
#include <windows.h>
#include <stdio.h>
#include <dos.h>
#include <conio.h>
#include <stdlib.h>
#include <string.h>

typedef struct
{
 float temp;
 char nome[20];
 struct elemento *prox;
}elemento;

elemento *F=NULL;
elemento *atual=NULL;
elemento *anterior=NULL;

elemento *alocarno()
{
 elemento *novo;
 novo=(elemento*)malloc(sizeof(elemento));
 novo->prox=NULL;
 return novo;
}

void cadastro()
{
 float temp;
 char nome[20];
 printf("\n\nCADASTRAR MOTOR\n NOME:");
 scanf("%s", &nome);
 printf(" TEMPERATURA MAXIMA DE OPERACAO:");
 scanf("%f", &temp);
 if(F==NULL)
 {
 F=alocarno();
 strcpy(F->nome,nome);
 F->temp=temp;
 }
 else
 {
 atual=F;
 while(atual->prox!=NULL)
 {
 atual=(elemento*)atual->prox;
 }
 atual->prox=(struct elemento*)alocarno();
 atual=(elemento*)atual->prox;
 strcpy(atual->nome,nome);
 atual->temp=temp;
 }

 system("PAUSE");
}

int imprimir()

{
 int count = 0;

 if(F==NULL)
 {
 printf("Lista vazia");
 printf("\n");
 }
 else
 {
 count=1;
 atual=F;
 while(atual!=NULL)
 {
 printf("\n MOTOR %d\n Motor: %s \n",count, atual->nome);
 printf("Temperatura MAX OP: %f \n",atual->temp);
 atual=(elemento*)atual->prox;
 count++;
 }
 }

 return count;
}

float EscolherTemperatura()
{
 elemento *paux;
 int count=1, j=0, i=1;

 count = imprimir();

 if(count==0)
 {
 return 0;
 }
 else
 {
 printf("\nEscolha entre os motores cadastrados:");
 scanf("%d", &j);
 if(j>(count-1) || j<1)
 {
 printf("\n Numero invalido!!\n");
 return 0;
 }
 else
 {
 paux=F;
 while(paux->prox!=NULL)
 {
 if(j==i)
 break;
 else
 i++;
 paux=(elemento*)paux->prox;
 }

 return paux->temp;

 }
}
}

void limparlista()
{
 atual=F;
 while(atual!=NULL)
 {
 F=(elemento*)atual->prox;
 free(atual);
 atual=F;
 }

}

void excluir()
{

 int count = 1, i = 1, j = 0;

 count = imprimir();

 printf("\n Escolha motor para ser excluido: \n");
 scanf("%d", &j);

 if(j>(count-1) || j<1)
 printf("\n Numero invalido!!\n");
 else
 {
 anterior = NULL;
 atual = F;
 while(atual!=NULL)
 {

 if(i==j)
 {

 if(anterior==NULL)
 {
 F=(elemento*)atual->prox;
 free(atual);
 break;
 }
 else
 {
 anterior->prox=atual->prox;
 free(atual);
 }
 anterior->prox = atual->prox;
 free(atual);
 break;
 }
 else
 {
 i++;
 anterior = atual;

 atual = (elemento *) atual->prox;
 }
 }

 }

}

// Ler caractere
char SerialGetc(HANDLE *hCom)
{
 char rxchar;
 BOOL bReadRC;
 static DWORD iBytesRead;

 bReadRC = ReadFile(*hCom, &rxchar, 1, &iBytesRead, NULL);
 return rxchar;
}

// Escrever caractere
void SerialPutc(HANDLE hCom, char txchar)
{
 BOOL bWriteRC;
 static DWORD iBytesWritten;

 bWriteRC = WriteFile(hCom, &txchar, 1, &iBytesWritten,NULL);

 return;
}

// Ler string
char* SerialGets(HANDLE *hCom)
{
 static char rxstring[256];
 char c;
 int pos = 0;

 while(pos <= 255)
 {
 c = SerialGetc(hCom);
 if (c==13) break;
 if(c == '\r') continue; // discard carriage return
 rxstring[pos++] = c;
 if(c == '\n') break;

 }
 rxstring[pos] = 0;
 return rxstring;
}

// Escrever string
void SerialPuts(HANDLE *hCom, char *txstring)
{
 BOOL bWriteRC;
 static DWORD iBytesWritten;
 bWriteRC = WriteFile(*hCom, txstring, strlen(txstring), &iBytesWritten,NULL);

}

int main(int argc, char *argv[])
{
 FILE *p;
 DCB dcb;
 HANDLE hCom;
 BOOL fSuccess;
 LPCWSTR LpcCommPort = L"COM4";
 int i=0, opc,on=0;
 char t='1';
 float *vet;
 float *vet2;
 int tempo = 0;
 float temp;
 char temperatura[4],sensor[20];
 int loop = 0;
 int c;
 int cr;
 int vetor;

 hCom = CreateFile(LpcCommPort,
 GENERIC_READ | GENERIC_WRITE,
 0, // must be opened with exclusive-access
 NULL, // no security attributes
 OPEN_EXISTING, // must use OPEN_EXISTING
 0, // not overlapped I/O
 NULL // hTemplate must be NULL for comm devices
);

 if (hCom == INVALID_HANDLE_VALUE)
 {
 // Handle the error.
 printf ("CreateFile failed with error %d.\n", GetLastError());
 return (1);
 }

 // Build on the current configuration, and skip setting the size
 // of the input and output buffers with SetupComm.

 fSuccess = GetCommState(hCom, &dcb);

 if (!fSuccess)
 {
 // Handle the error.
 printf ("GetCommState failed with error %d.\n", GetLastError());
 return (2);
 }

 // Fill in DCB: 57,600 bps, 8 data bits, no parity, and 1 stop bit.

 dcb.BaudRate = CBR_9600; // set the baud rate
 dcb.ByteSize = 8; // data size, xmit, and rcv
 dcb.Parity = NOPARITY; // no parity bit
 dcb.StopBits = ONESTOPBIT; // one stop bit

 fSuccess = SetCommState(hCom, &dcb);

 //

 if (!fSuccess)
 {
 // Handle the error.
 printf ("SetCommState failed with error %d.\n", GetLastError());
 return (3);
 }

 printf ("Serial port %s successfully reconfigured.\n", LpcCommPort);

 //SerialPuts(&hCom, "This is a text\n\nAnother line!\n");

 Sleep(2000);

 while(1)
 {
 system("cls");

 printf("OPCOES\n 1-CADASTRAR MOTOR\n 2-MOSTRAR SENSORES MOTOR\n 3-EXCLUIR
MOTOR\n 4-LIGAR MANUALMENTE(ON/OFF)\n 5-ESCOLHER MOTOR\n 6-SAIR\n ");
 scanf("%d", &opc);

 switch(opc)
 {

 case 1:
 cadastro();
 break;

 case 2:
 {
 vet=(float*)malloc(tempo*sizeof(float));
 vet2=(float*)malloc(tempo*sizeof(float));
 p=fopen("DadosMotor.txt","a");
 while(!loop)
 {

 printf("\MONITOR TEMPO REAL\n Aperte
E para sair.\n");
 tempo=1;
 temp=6000;
 sprintf(temperatura,"%.2f",temp);
 SerialPuts(&hCom, temperatura);
 Sleep(1000);

 while(i < tempo)
 {
 if (
atof(SerialGets(&hCom)) == 0) // alterna entre 0 e o valor, se esse é 0, o próximo
nao é;
 {

 vet[i]=atof(SerialGets(&hCom));

 fprintf(p,"Temperatura: %f \n",vet[i]);

 }
 Sleep(500);
 if (
atof(SerialGets(&hCom)) == 0) // alterna entre 0 e o valor, se esse é 0, o próximo
nao é;
 {

 vet2[i]=atof(SerialGets(&hCom));

 fprintf(p,"Corrente: %f\n",vet2[i]);

 fprintf(p,"===\n",vet2[i]);
 i++;
 }

 }
 for (i = 0; i < tempo; i++)
 {
 printf("\n Temperatura
%f ", vet[i]);
 printf("\n Corrente %f
", vet2[i]);
 }
 i=0;
 Sleep(500);
 system("cls");

 if (kbhit())
 {
 c = getch();

 if (c == 'E' || c=='e')
 {
 fclose(p);
 loop = 1;
 }
 }
 }

 break;
 }
 case 3:
 excluir();
 break;

 case 4:
 printf("\n Digite '1' para ON e '0' para OFF:
\n");
 scanf("%i",&on);
 if(on==0)

 {
 temp=-100;
 sprintf(temperatura,"%.2f",temp);
 SerialPuts(&hCom, temperatura);
 }else
 if(on==1)
 {
 temp=100;
 sprintf(temperatura,"%.2f",temp);
 SerialPuts(&hCom, temperatura);
 }
 break;

 case 5:
 {
 temp = EscolherTemperatura();
 if (temp!= 0)
 {
 printf("\n Temperatura escolhida :
%f\n",temp);
 sprintf(temperatura,"%.2f",temp);
 SerialPuts(&hCom, temperatura);
 }
 }

 break;

 case 6:
 limparlista();
 exit(0);
 break;

 default:
 printf("Opcao nao existente");
 break;

 }

 Sleep(1000);

 }
 SerialPuts(&hCom, "Fim!!\n\nMaravilha!!\n");

 SerialPutc(hCom,'1');
 printf ("Read value: %c\n", SerialGetc(&hCom));
 CloseHandle(hCom);
 system("PAUSE");
 return (0);
}

