
/home/gabrielr/01-Programacao/02-C/02-Fontes/…inamento/99-Algoritmos/01-Dijkstra/dijkstra.c
Página 1 de 4 Ter 04 Fev 2014 17:03:59 BRST

1 /*
2 * Este programa implementa o algoritmo de Dijkstra para o problema do
3 * caminho de custo minimo em grafos dirigidos com custos positivos nas
4 * arestas.
5 *
6 * @autor : vanderson lucio
7 * @e-mail: vanderson.gold@gmail.com
8 *
9 */
10
11 #include <stdio.h>
12 #include <stdlib.h>
13 #include <math.h>
14
15 #define FLSH gets(l)
16
17 int destino, origem, vertices = 0;
18 int custo, *custos = NULL;
19
20 void dijkstra(int vertices,int origem,int destino,int *custos)
21 {
22 int i,v, cont = 0;
23 int *ant, *tmp;
24 int *z; /* vertices para os quais se conhece o caminho minimo */
25 double min;
26 double dist[vertices]; /* vetor com os custos dos caminhos */
27
28
29 /* aloca as linhas da matriz */
30 ant = calloc (vertices, sizeof(int *));
31 tmp = calloc (vertices, sizeof(int *));
32 if (ant == NULL) {
33 printf ("** Erro: Memoria Insuficiente **");
34 exit(-1);
35 }
36
37 z = calloc (vertices, sizeof(int *));
38 if (z == NULL) {
39 printf ("** Erro: Memoria Insuficiente **");
40 exit(-1);
41 }
42
43 for (i = 0; i < vertices; i++) {
44 if (custos[(origem - 1) * vertices + i] !=- 1) {
45 ant[i] = origem - 1;
46 dist[i] = custos[(origem-1)*vertices+i];
47 }
48 else {
49 ant[i]= -1;
50 dist[i] = HUGE_VAL;
51 }
52 z[i]=0;
53 }
54 z[origem-1] = 1;
55 dist[origem-1] = 0;
56
57 /* Laco principal */
58 do {
59
60 /* Encontrando o vertice que deve entrar em z */
61 min = HUGE_VAL;
62 for (i=0;i<vertices;i++)
63 if (!z[i])
64 if (dist[i]>=0 && dist[i]<min) {
65 min=dist[i];v=i;
66 }
67
68 /* Calculando as distancias dos novos vizinhos de z */
69 if (min != HUGE_VAL && v != destino - 1) {
70 z[v] = 1;

- 1 -

/home/gabrielr/01-Programacao/02-C/02-Fontes/…inamento/99-Algoritmos/01-Dijkstra/dijkstra.c
Página 2 de 4 Ter 04 Fev 2014 17:03:59 BRST

71 for (i = 0; i < vertices; i++)
72 if (!z[i]) {
73 if (custos[v*vertices+i] != -1 && dist[v] + custos[v*vertices+i

] < dist[i]) {
74 dist[i] = dist[v] + custos[v*vertices+i];
75 ant[i] =v;
76 }
77 }
78 }
79 } while (v != destino - 1 && min != HUGE_VAL);
80
81 /* Mostra o Resultado da busca */
82 printf("\tDe %d para %d: \t", origem, destino);
83 if (min == HUGE_VAL) {
84 printf("Nao Existe\n");
85 printf("\tCusto: \t- \n");
86 }
87 else {
88 i = destino;
89 i = ant[i-1];
90 while (i != -1) {
91 // printf("<-%d",i+1);
92 tmp[cont] = i+1;
93 cont++;
94 i = ant[i];
95 }
96
97 for (i = cont; i > 0 ; i--) {
98 printf("%d -> ", tmp[i-1]);
99 }
100 printf("%d", destino);
101
102 printf("\n\tCusto: %d\n",(int) dist[destino-1]);
103 }
104 }
105
106 void limpar(void)
107 {
108 printf("\033[2J"); /* limpa a tela */
109 printf("\033[1H"); /* poe o curso no topo */
110 }
111
112 void cabecalho(void)
113 {
114 limpar();
115 printf("Implementacao do Algoritmo de Dijasktra\n");
116 printf("Comandos:\n");
117 printf("\t d - Adicionar um Grafo\n"
118 "\t r - Procura Os Menores Caminhos no Grafo\n"
119 "\t CTRL+c - Sair do programa\n");
120 printf(">>> ");
121 }
122
123 void add(void)
124 {
125 int i, j;
126
127 do {
128 printf("\nInforme o numero de vertices (no minimo 2): ");
129 scanf("%d",&vertices);
130 } while (vertices < 2);
131
132 if (!custos)
133 free(custos);
134 custos = (int *) malloc(sizeof(int)*vertices*vertices);
135 for (i = 0; i <= vertices * vertices; i++)
136 custos[i] = -1;
137
138 printf("Entre com as Arestas:\n");
139 do {

- 2 -

/home/gabrielr/01-Programacao/02-C/02-Fontes/…inamento/99-Algoritmos/01-Dijkstra/dijkstra.c
Página 3 de 4 Ter 04 Fev 2014 17:03:59 BRST

140 do {
141 printf("Origem da aresta (entre 1 e %d ou '0' para sair): ", vertices);
142 scanf("%d",&origem);
143 } while (origem < 0 || origem > vertices);
144
145 if (origem) {
146 do {
147 printf("Destino da aresta (entre 1 e %d, menos %d): ", vertices,

origem);
148 scanf("%d", &destino);
149 } while (destino < 1 || destino > vertices || destino == origem);
150
151 do {
152 printf("Custo (positivo) da aresta do vertice %d para o vertice

%d: ",
153 origem, destino);
154 scanf("%d",&custo);
155 } while (custo < 0);
156 //alteracao
157 custos[(origem-1) * vertices + destino - 1] = custo;
158 if(custos[(origem-1) * vertices + destino - 1]!=-1&&custos[(destino-1)

* vertices + origem - 1]!=-1){
159 custos[(origem-1) * vertices + destino - 1]=0;
160 custos[(destino-1) * vertices + origem - 1]=0;
161 }
162
163 //fim alteracao
164 }
165
166 } while (origem);
167 }
168
169 void procurar(void)
170 {
171 int i, j;
172
173 /* Azul */
174 printf("\033[36;1m");
175 printf("Lista dos Menores Caminhos no Grafo Dado: \n");
176
177 for (i = 1; i <= vertices; i++) {
178 for (j = 1; j <= vertices; j++)
179 dijkstra(vertices, i,j, custos);
180 printf("\n");
181 }
182
183 printf("<Pressione ENTER para retornar ao menu principal>\n");
184 /* Volta cor nornal */
185 printf("\033[m");
186 }
187
188
189
190 int main(int argc, char **argv) {
191 int i, j;
192 char opcao[3], l[50];
193 int e;
194 e=5;
195 do {
196
197 cabecalho();
198 scanf("%s", &opcao);
199
200 if ((strcmp(opcao, "d")) == 0) {
201 add();
202 }
203 FLSH;
204
205
206 if ((strcmp(opcao, "r") == 0) && (vertices > 0)) {

- 3 -

/home/gabrielr/01-Programacao/02-C/02-Fontes/…inamento/99-Algoritmos/01-Dijkstra/dijkstra.c
Página 4 de 4 Ter 04 Fev 2014 17:03:59 BRST

207
208 procurar();
209 FLSH;
210 }
211
212 } while (opcao != "x");
213
214 printf("\nAte a proxima...\n\n");
215
216 return 0;
217 }
218

- 4 -

