud ŠESTAK; RABUZIN; NOVAK, 2016) identificaram

Capítulo 2. Fundamentação Teórica 18

vários exemplos de restrições de integridade importantes para bancos de dados em grafo:

∙ Consistência esquema-instância: Previne que informações incompletas ou não exis-
tentes sejam inseridas no banco de dados e implica que a instância deve conter
apenas as entidades e relacionamentos previamente definidos no esquema.

∙ Redundância de dados: Reduz a quantidade de informações redundantes armazena-
das no banco de dados.

∙ Integridade de identidade: Similarmente à restrição de chave primária do modelo
relacional, garante que cada nó do banco de dados represente uma entidade única
do mundo real que possa ser identificada por um ID ou um conjunto de valores de
atributos.

∙ Integridade referencial: De forma similar à restrição de chave secundária do modelo
relacional, garante que apenas entidades existentes no banco de dados possam ser
referenciadas.

∙ Dependências Funcionais: Permitem testar se o fato de alguma entidade determinar
o valor de outra é respeitado no conjunto dos dados.

2.3.1 Dependências Funcionais

Uma dependência funcional é uma restrição entre dois subconjuntos de atributos
de um banco de dados. Seja 𝑅 o conjunto de atributos 𝑅 = {𝐴1, 𝐴2, 𝐴3, . . . 𝐴𝑛} de um
banco de dados relacional e sejam 𝑋 e 𝑌 dois subconjuntos de 𝑅.

Define-se que 𝑋 determina funcionalmente 𝑌 (ou que 𝑌 depende funcionalmente
de 𝑋) se, e somente se, ∀ 𝑡1, 𝑡2 ∈ 𝑅 : 𝑡1[𝑋] = 𝑡2[𝑋] ⇒ 𝑡1[𝑌] = 𝑡2[𝑌]. Denota-se que
𝑋 determina funcionalmente 𝑌 por 𝑋 → 𝑌 . Por exemplo, na Tabela 1 tem-se que
Título → Diretor, pois para cada valor de “Diretor” há apenas um valor de “Título”
correspondente.

Os SGBDGs atuais para grafos não possuem suporte para a definição explícita
e o uso de dependências funcionais. Segundo Šestak, Rabuzin e Novak (2016), para as
duas linguagens populares utilizadas em bancos de dados em grafos, Cypher e Gremlin,
o suporte para restrições de integridade de ambas é mínimo. Fan e Lu (2017) apresen-
tam formalmente uma classe de dependências funcionais para grafos, chamadas de Graph
Entity Dependencies, que são capazes de expressar dependências funcionais em bancos de
dados em grafos.

Capítulo 2. Fundamentação Teórica 19

2.4 SGBDG Neo4j
Neo4j é um banco de dados em grafo nativo NoSQL de código aberto implementado

em Java e Scala. Ele começou a ser implementado em 2003 mas só se tornou disponível
publicamente a partir de 2007.

Neo4j é considerado um banco de dados em grafo nativo porque ele implementa
eficientemente o modelo de grafo de propriedades até o nível de armazenamento. Isso
quer dizer que os dados são armazenados exatamente como podem ser representados num
quadro branco, e o banco de dados usa ponteiros para navegar e percorrer o grafo. O
Neo4j também fornece características completas de banco de dados, como conformidade
às transações ACID, suporte à clusters e tolerância a falhas, tornando adequado usar
grafos de dados em cenários de produção.

Segundo Neo4j (2018), alguns dos seguintes recursos tornam o Neo4j popular entre
desenvolvedores, arquitetos e administradores de bancos de dados:

∙ Cypher, uma linguagem de consulta declarativa similar ao SQL, mas otimizada para
grafos. Também utilizada por outros bancos de dados como SAP HANA Graph e
Redis Graph através do projeto openCypher (MARTON; SZÁRNYAS; VARRÓ,
2017).

∙ Percurso em tempo constante em grafos grandes tanto para percurso em profundi-
dade quanto em largura, devido à representação eficiente de nós e relacionamentos.
Permite escalar para bilhões de nós em hardware moderado.

∙ Esquema de grafo de propriedades flexível que pode se adaptar ao longo do tempo,
possibilitando materializar e adicionar novos relacionamentos mais tarde, de modo
a acelerar os dados do domínio quando as necessidades do negócio mudarem.

∙ Drivers para linguagens de programação populares, como Java, JavaScript, .NET,
Python e várias outras.

2.4.1 Linguagem Cypher

Cypher é a linguagem de consulta aberta do Neo4j. A sintaxe do Cypher fornece
uma maneira familiar de combinar padrões de nós e relacionamentos no grafo. É uma
linguagem declarativa de consulta construída sobre os conceitos básicos e cláusulas do
SQL, mas com funcionalidades específicas de grafo adicionais, tornando-a simples de se
trabalhar junto a um modelo rico de grafo mas sem ser verbosa demais.

A Cypher foi projetada para ser facilmente lida e compreendida. Ela é simples por-
que corresponde à maneira como são descritos intuitivamente os grafos usando diagramas.
A noção básica é permitir que o usuário encontre dados que correspondam a um padrão

Capítulo 2. Fundamentação Teórica 20

específico, e a maneira que esse padrão é descrito se parece com um desenho usando arte
em ASCII (NEO4J, 2016).

Figura 6 – Um grafo descrevendo os relacionamentos entre três amigos (NEO4J, 2016).

Por exemplo, para expressar o padrão do grafo da Figura 6 no Cypher, usa-se a
consulta (emil)<-[:KNOWS]-(jim)-[:KNOWS]->(ian)-[:KNOWS]->(emil).

As restrições de integridade que podem ser atualmente suportadas na linguagem
Cypher sobre os vértices são:

1. Atributo identificador: é possível definir um (ou mais atributos) como sendo chave,
com a seguinte sintaxe:

CREATE CONSTRAINT ON (E:rotulo_vertice)
ASSERT (E.nome_atributo) IS NODE KEY

Define-se o rótulo do vértice que receberá a restrição, associando-o à uma variável
(E) e define-se o atributo de E que receberá a restrição NODE KEY.

2. Atributo único: pode-se definir um atributo de um rótulo de vértice com valor único
a partir da sintaxe:

CREATE CONSTRAINT ON (E:rotulo_vertice)
ASSERT E.nome_atributo IS UNIQUE

sendo que E é uma variável representando o rótulo e após o termo ASSERT é definido
o atributo que receberá a restrição UNIQUE.

3. Atributo fixo: pode-se definir um atributo com existência obrigatória em um vértice
através da sintaxe:

CREATE CONSTRAINT ON (E:rotulo_vertice)
ASSERT exists(E.nome_atributo)

Capítulo 2. Fundamentação Teórica 21

sendo que E é uma variável representando o rótulo para simplificar o comando e
define-se o atributo de E que deverá existir e possuir um valor neste determinado
campo.

Mais informações sobre a linguagem Cypher podem ser encontradas no seu manual
de referência1.

2.5 Trabalhos correlatos
Šestak, Rabuzin e Novak (2016) discutem o suporte para restrições de integridade

de bancos de dados em grafo, a partir das linguagens Cypher e Gremlim, as mais popula-
res para SGBDs em grafo, e demonstram que é mínimo. O trabalho apresenta os desafios
de implementação técnica para restrições de integridade em grafos, considerando as abor-
dagens em camada e integrada à um SGBD para que restrições de integridade possam ser
definidas e validadas sobre os dados, garantindo mais qualidade e consistência às bases
de dados. Foi proposta a implementação de uma aplicação web, construída utilizando-se
o framework Spark para Java, com acesso à uma base de dados Neo4j e a linguagem
Gremlim para a execução de consultas aos dados. Foi implementada uma restrição do
tipo UNIQUE, ainda não suportada pela linguagem Gremlim.

Em Rabuzin, Konecki e Šestak (2016), uma nova restrição de integridade é pro-
posta para bases de dados em grafos, denominada check integrity constraint, que previne
que usuários entrem com valores fora de um intervalo pré-definido para um atributo,
associado à um vértice. Esta restrição é implementada como uma camada adicional ao
SGBDG Neo4j.

O trabalho de Fan e Lu (2017) propõe a classe GED de dependências para grafos,
que é definida como a combinação de um padrão de grafo e uma dependência de atributos,
com o objetivo de representar dependências funcionais em grafos. O autor aborda os
problemas de satisfação, implicação e validação de GEDs e estabelece a complexidade de
cada um. As GEDs foram utilizadas como base para a presente proposta.

1 https://neo4j.com/docs/cypher-manual/current/

22

3 Graph Entity Dependencies

A proposta deste trabalho é desenvolver a classe GED em Java afim de criar e
validar dependências funcionais em grafos. Neste capítulo os conceitos de GED serão
apresentados em mais detalhes.

Uma Graph Entity Dependency (GED) é uma combinação de um padrão de grafo
𝑄 como uma restrição topológica e uma dependência funcional 𝑋 → 𝑌 com conjuntos 𝑋

e 𝑌 de literais de igualdade. O padrão 𝑄 identifica um conjunto de entidades no grafo e
a dependência funcional 𝑋 → 𝑌 é aplicada sobre essas entidades (FAN; LU, 2017).

Definição 3.0.1. GEDs (FAN; LU, 2017) Uma GED 𝜙 é definida como 𝑄[𝑥](𝑋 → 𝑌),
onde:

∙ 𝑄[𝑥] é um padrão de grafo; e

∙ 𝑋 → 𝑌 é uma dependência funcional onde 𝑋 e 𝑌 são dois conjuntos (possivelmente
vazios) de literais de 𝑥.

Como mencionado na Seção 2.1, neste trabalho é utilizada a Definição 2.1.8 de
grafo e existem existem três conjuntos infinitos contáveis, Γ, ϒ e 𝑈 que representam
respectivamente etiquetas, atributos e constantes.

3.1 Padrão de Grafo
Um padrão de grafo é basicamente um conjunto de vértices e arestas etiquetados,

que são enumerados como um conjunto de variáveis. Na Figura 7 há alguns exemplos de
padrões de grafo.

Figura 7 – Padrões de grafo (FAN; LU, 2017).

Capítulo 3. Graph Entity Dependencies 23

Definição 3.1.1. Padrão de Grafo (FAN; LU, 2017) Um padrão de grafo é um grafo
direcionado 𝑄[𝑥] = (𝑉𝑄, 𝐸𝑄, 𝐿𝑄), onde

∙ 𝑉𝑄 é um conjunto finito de vértices do padrão;

∙ 𝐸𝑄 é um conjunto finito de arestas do padrão;

∙ 𝐿𝑄 é uma função que atribui uma etiqueta 𝐿𝑄(𝑣) para cada nó 𝑣 ∈ 𝑉𝑄; e

∙ 𝑥 denota os vértices em 𝑉𝑄 como uma lista de variáveis.

As etiquetas dos vértices e arestas do padrão são as etiquetas do conjunto Γ, além
da etiqueta coringa “_” que é uma etiqueta especial de 𝑄 que corresponde a qualquer
etiqueta em Γ.

Definição 3.1.2. Correspondência (FAN; LU, 2017) Dizemos que uma etiqueta 𝑙1 cor-
responde a 𝑙2, denotado por 𝑙1 ≍ 𝑙2, se 𝑙1, 𝑙2 ∈ Γ e 𝑙1 = 𝑙2, ou se 𝑙2 ∈ Γ e 𝑙1 = “_”.

Uma correspondência do padrão 𝑄[𝑥] no grafo 𝐺 é um homomorfismo ℎ de 𝑄 para
𝐺, tal que para cada nó 𝑣 ∈ 𝑉𝑄, 𝐿𝑄(𝑣) ≍ 𝐿(ℎ(𝑢)); e para cada aresta 𝑒 = (𝑣1, 𝑙, 𝑣2) em
𝑄, existe uma aresta 𝑒′ = (ℎ(𝑣1), 𝑙′, ℎ(𝑣2)) em 𝐺 tal que 𝑙 ≍ 𝑙′. Pode-se observar que
quando 𝑙1 é a etiqueta coringa “_” pode existir mais de uma aresta 𝑒′ tal que 𝑙 ≍ 𝑙′. A
correspondência escolhe uma dessas arestas e a denota como ℎ(𝑙𝑣1

𝑣2).

Quando é claro pelo contexto, a correspondência também pode ser denotada como
um vetor ℎ(𝑥) de entidades identificadas pelo padrão 𝑄 no grafo 𝐺, onde ℎ(𝑥) consiste
de ℎ(𝑥) para todas as variáveis 𝑥 ∈ 𝑥.

Por exemplo, considerando o padrão de grafo 𝑄2 da Figura 7 e o grafo da Figura 8,
onde o vértice verde representa um país e os vértices amarelos representam cidades que são
capitais deste país, as correspondências no formato ℎ(𝑥) = (𝑥, 𝑦, 𝑧) do padrão de grafo 𝑄2

para o grafo da imagem são ℎ(𝑥) = (𝑐𝑜𝑢𝑛𝑡𝑟𝑦, 𝑐𝑖𝑡𝑦1, 𝑐𝑖𝑡𝑦2) e ℎ(𝑥) = (𝑐𝑜𝑢𝑛𝑡𝑟𝑦, 𝑐𝑖𝑡𝑦2, 𝑐𝑖𝑡𝑦1).

3.2 Dependência Funcional
Dentro da definição de GEDs, uma dependência funcional 𝑋 → 𝑌 é composta por

dois conjuntos (possivelmente vazios) 𝑋 e 𝑌 de literais de 𝑥.

Um literal de 𝑥, para 𝑥, 𝑦 ∈ 𝑥 pode ser (FAN; LU, 2017):

1. Literal Constante 𝑥.𝐴 = 𝑐, onde 𝑐 é uma constante de 𝑈 e 𝐴 é um atributo de ϒ
diferente de 𝑖𝑑;

2. Literal de Variável 𝑥.𝐴 = 𝑦.𝐵, onde 𝐴 e 𝐵 são atributos de ϒ diferentes de 𝑖𝑑; e

3. Literal de Id 𝑥.𝑖𝑑 = 𝑦.𝑖𝑑.

Capítulo 3. Graph Entity Dependencies 24

Figura 8 – Exemplo de grafo.

3.3 Exemplos de GEDs
Fan e Lu (2017) apresentam exemplos de GEDs utilizando os padrões de grafo

definidos na Figura 7 e suas aplicações, alguns são listados abaixo:

1. GED 𝜙1 = 𝑄1[𝑥, 𝑦](𝑥.𝑡𝑦𝑝𝑒 = “𝑣𝑖𝑑𝑒𝑜𝑔𝑎𝑚𝑒”→ 𝑦.𝑡𝑦𝑝𝑒 = “𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑚𝑒𝑟”) Essa GED
impõe que um videogame só pode ser criado por um programador. Isso impede
a atribuição da criação de um videogame para uma pessoa de outra profissão, que
coincidentemente tenha alguns atributos semelhantes ao programador que realmente
criou.

2. GED 𝜙2 = 𝑄2[𝑥, 𝑦, 𝑧](∅ → 𝑦.𝑛𝑎𝑚𝑒 = 𝑧.𝑛𝑎𝑚𝑒) Essa GED impõe que, se existir mais
do que um vértice etiquetado como “Cidade” representando a capital de um país,
todos esses vértices devem possuir o mesmo nome. Isso impede que um país possua
mais de uma capital, enquanto permite redundância de informações.

3. GED 𝜙3 = 𝑄3[𝑥, 𝑦](𝑥.𝐴 = 𝑥.𝐴 → 𝑦.𝐴 = 𝑥.𝐴) Essa GED diz que, se 𝑦 “é um” 𝑥 e 𝑥

tem a propriedade 𝐴, então 𝑦 herda essa propriedade e possui o mesmo valor.

4. GED 𝜙4 = 𝑄4[𝑥, 𝑦](∅ → false) Essa GED impõe que o padrão de grafo 𝑄4 é
inválido, por ser absurdo. Nenhuma “pessoa” pode ser simultaneamente mãe e filha
de outra “pessoa”. Essa GED pode ser utilizada para detectar essa falha.

5. GED 𝜙5 = 𝑄5[𝑥, 𝑥′, 𝑧1, 𝑧2, 𝑦1, . . . , 𝑦𝑘](𝑋5 → 𝑌5), onde 𝑋5 = {𝑥′.𝑖𝑠_𝑓𝑎𝑘𝑒 = 1,

𝑧1.𝑘𝑒𝑦𝑤𝑜𝑟𝑑 = 𝑐, 𝑧2.𝑘𝑒𝑦𝑤𝑜𝑟𝑑 = 𝑐} e 𝑌5 = {𝑥.𝑖𝑠_𝑓𝑎𝑘𝑒 = 1} e 𝑐 é uma constante.
Essa GED pode ser utilizada pra detectar contas falsas. Para contas e blogs que
correspondam à 𝑄5, se a conta 𝑥′ for confirmada como falsa e ambos os blogs 𝑧1 e
𝑧2 conterem uma keyword específica 𝑐, então 𝑥 também é uma conta falsa.

Capítulo 3. Graph Entity Dependencies 25

3.4 Satisfatibilidade
Para interpretar a GED 𝜙 = 𝑄[𝑥](𝑋 → 𝑌), Fan e Lu (2017) utiliza as seguintes

notações. Considerando uma correspondência ℎ(𝑥) de 𝑄 num grafo 𝐺, e um literal 𝑙 de
𝑥. É dito que ℎ(𝑥) satisfaz 𝑙, denotado como ℎ(𝑥) |= 𝑙, se:

1. quando 𝑙 é um literal constante 𝑥.𝐴 = 𝑐, então o atributo 𝐴 existe no nó 𝑣 = ℎ(𝑥)
e 𝑣.𝐴 = 𝑐;

2. quando 𝑙 é um literal de variável 𝑥.𝐴 = 𝑦.𝐵, então o atributo 𝐴 existe em 𝑣1 = ℎ(𝑥)
e o atributo 𝐵 existe em 𝑣2 = ℎ(𝑦) e 𝑣1.𝐴 = 𝑣2.𝐵; e

3. quando 𝑙 é um literal de id 𝑥.𝑖𝑑 = 𝑦.𝑖𝑑, então ℎ(𝑥) e ℎ(𝑦) se referem ao mesmo
vértice, ou seja, eles possuem o mesmo conjunto de atributos e arestas.

Denota-se por ℎ(𝑥) |= 𝑋 se a correspondência ℎ(𝑥) satisfaz todos os literais 𝑙 ∈ 𝑋.
Em particular, se 𝑋 = ∅, então ℎ(𝑥) |= 𝑋.

Escreve-se ℎ(𝑥) |= 𝑋 → 𝑌 se ℎ(𝑥) |= 𝑋 implica em ℎ(𝑥) |= 𝑌 . Isto significa que,
quando ℎ(𝑥) |= 𝑋 → 𝑌 , se ℎ(𝑥) |= 𝑋 então obrigatoriamente ℎ(𝑥) |= 𝑌 .

Um grafo 𝐺 satisfaz a GED 𝜙 = 𝑄[𝑥](𝑋 → 𝑌), denotada por 𝐺 |= 𝜙, se para
todas as correspondências ℎ(𝑥) de 𝑄 em 𝐺, ℎ(𝑥) |= 𝑋 → 𝑌 .

3.5 Limitação da GED
Pode-se observar que os atributos não são especificados no padrão de grafo e que

são considerados grafos sem esquema. Por isso, para um literal constante 𝑥.𝐴 = 𝑐, o nó
ℎ(𝑥) da correspondência ℎ(𝑥) não possui necessariamente o atributo 𝐴. Quando 𝑥.𝐴 = 𝑐 é
um literal em 𝑋, se ℎ(𝑥) não possui o atributo 𝐴, então ℎ(𝑥) trivialmente satisfaz 𝑋 → 𝑌

pela definição de satisfação (se ℎ(𝑥) não satisfaz 𝑋, ℎ(𝑥) não precisa satisfazer 𝑌 para
satisfazer 𝑋 → 𝑌 . Mas se 𝑥.𝐴 = 𝑐 for um literal em 𝑌 , entao para que ℎ(𝑥) |= 𝑌 o vértice
ℎ(𝑥) deve ter obrigatoriamente o atributo 𝐴. O mesmo ocorre para outros tipos de literais
(FAN; LU, 2017).

Assim é possível criar uma GED 𝑄[𝑥](∅ → 𝑥.𝐴 = 𝑥.𝐴) para obrigar que todas
as entidades do padrão 𝑄 tenham obrigatoriamente o atributo 𝐴. Isso é útil para, por
exemplo, assegurar que todos os vértices de um grafo etiquetados como “Pessoa” possuam
o atributo “nome”, definindo o padrão de grafo 𝑄 como um único vértice com etiqueta
“Pessoa” e o atributo 𝐴 como “nome”. Mas utilizando apenas GEDs não é possível im-
por que o atributo 𝑥.𝐴 tenha um domínio finito, por exemplo N, o que representa uma
limitação em relação a um esquema de banco de dados.

26

4 Desenvolvimento

A implementação da GED foi feita na linguagem Java utilizando a IDE Eclipse,
a ferramenta Apache Maven1 para gerenciar o projeto e o SGBDG Neo4j. Um ponto
positivo de trabalhar com o Neo4j é que, utilizando o aplicativo Neo4j Desktop2, é possível
visualizar o banco de dados e os resultados das consultas.

O plugin Neo4j Java Driver 3 foi utilizado para conectar e interagir com o banco de
dados do Neo4j. Ele é um driver oficialmente suportado pelo Neo4j que se conecta ao banco
de dados utilizando o protocolo binário. Para adicionar o Neo4j Java Driver utilizando o
Maven basta adicionar as seguintes linhas de código no arquivo de configuração pom.xml:

<groupId>org.neo4j.driver</groupId>
<artifactId>neo4j-java-driver</artifactId>
<version>1.4.4</version>

O Maven é responsável por baixar e configurar as bibliotecas do driver automa-
ticamente para que sejam utilizadas no projeto. Com esse driver é possível se conectar
em um banco de dados do Neo4j ativo e executar consultas ou fazer modificações nele.
Inicialmente é preciso criar um novo banco de dados no Neo4j.

4.1 Configuração e conexão ao banco de dados

4.1.1 Criação de um novo banco de dados em grafo

Utilizando o aplicativo Neo4j Desktop, cria-se um novo projeto clicando em New
na aba Projects (Figura 9).
1 https://maven.apache.org/
2 https://neo4j.com/developer/neo4j-desktop/
3 https://neo4j.com/developer/java/#neo4j-java-driver

Capítulo 4. Desenvolvimento 27

Figura 9 – Criação de um novo projeto.

Em seguida, cria-se um novo banco de dados em grafo nesse novo projeto clicando
em Add Graph (Figura 10).

Figura 10 – Criação de um novo banco de dados em grafo.

O usuário pode escolher entre criar um grafo local ou se conectar a um grafo
remoto, para a implementação deste trabalho a primeira opção foi escolhida clicando em
Create a Local Graph (Figura 11).

Capítulo 4. Desenvolvimento 28

Figura 11 – Criação de um banco de dados em grafo local.

Ao criar um grafo local o usuário deve escolher um nome e uma senha para o grafo
e clicar em Create (Figura 12). Neste trabalho foi utilizada a palavra “Graph” como
nome e senha do grafo criado, mas é recomendável a escolha de uma senha mais segura
se privacidade for uma preocupação.

Figura 12 – Configuração de Nome e Senha do novo banco de dados em grafo.

Após a criação do banco de dados, é possível iniciá-lo clicando em Start (Fi-
gura 13). Só é permitido se conectar a um banco de dados que esteja ativo no momento.

Capítulo 4. Desenvolvimento 29

Figura 13 – Inicialização do banco de dados em grafo.

4.1.2 Conexão a um banco de dados ativo

O plugin Neo4j Java Driver foi usado para conectar a um banco de dados ativo.
Todas as informações sobre as classes e métodos desse plugin podem ser encontradas em
sua API 4.

Para isso deve-se criar um novo objeto da interface Driver5, que é um acessador
para um banco de dados específico do Neo4j, usando como parâmetros o número da porta
Bolt e as informações de autenticação (nome de usuário e senha).

Driver driver = GraphDatabase.driver(
bolt_port, AuthTokens.basic(username, password));

O número da porta Bolt do banco de dados pode ser visualizado clicando no botão
Manage do grafo ativo no Neo4j Desktop, na aba Details (Figura 14).

Depois que a conexão é estabelecida, cria-se uma nova sessão. Uma sessão fornece
um contexto de trabalho para interações no banco de dados, hospedando uma série de
transações que serão realizadas nele. Para isso, basta criar um novo objeto da interface
Session6.

Session session = driver.session();

Consultas e modificações no banco de dados podem ser feitas como uma transação
por meio dessa sessão, enviando um comando na linguagem Cypher para o banco. Observe
4 https://neo4j.com/docs/api/java-driver/current/
5 https://neo4j.com/docs/api/java-driver/current/org/neo4j/driver/v1/Driver.html
6 https://neo4j.com/docs/api/java-driver/current/org/neo4j/driver/v1/Session.html

Capítulo 4. Desenvolvimento 30

Figura 14 – Gerenciamento do banco de dados.

que também é possível consultar e modificar o banco rodando comandos diretamente no
Neo4j Desktop.

4.1.3 Adição de entidades e relacionamentos ao banco

Para adicionar entidades e relacionamentos ao banco, a sessão criada anteriormente
é utilizada para enviar comandos CREATE pela aplicação.

Session session = driver.session();
String query = "CREATE (a:person name: ’Jhulia’, type: ’programmer’)\r"

+ "CREATE (b:person name: ’Arthur’, type: ’engineer’)\r"
+ "CREATE (c:person name: ’Leticia’, type: ’engineer’)\r"
+ "CREATE (x:product name: ’Olympic’, type: ’videogame’)\r"
+ "CREATE (y:product name: ’Olivia’, type: ’bridge’)\r"
+ "CREATE (a)-[:create]->(x)\r"
+ "CREATE (b)-[:create]->(y)\r"
+ "CREATE (c)-[:create]->(y)\r";

session.run(query);

Após a execução do comando run acima o banco de dados possui cinco novas
entidades e três novos relacionamentos, que podem ser visualizados no Neo4j Desktop
como mostrado na Figura 15.

Capítulo 4. Desenvolvimento 31

Figura 15 – Visualização dos dados do banco.

4.2 Implementação
Nesta sessão serão descritas todas as classes criadas no projeto, toda a implemen-

tação foi feita na linguagem Java. É possível ter uma visão geral da API observando o
diagrama de classes UML da Figura 16.

4.2.1 Interface Literal

A interface Literal define um método que todas as classes que a implementa-
rem devem definir. O método isSatisfiedBy(Record r) verifica se a correspondência r
satisfaz o literal ou não.

Listing 4.1 – "Literal.java"
1 package pg . graph ;
2

3 import org . neo4j . d r i v e r . v1 . Record ;
4

5 public interface L i t e r a l {
6 public boolean i s S a t i s f i e d B y (Record r) ;
7 }

Capítulo 4. Desenvolvimento 32

Figura 16 – Diagrama de classes do projeto.

4.2.2 Classe ConstantLiteral

A classe ConstantLiteral implementa a interface Literal e representa um literal
constante 𝑥.𝐴 = 𝑐. Ela possui como atributos três Strings label, attribute e value, que
representam a etiqueta, o nome do atributo e o valor da constante do literal constante.

Capítulo 4. Desenvolvimento 33

Por exemplo, para 𝑥.𝐴 = 𝑐, temos 𝑙𝑎𝑏𝑒𝑙 =“𝑥′′, 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 =“𝐴′′ e 𝑣𝑎𝑙𝑢𝑒 =“𝑐′′. Ela sobres-
creve o método isSatisfiedBy(Record r) da interface Literal e possui um método
toString() que retorna uma String com seus atributos no formato “label.attribute =
value”.

Listing 4.2 – "ConstantLiteral.java"
1 package pg . graph ;
2

3 import org . neo4j . d r i v e r . v1 . Record ;
4 import org . neo4j . d r i v e r . v1 . Value ;
5

6 public class ConstantL i t e ra l implements L i t e r a l {
7 private St r ing label ;
8 private St r ing a t t r i b u t e ;
9 private St r ing value ;

10

11 public ConstantL i t e ra l (S t r ing label , S t r ing a t t r i bu t e , S t r ing value) {
12 this . label = label ;
13 this . a t t r i b u t e = a t t r i b u t e ;
14 this . va lue = value ;
15 }
16 public St r ing getLabe l () {
17 return this . label ;
18 }
19 public St r ing ge tAt t r ibute () {
20 return this . a t t r i b u t e ;
21 }
22 public St r ing getValue () {
23 return this . va lue ;
24 }
25 public void s e tLabe l (S t r ing label) {
26 this . label = label ;
27 }
28 public void s e t A t t r i b u t e (S t r ing a t t r i b u t e) {
29 this . a t t r i b u t e = a t t r i b u t e ;
30 }
31 public void setValue (S t r ing value) {
32 this . va lue = value ;
33 }
34 public boolean i s S a t i s f i e d B y (Record r) {
35 Value v = r . get (this . label) ;
36 i f (v . i s N u l l ()) return fa l se ;
37

38 Value a = v . get (this . a t t r i b u t e) ;
39 i f (a . i s N u l l ()) return fa l se ;
40 return a . t oS t r i ng () . equa l s (this . va lue) ;
41 }

Capítulo 4. Desenvolvimento 34

42 public St r ing toS t r i ng () {
43 return this . label + " . " + this . a t t r i b u t e + " = " + this . va lue ;
44 }
45 }

4.2.3 Classe VariableLiteral

A classe VariableLiteral implementa a interface Literal e representa um li-
teral de variável 𝑥.𝐴 = 𝑦.𝐵. Ela possui como atributos quatro Strings label1, label2,
attribute1 e attribute2, que representam as etiquetas e os nomes dos atributos do
literal de variável. Por exemplo, para 𝑥.𝐴 = 𝑦.𝐵, temos 𝑙𝑎𝑏𝑒𝑙1 =“𝑥′′, 𝑙𝑎𝑏𝑒𝑙2 =“𝑦′′,
𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒1 =“𝐴′′ e 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒2 =“𝐵′′. Ela sobrescreve o método isSatisfiedBy(Record
r) da interface Literal e possui um método toString() que retorna uma String com
seus atributos no formato “label1.attribute1 = label2.attribute2”.

Listing 4.3 – "VariableLiteral"
1 package pg . graph ;
2

3 import org . neo4j . d r i v e r . v1 . Record ;
4 import org . neo4j . d r i v e r . v1 . Value ;
5

6 public class V a r i a b l e L i t e r a l implements L i t e r a l {
7 private St r ing l a b e l 1 ;
8 private St r ing a t t r i b u t e 1 ;
9 private St r ing l a b e l 2 ;

10 private St r ing a t t r i b u t e 2 ;
11

12 public V a r i a b l e L i t e r a l (S t r ing labe l1 , S t r ing a t t r ibu t e1 ,
13 St r ing labe l2 , S t r ing a t t r i b u t e 2) {
14 this . l a b e l 1 = l a b e l 1 ;
15 this . a t t r i b u t e 1 = a t t r i b u t e 1 ;
16 this . l a b e l 2 = l a b e l 2 ;
17 this . a t t r i b u t e 2 = a t t r i b u t e 2 ;
18 }
19 public St r ing getLabe l1 () {
20 return this . l a b e l 1 ;
21 }
22 public St r ing ge tAtt r ibute1 () {
23 return this . a t t r i b u t e 1 ;
24 }
25 public St r ing getLabe l2 () {
26 return this . l a b e l 2 ;
27 }
28 public St r ing ge tAtt r ibute2 () {
29 return this . a t t r i b u t e 2 ;
30 }

Capítulo 4. Desenvolvimento 35

31 public void s e tLabe l1 (S t r ing label) {
32 this . l a b e l 1 = label ;
33 }
34 public void s e tAt t r i bu t e1 (S t r ing a t t r i b u t e) {
35 this . a t t r i b u t e 1 = a t t r i b u t e ;
36 }
37 public void s e tLabe l2 (S t r ing label) {
38 this . l a b e l 2 = label ;
39 }
40 public void s e tAt t r i bu t e2 (S t r ing a t t r i b u t e) {
41 this . a t t r i b u t e 2 = a t t r i b u t e ;
42 }
43 public boolean i s S a t i s f i e d B y (Record r) {
44 Value v1 = r . get (this . l a b e l 1) ;
45 Value v2 = r . get (this . l a b e l 2) ;
46 i f (v1 . i s N u l l () | | v2 . i s N u l l ()) return fa l se ;
47

48 Value a1 = v1 . get (this . a t t r i b u t e 1) ;
49 Value a2 = v2 . get (this . a t t r i b u t e 2) ;
50 i f (a1 . i s N u l l () | | a2 . i s N u l l ()) return fa l se ;
51 return a1 . equa l s (a2) ;
52 }
53 public St r ing toS t r i ng () {
54 return this . l a b e l 1 + " . " + this . a t t r i b u t e 1 + " = "
55 + this . l a b e l 2 + " . " + this . a t t r i b u t e 2 ;
56 }
57 }

4.2.4 Classe IdLiteral

A classe IdLiteral implementa a interface Literal e representa um literal de id
𝑥.𝑖𝑑 = 𝑦.𝑖𝑑. Ela possui como atributos duas Strings label1 e label2, que representam as
etiquetas do literal de id. Por exemplo, para 𝑥.𝑖𝑑 = 𝑦.𝑖𝑑, temos 𝑙𝑎𝑏𝑒𝑙1 =“𝑥′′, 𝑙𝑎𝑏𝑒𝑙2 =“𝑦′′.
Ela sobrescreve o método isSatisfiedBy(Record r) da interface Literal e possui um
método toString() que retorna uma String com seus atributos no formato “label1.id =
label2.id”.

Listing 4.4 – "IdLiteral.java"
1 package pg . graph ;
2

3 import org . neo4j . d r i v e r . v1 . Record ;
4 import org . neo4j . d r i v e r . v1 . Value ;
5

6 public class I d L i t e r a l implements L i t e r a l {
7 private St r ing l a b e l 1 ;
8 private St r ing l a b e l 2 ;

Capítulo 4. Desenvolvimento 36

9

10 public I d L i t e r a l (S t r ing labe l1 , S t r ing l a b e l 2) {
11 this . l a b e l 1 = l a b e l 1 ;
12 this . l a b e l 2 = l a b e l 2 ;
13 }
14 public St r ing getLabe l1 () {
15 return this . l a b e l 1 ;
16 }
17 public St r ing getLabe l2 () {
18 return this . l a b e l 2 ;
19 }
20 public void s e tLabe l1 (S t r ing label) {
21 this . l a b e l 1 = label ;
22 }
23 public void s e tLabe l2 (S t r ing label) {
24 this . l a b e l 2 = label ;
25 }
26 public boolean i s S a t i s f i e d B y (Record r) {
27 Value v1 = r . get (this . l a b e l 1) ;
28 Value v2 = r . get (this . l a b e l 2) ;
29 i f (v1 . i s N u l l () | | v2 . i s N u l l ()) return fa l se ;
30

31 Value a1 = v1 . get (" id ") ;
32 Value a2 = v2 . get (" id ") ;
33 i f (a1 . i s N u l l () | | a2 . i s N u l l ()) return fa l se ;
34 return a1 . equa l s (a2) ;
35 }
36 public St r ing toS t r i ng () {
37 return this . l a b e l 1 + " . id = " + this . l a b e l 2 + " . id " ;
38 }
39 }

4.2.5 Classe FalseLiteral

A classe FalseLiteral implementa a interface Literal e representa um literal
especial que não é satisfeito por nenhuma correspondência. Ele é útil para invalidar GEDs
que tenham padrões de grafo absurdos, como no exemplo da GED 𝜙4 na Seção 3.3.
Ela sobrescreve o método isSatisfiedBy(Record r) da interface Literal e possui um
método toString() que retorna a String “false”.

Listing 4.5 – "FalseLiteral.java"
1 package pg . graph ;
2

3 import org . neo4j . d r i v e r . v1 . Record ;
4

5 public class F a l s e L i t e r a l implements L i t e r a l {

Capítulo 4. Desenvolvimento 37

6 public boolean i s S a t i s f i e d B y (Record r) {
7 return fa l se ;
8 }
9 public St r ing toS t r i ng () {

10 return " f a l s e " ;
11 }
12 }

4.2.6 Classe FunctionalDependency

Uma dependência funcional 𝑋 → 𝑌 é composta por dois conjuntos de literais 𝑋

e 𝑌 . A classe FunctionalDependency possui como atributos dois conjuntos de literais,
leftSet e rightSet.

Além dos construtores, getters e setters, a classe possui os métodos
leftSetIsSatisfiedBy(Record) e rightSetIsSatisfiedBy(Record r), que verificam
se a correspondência em r satisfaz o conjunto de literais leftSet e rightSet, respectiva-
mente, e o método isSatisfiedBy(Record r) que verifica se a correspondência r satisfaz
a dependência funcional.

Uma correspondência satisfaz a dependência funcional quando se o conjunto de li-
terais em leftSet for satisfeito, o conjunto de literais em rightSet também for satisfeito.
Isso significa que se o conjunto de literais em leftSet não for satisfeito, a dependência
funcional é automaticamente satisfeita.

Listing 4.6 – "FunctionalDependency.java"
1 package pg . graph ;
2

3 import java . u t i l . ArrayList ;
4 import java . u t i l . Arrays ;
5

6 import org . neo4j . d r i v e r . v1 . Record ;
7

8 public class FunctionalDependency {
9 private ArrayList<L i t e r a l > l e f t S e t ;

10 private ArrayList<L i t e r a l > r i g h t S e t ;
11

12 public FunctionalDependency (L i t e r a l [] l e f t , L i t e r a l [] r i g h t) {
13 this . l e f t S e t = new ArrayList<L i t e r a l >(Arrays . a s L i s t (l e f t)) ;
14 this . r i g h t S e t = new ArrayList<L i t e r a l >(Arrays . a s L i s t (r i g h t)) ;
15 }
16 public FunctionalDependency (ArrayList<L i t e r a l > l e f t ,
17 ArrayList<L i t e r a l > r i g h t) {
18 this . l e f t S e t = l e f t ;
19 this . r i g h t S e t = r i g h t ;
20 }

Capítulo 4. Desenvolvimento 38

21 public ArrayList<L i t e r a l > ge tLe f tSe t () {
22 return this . l e f t S e t ;
23 }
24 public ArrayList<L i t e r a l > getRightSet () {
25 return this . r i g h t S e t ;
26 }
27 public void s e t L e f t S e t (ArrayList<L i t e r a l > l) {
28 this . l e f t S e t = l ;
29 }
30 public void s e tRightSet (ArrayList<L i t e r a l > r) {
31 this . r i g h t S e t = r ;
32 }
33 public boolean l e f t S e t I s S a t i s f i e d B y (Record r) {
34 for (L i t e r a l l : this . l e f t S e t) {
35 i f (! l . i s S a t i s f i e d B y (r)) {
36 return fa l se ;
37 }
38 }
39 return true ;
40 }
41 public boolean r i g h t S e t I s S a t i s f i e d B y (Record r) {
42 for (L i t e r a l l : this . r i g h t S e t) {
43 i f (! l . i s S a t i s f i e d B y (r)) {
44 return fa l se ;
45 }
46 }
47 return true ;
48 }
49 public boolean i s S a t i s f i e d B y (Record r) {
50 return (! l e f t S e t I s S a t i s f i e d B y (r) | | r i g h t S e t I s S a t i s f i e d B y (r)) ;
51 }
52 }

4.2.7 Classe GED

Uma GED é uma combinação de um padrão de grafo 𝑄 e uma dependência fun-
cional 𝑋 → 𝑌 , então naturalmente a classe GED possui como atributos esses dois itens.
A classe possui como métodos apenas um construtor e os getters e setters padrões.

O padrão de grafo graphPattern é uma String simples de Java, representando
uma consulta em Cypher que retorna as correspondências ao padrão desejado. A depen-
dência funcional functionalDependency é um objeto da classe FunctionalDependency.

Listing 4.7 – "GED.java"
1 package pg . graph ;
2

Capítulo 4. Desenvolvimento 39

3 public class GED {
4 private St r ing graphPattern ;
5 private FunctionalDependency funct ionalDependency ;
6

7 public GED(St r ing pattern , FunctionalDependency fd) {
8 this . graphPattern = pattern ;
9 this . funct ionalDependency = fd ;

10 }
11 public St r ing getGraphPattern () {
12 return this . graphPattern ;
13 }
14 public FunctionalDependency getFunctionalDependency () {
15 return this . funct ionalDependency ;
16 }
17 public void setGraphPattern (S t r ing graphPattern) {
18 this . graphPattern = graphPattern ;
19 }
20 public void setFunctionalDependency (FunctionalDependency fd) {
21 this . funct ionalDependency = fd ;
22 }
23 }

4.2.8 Classe Validator

A classe Validator serve apenas como um validador de GEDs. Ela possui um
único método estático validate(Session s, GED ged) que verifica se a GED é válida
para o grafo conectado na sessão ativa.

Listing 4.8 – "Validator.java"
1 package pg . graph ;
2

3 import java . u t i l . L i s t ;
4

5 import org . neo4j . d r i v e r . v1 . Record ;
6 import org . neo4j . d r i v e r . v1 . Se s s i on ;
7 import org . neo4j . d r i v e r . v1 . StatementResult ;
8

9 public class Val idator {
10 public stat ic boolean v a l i d a t e (Se s s i on s , GED ged) {
11 StatementResult r e s = s . run (ged . getGraphPattern ()) ;
12 List <Record> reco rd s = r e s . l i s t () ;
13 for (Record r : r e co rd s) {
14 i f (! ged . getFunctionalDependency () . i s S a t i s f i e d B y (r))
15 return fa l se ;
16 }
17 return true ;

Capítulo 4. Desenvolvimento 40

18 }
19 }

4.2.9 Aplicação

A classe Helper foi criada para agrupar um conjunto de métodos estáticos de
utilidade para auxiliar na criação da aplicação. Nesta classe há métodos para imprimir
GEDs de maneira organizada, um parser para criar um Literal a partir de uma String
e um conjunto de métodos que criam as GEDs 𝜙1 − 𝜙4 listadas na Seção 3.3.

Listing 4.9 – "Helper.java"
1 package pg . graph ;
2

3 import java . u t i l . ArrayList ;
4

5 public class Helper {
6 public stat ic L i t e r a l par s eL i t e ra lFromStr ing (S t r ing s) {
7 s = s . r e p l a c e A l l (" \\ s+" , " ") ; // remove empty spaces
8 St r ing symbols = " " ;
9 for (int i =0; i<s . l ength () ; i++) {

10 i f (s . charAt (i) == ’ . ’ | | s . charAt (i) == ’=’) {
11 symbols += s . charAt (i) ;
12 }
13 }
14 i f (symbols . equa l s (" ")) { // t h i s must be a F a l s e L i t e r a l
15 i f (s . equa l s (" Fa l se ") | | s . equa l s (" f a l s e "))
16 return new F a l s e L i t e r a l () ;
17 } else i f (symbols . equa l s (" .= ")) { // t h i s must be a

Cons tantL i t e ra l
18 int i = 0 ;
19 St r ing label = " " ;
20 St r ing a t t r i b u t e = " " ;
21 St r ing value = " " ;
22 while (i < s . l ength () && s . charAt (i) != ’ . ’)
23 label += s . charAt (i++) ;
24 i ++;
25 while (i < s . l ength () && s . charAt (i) != ’=’)
26 a t t r i b u t e += s . charAt (i++) ;
27 i ++;
28 while (i < s . l ength ())
29 value += s . charAt (i++) ;
30

31 i f (! label . isEmpty () && ! a t t r i b u t e . isEmpty ())
32 return new ConstantL i t e ra l (label , a t t r i bu t e , va lue) ;
33 } else i f (symbols . equa l s (" .=. ")) { // t h i s may be a

V a r i a b l e L i t e r a l

Capítulo 4. Desenvolvimento 41

34 int i = 0 ; // or an I d L i t e r a l
35 St r ing l a b e l 1 = " " ;
36 St r ing a t t r i b u t e 1 = " " ;
37 St r ing l a b e l 2 = " " ;
38 St r ing a t t r i b u t e 2 = " " ;
39 while (i < s . l ength () && s . charAt (i) != ’ . ’)
40 l a b e l 1 += s . charAt (i++) ;
41 i ++;
42 while (i < s . l ength () && s . charAt (i) != ’=’)
43 a t t r i b u t e 1 += s . charAt (i++) ;
44 i ++;
45 while (i < s . l ength () && s . charAt (i) != ’ . ’)
46 l a b e l 2 += s . charAt (i++) ;
47 i ++;
48 while (i < s . l ength ())
49 a t t r i b u t e 2 += s . charAt (i++) ;
50

51 i f (! l a b e l 1 . isEmpty () && ! a t t r i b u t e 1 . isEmpty ()
52 && ! l a b e l 2 . isEmpty () && ! a t t r i b u t e 2 . isEmpty ()) {
53 i f (a t t r i b u t e 1 . equa l s (" id ") && a t t r i b u t e 2 . equa l s (" id "))
54 return new I d L i t e r a l (l abe l1 , l a b e l 2) ;
55 i f (! a t t r i b u t e 1 . equa l s (" id ") && ! a t t r i b u t e 2 . equa l s (" id "))
56 return new V a r i a b l e L i t e r a l (l abe l 1 , a t t r i bu t e1 ,
57 l abe l 2 , a t t r i b u t e 2) ;
58 }
59 }
60 return null ; // couldn ’ t parse S t r ing s
61 }
62 public stat ic St r ing f o r m a t L i t e r a l s (ArrayList<L i t e r a l > l i t e r a l s) {
63 i f (l i t e r a l s . isEmpty ()) {
64 return " {} " ;
65 }
66 St r ing f o rmat edL i t e r a l s = l i t e r a l s . get (0) . t oS t r i ng () ;
67 for (int i =1; i<l i t e r a l s . s i z e () ; i++) {
68 f o rmat edL i t e r a l s += " , " + l i t e r a l s . get (1) . t oS t r i ng () ;
69 }
70 return " { " + fo rmat edL i t e r a l s + " } " ;
71 }
72 public stat ic void printGED (GED ged) {
73 System . out . p r i n t l n (" Graph pattern : " + ged . getGraphPattern ()) ;
74 System . out . p r i n t l n (" Funct iona l dependency : ") ;
75 System . out . p r i n t l n (" Le f t s i d e : " + f o r m a t L i t e r a l s (
76 ged . getFunctionalDependency () . g e tLe f tSe t ())) ;
77 System . out . p r i n t l n (" Right s i d e : " + f o r m a t L i t e r a l s (
78 ged . getFunctionalDependency () . getRightSet ())) ;
79 }
80 public stat ic GED example1 () {

Capítulo 4. Desenvolvimento 42

81 St r ing graphPattern =
82 "MATCH (x : product) <−[: c r e a t e] −(y : person) RETURN x , y " ;
83 FunctionalDependency fd = new FunctionalDependency (
84 new L i t e r a l [] {new
85 ConstantL i t e ra l (" x " , " type " , " videogame ") } ,
86 new L i t e r a l [] {new
87 ConstantL i t e ra l (" y " , " type " , " programmer ") }) ;
88 return new GED(graphPattern , fd) ;
89 }
90 public stat ic GED example2 () {
91 St r ing graphPattern = "MATCH (y : c i t y) <−[: c a p i t a l] −(x : country) "
92 + " − [: c a p i t a l]−>(z : c i t y) RETURN x , y , z " ;
93 FunctionalDependency fd = new FunctionalDependency (
94 new L i t e r a l [] {} ,
95 new L i t e r a l [] {new V a r i a b l e L i t e r a l (" y " , "name" ,
96 " z " , "name") }) ;
97 return new GED(graphPattern , fd) ;
98 }
99 public stat ic GED example3 () {

100 St r ing graphPattern = "MATCH (x) <−[: is_a] −(y) RETURN x , y " ;
101 FunctionalDependency fd = new FunctionalDependency (
102 new L i t e r a l [] {new V a r i a b l e L i t e r a l (" x " , " can_fly " ,
103 " x " , " can_fly ") } ,
104 new L i t e r a l [] {new V a r i a b l e L i t e r a l (" y " , " can_fly " ,
105 " x " , " can_fly ") }) ;
106 return new GED(graphPattern , fd) ;
107 }
108 public stat ic GED example4 () {
109 St r ing graphPattern = "MATCH (x : person) <−[: c h i l d] −(y : person) "
110 + " WHERE (x) <−[: parent] −(y) RETURN x , y " ;
111 FunctionalDependency fd = new FunctionalDependency (
112 new L i t e r a l [] {} ,
113 new L i t e r a l [] {new F a l s e L i t e r a l () }) ;
114 return new GED(graphPattern , fd) ;
115 }
116 }

A classe App que possui o método main() do projeto representa uma aplicação
interativa simples para testar as classes. Ela se conecta a um banco de dados específico
do Neo4j e permite a criação e validação de novas GEDs pelo usuário, a execução de
comandos Cypher no banco e a validação dos exemplos de GEDs criados por métodos da
classe Helper.

Listing 4.10 – "App.java"
1 package pg . graph ;
2

3 import java . u t i l . ArrayList ;

Capítulo 4. Desenvolvimento 43

4 import java . u t i l . Scanner ;
5

6 import org . neo4j . d r i v e r . v1 . AuthTokens ;
7 import org . neo4j . d r i v e r . v1 . Dr iver ;
8 import org . neo4j . d r i v e r . v1 . GraphDatabase ;
9 import org . neo4j . d r i v e r . v1 . Se s s i on ;

10

11 public class App
12 {
13 public stat ic void menu () {
14 System . out . p r i n t l n (" −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ") ;
15 System . out . p r i n t l n (" | 1) Ava l ia r GED exemplo | ") ;
16 System . out . p r i n t l n (" | 2) Ava l ia r GED cr iada pe lo usuá r i o | ") ;
17 System . out . p r i n t l n (" | 3) L i s t a r GEDs exemplo | ") ;
18 System . out . p r i n t l n (" | 4) L i s t a r GEDs c r i a d a s pe lo usuá r i o | ") ;
19 System . out . p r i n t l n (" | 5) Cr iar uma nova GED | ") ;
20 System . out . p r i n t l n (" | 6) Executar um comando no banco | ") ;
21 System . out . p r i n t l n (" | 0) Encerrar | ") ;
22 System . out . p r i n t l n (" −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ") ;
23 System . out . p r i n t (" Escolha uma opção : ") ;
24 }
25 public stat ic void main (St r ing [] a rgs)
26 {
27 try{
28 Driver d r i v e r = GraphDatabase . d r i v e r (" bo l t : // l o c a l h o s t :7687 " ,
29 AuthTokens . ba s i c (" neo4j " , " Graph ")) ;
30 Ses s i on s e s s i o n = d r i v e r . s e s s i o n () ;
31 Scanner sc = new Scanner (System . in) ;
32 int op ;
33

34 GED[] example_geds = new GED[] { Helper . example1 () ,
35 Helper . example2 () , Helper . example3 () ,
36 Helper . example4 () } ;
37 ArrayList<GED> user_created_geds = new ArrayList<GED>() ;
38

39 do {
40 menu () ;
41 op = sc . next Int () ; sc . nextLine () ;
42 switch (op) {
43 case 1 :
44 System . out . p r i n t l n (" D ig i t e o id [1 , 4] da GED"
45 + " exemplo que de s e j a a v a l i a r : ") ;
46 int id = sc . next Int () ; sc . nextLine () ;
47 i f (id >= 1 && id <= 4) {
48 Helper . printGED (example_geds [id −1]) ;
49 System . out . p r i n t l n (Va l idator . v a l i d a t e (
50 s e s s i on , example_geds [id −1]) ?

Capítulo 4. Desenvolvimento 44

51 "GED vá l i d a . " : "GED inv á l i d a . ") ;
52 } else {
53 System . out . p r i n t l n (" Í nd ice inv á l i d o . ") ;
54 }
55 break ;
56 case 2 :
57 System . out . p r i n t (" D ig i t e o id [0 , "
58 + user_created_geds . s i z e () + "] da GED"
59 + " cr i ada por usuá r i o que de s e j a "
60 + " a v a l i a r : ") ;
61 id = sc . next Int () ; sc . nextLine () ;
62 i f (id >= 0 && id < user_created_geds . s i z e ()) {
63 Helper . printGED (user_created_geds . get (id)) ;
64 System . out . p r i n t l n (Va l idator . v a l i d a t e (
65 s e s s i on , user_created_geds . get (id)) ?
66 "GED vá l i d a . " : "GED inv á l i d a . ") ;
67 } else {
68 System . out . p r i n t l n (" Í nd ice inv á l i d o . ") ;
69 }
70 break ;
71 case 3 :
72 System . out . p r i n t l n (" L i s t a de GEDs exemplo : ") ;
73 for (int i =1; i <=4; i++) {
74 System . out . p r i n t l n ("GED exemplo " + i + " : ") ;
75 Helper . printGED (example_geds [i −1]) ;
76 }
77 break ;
78 case 4 :
79 System . out . p r i n t l n (" L i s t a de GEDs c r i a d a s pe lo "
80 + " usuá r i o : ") ;
81 for (int i =0; i<user_created_geds . s i z e () ; i++) {
82 System . out . p r i n t l n ("GED cr i ada pe lo usuá r i o "
83 + i + " : ") ;
84 Helper . printGED (user_created_geds . get (i)) ;
85 }
86 break ;
87 case 5 :
88 System . out . p r i n t (" D ig i t e a consu l ta em Cypher que "
89 + " re to rna o padrão de g ra f o da GED: ") ;
90 St r ing graphPattern = sc . nextLine () ;
91

92 System . out . p r i n t (" D ig i t e a quantidade de l i t e r a i s "
93 + " no conjunto esquerdo : ") ;
94 int n = sc . next Int () ; sc . nextLine () ;
95 ArrayList<L i t e r a l > l e f t S e t =
96 new ArrayList<L i t e r a l >() ;
97 for (int i =0; i<n ; i++) {

Capítulo 4. Desenvolvimento 45

98 System . out . p r i n t (" D ig i t e o l i t e r a l " + i
99 + " : ") ;

100 L i t e r a l l i t e r a l = Helper .
101 par seL i t e ra lFromStr ing (sc . nextLine ()) ;
102 i f (l i t e r a l == null) {
103 System . out . p r i n t l n ("Não f o i poss í v e l "
104 + " parsear a s t r i n g para um"
105 + " l i t e r a l . ") ;
106 } else {
107 l e f t S e t . add (l i t e r a l) ;
108 }
109 }
110

111 System . out . p r i n t (" D ig i t e a quantidade de l i t e r a i s "
112 + " no conjunto d i r e i t o : ") ;
113 n = sc . next Int () ; sc . nextLine () ;
114 ArrayList<L i t e r a l > r i g h t S e t =
115 new ArrayList<L i t e r a l >() ;
116 for (int i =0; i<n ; i++) {
117 System . out . p r i n t (" D ig i t e o l i t e r a l " + i
118 + " : ") ;
119 L i t e r a l l i t e r a l = Helper .
120 par seL i t e ra lFromStr ing (sc . nextLine ()) ;
121 i f (l i t e r a l == null) {
122 System . out . p r i n t l n ("Não f o i poss í v e l "
123 + " parsear a s t r i n g para um"
124 + " l i t e r a l . ") ;
125 } else {
126 r i g h t S e t . add (l i t e r a l) ;
127 }
128 }
129 user_created_geds . add (new GED(graphPattern , new
130 FunctionalDependency (l e f t S e t , r i g h t S e t))) ;
131 break ;
132 case 6 :
133 System . out . p r i n t (" D ig i t e o comando que de s e j a "
134 + " executar : ") ;
135 St r ing query = sc . nextLine () ;
136 try {
137 s e s s i o n . run (query) ;
138 System . out . p r i n t l n ("Comando executado com"
139 + " suce s so . ") ;
140 } catch (Exception e) {
141 System . out . p r i n t l n (e . getMessage ()) ;
142 System . out . p r i n t l n (" Falha na execu ção . ") ;
143 }
144 break ;

Capítulo 4. Desenvolvimento 46

145 case 0 :
146 System . out . p r i n t l n ("O programa s e r á encerrado . ") ;
147 s e s s i o n . c l o s e () ;
148 d r i v e r . c l o s e () ;
149 sc . c l o s e () ;
150 break ;
151 default :
152 System . out . p r i n t l n ("Opção inv á l i d a . ") ;
153 }
154 } while (op != 0) ;
155 } catch (Exception e) {
156 System . out . p r i n t l n (e . getMessage ()) ;
157 e . getStackTrace () ;
158 }
159 }
160 }

4.3 Testes de GEDs
Foi criada uma base de dados consistente, de modo a propositalmente satisfazer to-

das as GEDs inicialmente, para testar a validação das GEDs 𝜙1 −𝜙4 listadas na Seção 3.3.
A base de dados foi criada executando o comando Cypher abaixo no Neo4j Desktop e pode
ser visualizada na Figura 17.

// Sample data for example 1:
CREATE (a:person {name:‘Jhulia’, type:‘programmer’})
CREATE (b:person {name:‘Leticia’, type:‘engineer’})
CREATE (c:person {name:‘Arthur’, type:‘engineer’})
CREATE (d:person {name:‘Marcos’, type:‘programmer’})
CREATE (e:person {name:‘Felipe’, type:‘engineer’})
CREATE (f:product {name:‘Olympic’, type:‘videogame’})
CREATE (g:product {name:‘Olivia’, type:‘bridge’})
CREATE (h:product {name:‘Armor System Rework Mod’, type:‘videogame mod’})
CREATE (a)-[:create]->(f)
CREATE (b)-[:create]->(g)
CREATE (c)-[:create]->(g)
CREATE (d)-[:create]->(f)
CREATE (e)-[:create]->(h)

// Sample data for example 2:
CREATE (i:country {name:‘Brasil’})
CREATE (j:city {name:‘Brasilia’})

Capítulo 4. Desenvolvimento 47

CREATE (k:city {name:‘Brasilia’})
CREATE (l:city {name:‘Brasilia’})
CREATE (i)-[:capital]->(j)
CREATE (i)-[:capital]->(k)
CREATE (i)-[:capital]->(l)
CREATE (m:country {name:‘Some Country’})
CREATE (n:city {name:‘Some Country\’s Capital’})
CREATE (o:city {name:‘Some Country\’s Capital’})
CREATE (m)-[:capital]->(n)
CREATE (m)-[:capital]->(o)

// Sample data for example 3:
CREATE (p:bird {name:‘Bird’, can_fly:‘true’})
CREATE (q:eagle {name:‘Eagle’, can_fly:‘true’})
CREATE (q)-[:is_a]->(p)
CREATE (r:toy {name:‘Toy’, playable:true})
CREATE (s:doll {name:‘Woody’, playable:true})
CREATE (t:doll {name:‘Buzz Lightyear’, playable:true})
CREATE (u:lego {name:‘Batman Lego’, playable:true})
CREATE (s)-[:is_a]->(r)
CREATE (t)-[:is_a]->(r)
CREATE (u)-[:is_a]->(r)

// Sample data for example 4:
CREATE (v:person {name:‘Helena’})
CREATE (w:person {name:‘Domingas’})
CREATE (x:person {name:‘Fulano’})
CREATE (y:person {name:‘Ciclano’})
CREATE (v)-[:parent]->(a)
CREATE (v)-[:parent]->(c)
CREATE (w)-[:parent]->(v)
CREATE (x)-[:parent]->(y)
CREATE (a)-[:child]->(v)
CREATE (c)-[:child]->(v)
CREATE (v)-[:child]->(w)
CREATE (y)-[:child]->(x)

Para verificar a corretude do algoritmo, foi verificado se o grafo inicial validou todas
as GEDs e foram feitas pequenas alterações no grafo, sempre verificando se o resultado das

Capítulo 4. Desenvolvimento 48

Figura 17 – Base de dados utilizada.

validações estava coerente com o esperado. A seguir estão listados alguns testes realizados:

1. O grafo inicial validou corretamente todas as GEDs.

2. O atributo type da entidade person com nome “Jhulia” foi alterado de “program-
mer” para “student” com o comando:

MATCH (x:person {name:‘Jhulia’}) SET x.type = ‘student’

A GED 𝜙1 se tornou inválida (como esperado) e a alteração foi desfeita com o
comando:

MATCH (x:person {name:‘Jhulia’}) SET x.type = ‘programmer’

3. O atributo type da entidade product com nome “Olivia” foi alterada de “bridge”
para “videogame” com o comando:

MATCH (x:product {name:‘Olivia’}) SET x.type = ‘videogame’

Capítulo 4. Desenvolvimento 49

A GED 𝜙1 se tornou inválida. Então o atributo type de uma das criadoras da ponte
“Olívia” foi alterado para “programmer” com o comando:

MATCH (x:person {name:‘Leticia’}) SET x.type = ‘programmer’

A GED $𝑣𝑎𝑟𝑝ℎ𝑖1 continuou inválida, pois ainda havia outro criador que não era do
tipo programmer. Então o atributo type do outro criador também foi alterado:

MATCH (x:person {name:‘Arthur’}) SET x.type = ‘programmer’

Como ambos os criadores do “videogame” chamado “Olivia” se tornaram progra-
madores, a GED 𝜙1 voltou a ser válida. No final as alterações foram desfeitas:

MATCH (x:product {name:‘Olivia’}) SET x.type = ‘bridge’
MATCH (x:person {name:‘Leticia’}) SET x.type = ‘engineer’
MATCH (x:person {name:‘Arthur’}) SET x.type = ‘engineer’

4. Foi criada uma nova entidade city com nome “Other Country’s Capital” e um novo
relacionamento dizendo que esta nova entidade é a capital do país de nome “Some
Country” com o comando:

MATCH (x:country {name:‘Some Country’})
CREATE (y:city {name:‘Other Country\’s Capital’})
CREATE (x)-[:capital]->(y)

E então a GED 𝜙2 se tornou inválida, pois existiam duas capitais de um mesmo
país com nomes diferentes. Em seguida o atributo name da nova entidade criada foi
deletado com o comando:

MATCH (x:city {name:‘Other Country\’s Capital’}) REMOVE x.name

E a GED continuou inválida, porque nessa GED a existência do atributo name
é obrigatório nas entidades etiquetadas como city. A GED voltou a ser válida
quando o atributo name da nova entidade foi criado novamente, com o valor “Some
Country’s Capital”, usando o comando:

MATCH (x:city) WHERE NOT EXISTS (x.name)
SET x.name = ‘Some Country\’s Capital’

5. O atributo can_fly foi deletado das entidade de tipo bird com o comando:

MATCH (x:bird) REMOVE x.can_fly

A GED 𝜙3 continuou válida, pois nessa situação a existência do atributo can_fly
não é obrigatória na entidade que corresponde ao vértice 𝑥 do padrão. Em seguida
essa alteração foi revertida e o atributo can_fly foi removido das entidades de tipo
eagle com os comandos:

MATCH (x:bird) SET x.can_fly = true
MATCH (x:eagle) REMOVE x.can_fly

Capítulo 4. Desenvolvimento 50

E então a GED 𝜙3 se tornou inválida, pois a existência do atributo can_fly é
obrigatória na entidade que corresponde ao vértice 𝑦 do padrão. A GED voltou a
ser válida quando a alteração foi desfeita com o comando:

MATCH (x:eagle) SET x.can_fly = true

6. Foi criada uma nova GED 𝜙6 semelhante à GED 𝜙3 utilizando a aplicação. A GED
𝜙6 possui o mesmo padrão de grafo MATCH (x)<-[:is_a]-(y) RETURN x, y que a
GED 𝜙3, mas sua dependência funcional é diferente ({𝑥.𝑝𝑙𝑎𝑦𝑎𝑏𝑙𝑒 = 𝑥.𝑝𝑙𝑎𝑦𝑎𝑏𝑙𝑒} →
{𝑦.𝑝𝑙𝑎𝑦𝑎𝑏𝑙𝑒 = 𝑥.𝑝𝑙𝑎𝑦𝑎𝑏𝑙𝑒}). A GED 𝜙6 é válida inicialmente, mas deixa de ser
quando o valor do atributo playable das entidades com etiqueta doll é alterado
para “false” com o comando:

MATCH (x:doll) SET x.playable = false

Em seguida o valor do atributo playable das entidades com etiqueta toy também foi
alterado para “false” com o comando: MATCH (x:toy) SET x.playable = false

A GED 𝜙6 continuou inválida pois ainda existia uma correspondência que não a
satifazia: a entidade lego ainda possuía o atributo playable com valor verdadeiro.
Após alterar o valor do atributo playable das entidades com etiqueta lego para
falso a GED voltou a ser válida. No final as alterações foram revertidas com o
comando:

MATCH (x {playable:false}) SET x.playable = true

7. A GED 𝜙4 possui um padrão de grafo absurdo, onde uma pessoa é simultaneamente
pai e filha de outra, e é inválida caso alguma correspondência exista. A pessoa de
nome “Fulano” é pai da pessoa de nome “Ciclano”, então cria-se um novo relacio-
namento entre os dois dizendo que “Fulano” é filho de “Ciclano” com o comando:

MATCH (x:person {name:‘Fulano’}), (y:person {name:‘Ciclano’})
CREATE (x)-[:child]->(y)

E a GED 𝜙4 tornou-se inválida. Então as alterações foram revertidas com o comando:

MATCH (x:person {name:‘Fulano’})-[a:child]->(y:person) DELETE a

Como todos os testes acima corresponderam ao comportamento esperado, conclui-
se que o código produzido pode ser utilizado para validar alguns tipos de dependências
funcionais em grafo. O código também pode ser estendido para outros tipos de FDs, como
por exemplo as Graph Denial Contraints (GDCs), também propostas em Fan e Lu (2017).

51

5 Conclusão

O armazenamento de dados em bancos de dados em grafo é uma boa alternativa
quando se trabalha com uma base de dados densa e interconectada. Por sua estrutura
expressiva e de propósito geral, a estrutura de grafo permite a modelagem de qualquer
tipo de cenário.

A inserção e modificação de dados em uma base de dados são processos importantes
que devem ser gerenciados e controlados para garantir que os dados estejam consistentes
e para que as restrições de integridade estejam sempre satisfeitas.

Porém o suporte para restrições de integridade em bancos de dados em grafo,
considerando grafos de propriedades, ainda é pequeno. Restrições de integridade são muito
importantes por prevenirem que informações inconsistentes ou de baixa qualidade sejam
armazenadas no grafo, e o baixo suporte a elas caracteriza um problema.

A implementação de restrições de integridade pode ser feita de forma integrada
ou por meio de uma nova camada de aplicação. Neste trabalho, foi implementado um
projeto, utilizado como uma nova camada de aplicação, que permite a criação de algumas
restrições de integridade (FDs que podem ser representadas como GEDs) e sua validação
em relação à um grafo.

Como parte de trabalhos futuros pode-se vislumbrar a criação de uma aplicação
que permita a definição de GEDs em mais alto nível. Da maneira como foi implementada,
o usuário deve conhecer sobre a linguagem Cypher e digitar uma consulta que corresponda
perfeitamente ao padrão de grafo desejado. É desejável que usuários sem muito conheci-
mento de Cypher consigam criar GEDs. Além disso é proposta uma extensão do trabalho
que propicie a inclusão das Graph Denial Constraints (GDCs), também propostas por
Fan e Lu (2017), que representam restrições ainda mais gerais, permitindo por exemplo
criar restrições sobre o domínio de valores dos atributos, dentre outros.

52

Referências

ANGLES, R.; GUTIERREZ, C. Survey of graph database models. ACM Comput.
Surv., ACM, New York, NY, USA, v. 40, n. 1, p. 1:1–1:39, fev. 2008. ISSN 0360-0300.
Disponível em: <http://doi.acm.org/10.1145/1322432.1322433>. Citado na página 17.

ELMASRI, R.; NAVATHE, S. Fundamentals of database systems. [S.l.]: Addison-Wesley
Publishing Company, 2010. Citado na página 17.

FAN, W.; LU, P. Dependencies for graphs. In: Proceedings of the 36th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems. New York, NY,
USA: ACM, 2017. (PODS ’17), p. 403–416. ISBN 978-1-4503-4198-1. Disponível em:
<http://doi.acm.org/10.1145/3034786.3056114>. Citado 13 vezes nas páginas 4, 10,
11, 14, 17, 18, 21, 22, 23, 24, 25, 50 e 51.

MADAN, P.; SAXENA, A. Graph databases. International Journal, v. 4, n. 5, p.
195–200, 2014. Citado na página 10.

MARGITUS, M. R.; TAUER, G.; SUDIT, M. RDF versus attributed graphs: The war
for the best graph representation. In: 18th International Conference on Information
Fusion, FUSION 2015, Washington, DC, USA, July 6-9, 2015. [s.n.], 2015. p. 200–206.
Disponível em: <http://ieeexplore.ieee.org/document/7266563/>. Citado 2 vezes nas
páginas 10 e 13.

MARTON, J.; SZÁRNYAS, G.; VARRÓ, D. Formalising opencypher graph queries
in relational algebra. In: KIRIKOVA, M.; NØRVÅG, K.; PAPADOPOULOS, G. A.
(Ed.). Advances in Databases and Information Systems. Cham: Springer International
Publishing, 2017. p. 182–196. ISBN 978-3-319-66917-5. Citado na página 19.

NEO4J. The definitive guide to graph databases for the rdbms developer. In: . [s.n.],
2016. cap. Query Languages: SQL vs. Cypher. Disponível em: <https://go.neo4j.com/rs/
710-RRC-335/images/Definitive-Guide-Graph-Databases-for-RDBMS-Developer.pdf>.
Citado 2 vezes nas páginas 4 e 20.

NEO4J. What is Neo4j? 2018. <https://neo4j.com/developer/graph-database/>.
[Online; accessed 29-November-2018]. Citado 2 vezes nas páginas 10 e 19.

PENTEADO, R. R. M. et al. Um estudo sobre bancos de dados em grafos
nativos. X ERBD - Escola Regional de Banco de Dados, 2014. Disponível em:
<http://www.inf.ufpr.br/carmem/pub/erbd2014-artigo.pdf>. Citado 2 vezes nas
páginas 15 e 16.

POKORNỲ, J. Graph databases: their power and limitations. In: SPRINGER. IFIP
International Conference on Computer Information Systems and Industrial Management.
[S.l.], 2015. p. 58–69. Citado 4 vezes nas páginas 4, 10, 16 e 17.

RABUZIN, K.; KONECKI, M.; ŠESTAK, M. Implementing check integrity constraint
in graph databases. In: IIER 105th International Conference on Recent Innovations in
Engineering and Technology. [S.l.: s.n.], 2016. Citado na página 21.

http://doi.acm.org/10.1145/1322432.1322433
http://doi.acm.org/10.1145/3034786.3056114
http://ieeexplore.ieee.org/document/7266563/
https://go.neo4j.com/rs/710-RRC-335/images/Definitive-Guide-Graph-Databases-for-RDBMS-Developer.pdf
https://go.neo4j.com/rs/710-RRC-335/images/Definitive-Guide-Graph-Databases-for-RDBMS-Developer.pdf
https://neo4j.com/developer/graph-database/
http://www.inf.ufpr.br/carmem/pub/erbd2014-artigo.pdf

Referências 53

ROBINSON, I.; WEBBER, J.; EIFREM, E. Graph Databases: New Opportunities
for Connected Data. O’Reilly Media, 2015. ISBN 9781491930861. Disponível em:
<https://books.google.com.br/books?id=RTvcCQAAQBAJ>. Citado 2 vezes nas
páginas 10 e 17.

RODRIGUEZ, M. A.; NEUBAUER, P. Constructions from dots and lines. CoRR,
abs/1006.2361, 2010. Disponível em: <http://arxiv.org/abs/1006.2361>. Citado 3 vezes
nas páginas 4, 14 e 15.

ŠESTAK, M.; RABUZIN, K.; NOVAK, M. Integrity constraints in graph databases -
implementation challenges. 2016. Disponível em: <https://bib.irb.hr/datoteka/833711.
Integrity_constraints_in_graph_databases_implementation_challenges.pdf>. Citado
3 vezes nas páginas 17, 18 e 21.

https://books.google.com.br/books?id=RTvcCQAAQBAJ
http://arxiv.org/abs/1006.2361
https://bib.irb.hr/datoteka/833711.Integrity_constraints_in_graph_databases_implementation_challenges.pdf
https://bib.irb.hr/datoteka/833711.Integrity_constraints_in_graph_databases_implementation_challenges.pdf

	Folha de rosto
	Folha de aprovação
	Resumo
	Lista de ilustrações
	Lista de tabelas
	Lista de abreviaturas e siglas
	Lista de símbolos
	Sumário
	Introdução
	Objetivos
	Organização do Trabalho

	Fundamentação Teórica
	Grafos
	Banco de dados
	Restrições de Integridade
	Dependências Funcionais

	SGBDG Neo4j
	Linguagem Cypher

	Trabalhos correlatos

	Graph Entity Dependencies
	Padrão de Grafo
	Dependência Funcional
	Exemplos de GEDs
	Satisfatibilidade
	Limitação da GED

	Desenvolvimento
	Configuração e conexão ao banco de dados
	Criação de um novo banco de dados em grafo
	Conexão a um banco de dados ativo
	Adição de entidades e relacionamentos ao banco

	Implementação
	Interface Literal
	Classe ConstantLiteral
	Classe VariableLiteral
	Classe IdLiteral
	Classe FalseLiteral
	Classe FunctionalDependency
	Classe GED
	Classe Validator
	Aplicação

	Testes de GEDs

	Conclusão
	Referências

