#include <windows.h>
#include <stdio.h>
#include <dos.h>
#include <conio.h>
#include <stdlib.h>
#include <string.h>

typedef struct

{

float temp;

char nome[20];

struct elemento *prox;
}elemento;

elemento *F=NULL;
elemento *atual=NULL;
elemento *anterior=NULL;

elemento *alocarno()

{
elemento *novo;
novo=(elemento*)malloc(sizeof(elemento));
novo->prox=NULL;
return novo;
}
void cadastro()
{
float temp;
char nome[20];
printf("\n\nCADASTRAR MOTOR\n NOME:");
scanf("%s", &nome);
printf(" TEMPERATURA MAXIMA DE OPERACAO:");
scanf("%f", &temp);
if(F==NULL)
{
F=alocarno();
strcpy(F->nome,nome);
F->temp=temp;
}
else
{
atual=F;
while(atual->prox!=NULL)
{
atual=(elemento*)atual->prox;
}
atual->prox=(struct elemento*)alocarno();
atual=(elemento*)atual->prox;
strcpy(atual->nome, nome);
atual->temp=temp;
}
system("PAUSE");
}

int imprimir()

int count = 0;

if(F==NULL)

{
printf("Lista vazia");
printf("\n");

}
else
{
count=1;
atual=F;
while(atual!=NULL)
{
printf("\n MOTOR %d\n Motor: %s \n",count, atual->nome);
printf("Temperatura MAX OP: %f \n",atual->temp);
atual=(elemento*)atual->prox;
count++;
}
}

return count;

float EscolherTemperatura()

{

elemento *paux;
int count=1, j=0, i=1;

count = imprimir();

if(count==0)
{

}

else

{

printf("\nEscolha entre os motores cadastrados:");
scanf("%d", &j);

if(j>(count-1) || j<1)

return 0;

{
printf("\n Numero invalido!!\n");
return 0;
}
else
{
paux=F;
while(paux->prox!=NULL)
{
if(j==1)
break;
else
i++;
paux=(elemento*)paux->prox;
}

return paux->temp;

}
}
void limparlista()
{
atual=F;
while(atual!=NULL)
{
F=(elemento*)atual->prox;
free(atual);
atual=F;
}
}

void excluir()

{
int count =1, i =1, j = 0;
count = imprimir();

printf("\n Escolha motor para ser excluido: \n");
scanf("%d", &j);

if(j>(count-1) || j<1)
printf("\n Numero invalido!!\n");

else
{
anterior = NULL;
atual = F;
while(atual!=NULL)
{
if(i==j)
{
if(anterior==NULL)
{
F=(elemento*)atual->prox;
free(atual);
break;
}
else
{
anterior->prox=atual->prox;
free(atual);
}
anterior->prox = atual->prox;
free(atual);
break;
}
else
{ .
it++;

anterior = atual;

atual = (elemento *) atual->prox;

}

// Ler caractere
char SerialGetc(HANDLE *hCom)

{
char rxchar;
BOOL bReadRC(;
static DWORD iBytesRead;
bReadRC = ReadFile(*hCom, &rxchar, 1, &iBytesRead, NULL);
return rxchar;
}

// Escrever caractere
void SerialPutc(HANDLE hCom, char txchar)

{
BOOL bWriteRC;
static DWORD iBytesWritten;
bWriteRC = WriteFile(hCom, &txchar, 1, &iBytesWritten,NULL);
return;
}

// Ler string
char* SerialGets(HANDLE *hCom)
{
static char rxstring[256];
char c;
int pos = 0;

while(pos <= 255)
{
¢ = SerialGetc(hCom);
if (c==13) break;
if(c == '\r') continue; // discard carriage return
rxstring[pos++] = c;
if(c == '\n') break;

}
rxstring[pos] = 0;
return rxstring;

}

// Escrever string
void SerialPuts(HANDLE *hCom, char *txstring)
{
BOOL bWriteRC;
static DWORD iBytesWritten;
bWriteRC = WriteFile(*hCom, txstring, strlen(txstring), &iBytesWritten,NULL);

}

int main(int argc, char *argv[])

{

FILE *p;

DCB dcb;

HANDLE hCom;

BOOL fSuccess;

LPCWSTR LpcCommPort = L"COM4";
int i=0, opc,on=0;

char t="1";

float *vet;

float *vet2;

int tempo = 9;

float temp;

char temperatura[4],sensor[20];
int loop = ©;

int c;

int cr;

int vetor;

hCom = CreateFile(LpcCommPort,
GENERIC_READ | GENERIC_WRITE,
o, // must be opened with exclusive-access
NULL, // no security attributes
OPEN_EXISTING, // must use OPEN_EXISTING
o, // not overlapped I/0
NULL // hTemplate must be NULL for comm devices

)
if (hCom == INVALID_HANDLE_VALUE)
{
// Handle the error.
printf ("CreateFile failed with error %d.\n", GetLastError());
return (1);
}

// Build on the current configuration, and skip setting the size
// of the input and output buffers with SetupComm.

fSuccess = GetCommState(hCom, &dcb);

if (!fSuccess)

{
// Handle the error.
printf ("GetCommState failed with error %d.\n", GetLastError());
return (2);

}

// Fill in DCB: 57,600 bps, 8 data bits, no parity, and 1 stop bit.

dcb.BaudRate = CBR_9600; // set the baud rate
dcb.ByteSize = 8; // data size, xmit, and rcv
dcb.Parity = NOPARITY; // no parity bit

dcb.StopBits = ONESTOPBIT,; // one stop bit

fSuccess = SetCommState(hCom, &dcb);

!/

if (!fSuccess)

{
// Handle the error.
printf ("SetCommState failed with error %d.\n", GetLastError());
return (3);

}

printf ("Serial port %s successfully reconfigured.\n", LpcCommPort);
//SerialPuts(&hhCom, "This is a text\n\nAnother line!\n");

Sleep(2000);

while(1)
{

system("cls");

printf("OPCOES\n 1-CADASTRAR MOTOR\n 2-MOSTRAR SENSORES MOTOR\n 3-EXCLUIR
MOTOR\n 4-LIGAR MANUALMENTE(ON/OFF)\n 5-ESCOLHER MOTOR\n 6-SAIR\n ");
scanf("%d", &opc);

switch(opc)
{
case 1:
cadastro();
break;
case 2:
{

vet=(float*)malloc(tempo*sizeof(float));

vet2=(float*)malloc(tempo*sizeof(float));

p=fopen("DadosMotor.txt","a");
while(!loop)

{

printf("\MONITOR TEMPO REAL\n Aperte
E para sair.\n");
tempo=1;
temp=6000;
sprintf(temperatura, "%.2f",temp);
SerialPuts(&hCom, temperatura);
Sleep(1000);

while(i < tempo)
{
if (
atof(SerialGets(&hCom)) == @) // alterna entre © e o valor, se esse é @, 0 proximo
nao é;
{

vet[i]=atof(SerialGets(&hCom));

fprintf(p, "Temperatura: %f \n",vet[i]);

}
Sleep(500);
if (
atof(SerialGets(&hCom)) == @) // alterna entre © e o valor, se esse é 0, 0 proximo
nao é;
{
vet2[i]=atof(SerialGets(&hCom));
fprintf(p, "Corrente: %f\n",vet2[i]);
-Fpr-j_nt-F(pJ "===\n",Vetz[j_]);
i++;
}
}
for (1 =0; i < tempo; i++)
{
printf("\n Temperatura
%f ", vet[i]);
printf("\n Corrente %f
", vet2[i]);
}
i=0;
Sleep(500);

system("cls");

if (kbhit())
{

c = getch();
if (¢ == "E' || c=="e")
{
fclose(p);
loop = 1;
}
}
}
break;
}
case 3:
excluir();
break;
case 4:

printf("\n Digite '1' para ON e '@' para OFF:
\n");

scanf("%i",&on);

if(on==0)

temp=-100;
sprintf(temperatura, "%.2f",temp);
SerialPuts(&hCom, temperatura);

}else
if(on==1)
{
temp=100;
sprintf(temperatura,"%.2f",temp);
SerialPuts(&hCom, temperatura);
}
break;
case 5:
{

temp = EscolherTemperatura();

if (temp!= 0)

{
printf("\n Temperatura escolhida :

%f\n",temp);

sprintf(temperatura, "%.2f",temp);
SerialPuts(&hCom, temperatura);

}

}

break;

case 6:
limparlista();
exit(9);

break;

default:
printf("Opcao nao existente");
break;

Sleep(1000);

}

SerialPuts(&hCom, "Fim!!\n\nMaravilha!!\n");

SerialPutc(hCom, '1");

printf ("Read value: %c\n", SerialGetc(&hCom));
CloseHandle(hCom);

system("PAUSE");

return (0);

