THE EXPERT’S VOICE® IN OPEN SOURCE

Pro

Hadoop

Build scalable, distributed applications in the cloud

Jason Venner

Apress:

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Pro Hadoop

Jason Venner

Apress’

www.it-ebooks.info

http://www.it-ebooks.info/

Pro Hadoop
Copyright © 2009 by Jason Venner

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-1942-2
ISBN-13 (electronic): 978-1-4302-1943-9
Printed and bound in the United States of America9 8 76 54 32 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Java™ and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc., in the
US and other countries. Apress, Inc., is not affiliated with Sun Microsystems, Inc., and this book was written
without endorsement from Sun Microsystems, Inc.

Lead Editor: Matthew Moodie

Technical Reviewer: Steve Cyrus

Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Tony Campbell,
Gary Cornell, Jonathan Gennick, Michelle Lowman, Matthew Moodie, Duncan Parkes, Jeffrey Pepper,
Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Richard Dal Porto

Copy Editors: Marilyn Smith, Nancy Sixsmith

Associate Production Director: Kari Brooks-Copony

Production Editor: Laura Cheu

Compositor: Linda Weidemann, Wolf Creek Publishing Services

Proofreader: Linda Seifert

Indexer: Becky Hornyak

Artist: Kinetic Publishing Services

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit
http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales-eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every pre-
caution has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com. You may need to answer
questions pertaining to this book in order to successfully download the code.

www.it-ebooks.info

mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com
http://www.it-ebooks.info/

This book is dedicated to Joohn Choe.
He had the idea, walked me through much of the process,
trusted me to write the book, and helped me through the rough spots.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Contents at a Glance

Aboutthe AUthor. Xix
About the Technical ReViewWer e xxi
ACKNOWIBAgMENTSo xxiii
INtrodUCHiON XXV
CHAPTER 1 Getting Started with Hadoop Core 1
CHAPTER 2 The Basics of aMapReduce Job 27
CHAPTER 3 The Basics of Multimachine Clusters............................ yal
CHAPTER 4 HDFS Details for Multimachine Clusters 97
CHAPTER 5 MapReduce Details for Multimachine Clusters.................. 127
CHAPTER 6 Tuning Your MapReduce Jobs 177
CHAPTER 7 Unit Testing and Debugging 207
CHAPTER 8 Advanced and Alternate MapReduce Techniques 239
CHAPTER 9 Solving Problems with Hadoop................................. 285
CHAPTER 10 Projects Based On Hadoop and Future Directions 329
APPENDIXA The JobConf ObjectinDetail................................... 339
0 387

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Contents

Aboutthe AUthor. Xix
About the Technical ReViewWer e xxi
ACKNOWIBAGMENTS . ..o XXiii
INtrodUCHiON XXV
CHAPTER1 Getting Started with Hadoop Core 1
Introducing the MapReduce Model. 1

Introducing Hadoopo o 4

Hadoop Core MapReduce.ccoiiiiriiinn .. 5

The Hadoop Distributed File System. 6

Installing Hadoop. i 7

The Prerequisites. ... 7

Getting Hadoop Running. o 13

Checking Your Environment.................... 13

Running Hadoop Examplesand Tests 17

Hadoop Examples 18

Hadoop Tests ... 23

Troubleshooting............ . o 24

SUMMANY. ... 24

CHAPTER2 The Basics of a MapReduce Job........................... 27
The Parts of a Hadoop MapReduce Job. 27

Input Splitting o 31

A Simple Map Function: IdentityMapper 31

A Simple Reduce Function: IdentityReducer.................... 34

Configuringa Job.o .36

Specifying InputFormats 45

Setting the Output Parameters 47

Configuring the Reduce Phase. 51

Runningadob 53

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

CHAPTER 3

CHAPTER 4

Creating a Custom Mapper and Reducer.56
Setting Up a Custom Mapper.....................coiiiiii.. 56
Afterthe Job Finishes 61
Creating a Custom Reducer.................................. 63
Why Do the Mapper and Reducer Extend MapReduceBase?. 66
Using a Custom Partitioner. 67

SUMMArY. 69

The Basics of Multimachine Clusters...................... yal

The Makeup of aClusterc.co i, yal

Cluster Administration Tools it 73

Cluster Configuration i, 74
Hadoop Configuration Files 75
Hadoop Core Server Configuration 76

A Sample Cluster Configuration 80
Configuration Requirements............................oiit. 80
Configuration Files for the Sample Cluster 82
Distributing the Configuration 86
Verifying the Cluster Configuration............................ 87
Formatting HDFS 88
Starting HDFS 89
Correcting Errors 91
The Web Interface to HDFS 92
Starting MapReduce 92
Running a Test Jobonthe Cluster 94

SUMMArY. ... 95

HDFS Details for Multimachine Clusters................... 97

Configuration Trade-Offs i 97

HDFS Installation for Multimachine Clusters. 98
Building the HDFS Configuration.............................. 98
Distributing Your Installation Data............................ 101
Formatting Your HDFS. 102
Starting Your HDFS Installation.............................. 104
Verifying HDFS ISRunning 105

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5

CONTENTS
Tuning Factors. ... 111
File Descriptors. ... 111
Block Service Threads.ccooiiiii ... 112
NameNode Threads................... 113
Server Pending Connections 114
Reserved Disk Space. 114
Storage Allocationscoi i 115
DiskI/0 115
Network /0 Tuning ... 119
Recovery from Failure. 119
NameNode Recovery. ...t ... 120
DataNode Recovery and Addition 120
DataNode Decommissioningc.cooviiiiiiinn 121
Deleted File Recovery i 122
Troubleshooting HDFS Failures.o it 122
NameNode Failures................. 123
DataNode or NameNode Pauses............................. 125
SUMMANY. ..o 125
MapReduce Details for Multimachine Clusters 127
Requirements for Successful MapReduce Jobs. 127
Launching MapReduce Jobs 128
Using Shared Libraries i 130
MapReduce-Specific Configuration for Each Machine in a Cluster. 130
Using the Distributed Cache 131
Adding Resources to the Task Classpath. 132
Distributing Archives and Filesto Tasks 133
Accessing the DistributedCacheData 133
Configuring the Hadoop Core Cluster Information................... 135
Setting the Default File System URI 135
Setting the JobTracker Location 136
The Mapper Dissectedc i 136
Mapper Methods 138
Mapper Class Declaration and Member Fields................. 142
Initializing the Mapper with Spring........................... 143
Partitioners Dissected.l 147
The HashPartitioner Class.c.ooiii... 149
The TotalOrderPartitioner Class. 149
The KeyFieldBasedPartitioner Class.......................... 151

www.it-ebooks.info

ix

http://www.it-ebooks.info/

CONTENTS

The Reducer Dissected. i 153
A Simple Transforming Reducer............................. 154
A Reducer That Uses Three Partitions 159
COmDINErS. 163
File Types for MapReduce Jobsl 166
TextFiles. ... 166
SequenceFiles.......... ... 168
MapFiles. 169
COMPIESSION. . . .ot e e 171
Codec Specification...................... 171
Sequence File Compression.ccviiiirininan... 172
Map Task Output 172
JAR, Zip,and TarFiles 174
SUMMaANY. ... 174
CHAPTER6 Tuning Your MapReduce Jobs 177
Tunable ltems for Clusterand Jobs 177
Behind the Scenes: What the Framework Does................ 178
Cluster-Level Tunable Parameters 182
Per-Job Tunable Parameters................................ 188
Monitoring Hadoop Core Services.oi.. 192
JMX: Hadoop Core Server and Task State Monitor 192
Nagios: A Monitoring and Alert Generation Framework 192
Ganglia: A Visual Monitoring Tool with History 193
Chukwa: A Monitoring Serviceccooiini... 196
FailMon: A Hardware Diagnostic Tool......................... 196
Tuning to Improve Job Performance 196
Speeding Up the Joband Task Start 196
Optimizinga Job’sMapPhase 198
Tuning the Reduce Task Setup 201
Addressing Job-Levellssues................................ 205
SUMMAY. ... 205
CHAPTER7 Unit Testing and Debugging............................... 207
Unit Testing MapReduce Jobs. ..., 207
Requirements for Using ClusterMapReduceTestCase........... 208
Simpler Testing and Debugging with
ClusterMapReduceDelegate 214
Writing a Test Case: SimpleUnitTest. 216

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS i

Running the Debugger on MapReduce Jobs. 223
Running an Entire MapReduce Job ina Single JYM 223
Debugging a Task Runningona Cluster 230
RerunningaFailed Task.................................... 234

SUMMANY. .. 237

CHAPTER8 Advanced and Alternate MapReduce Techniques 239

Streaming: Running Custom MapReduce Jobs from the

CommandLine.......... 239
Streaming Command-Line Arguments. 243
USiNg PipeS 248
Using Counters in Streaming and Pipes Jobs.................. 248

Alternative Methods for Accessing HDFS 249
libhdfs 249
fuse-dfs........ .. 251
Mounting an HDFS File System Using fuse_dfs................ 252

Alternate MapReduce Techniques 256
Chaining: Efficiently Connecting Multiple Map and/or

Reduce Steps. 257
Map-side Join: Sequentially Reading Data from
Multiple Sorted Inputsl 265
Aggregation: A Framework for MapReduce Jobs that Count or
Aggregate Data............... 274
Aggregation Using StreamingL. 275
Aggregation Using Java Classes............................. 277
Specifying the ValueAggregatorDescriptor Class via
Configuration Parameters................................ 278
Side Effect Files: Map and Reduce Tasks Can Write
Additional Output Files.............. 279

Handling Acceptable Failure Rates................................ 279
Dealing with Task Failure. 280
Skipping Bad Records. i 280

Capacity Scheduler: Execution Queues and Priorities................ 281
Enabling the Capacity Scheduler. 281

SUMMAY. ... 284

www.it-ebooks.info

http://www.it-ebooks.info/

i CONTENTS

CHAPTER 9

CHAPTER 10

Solving Problems with Hadoop. 285
Design GOAIS.o 285
Design 1: Brute-Force MapReduce 287
ASingleReduce Task ..., 287
Key Contents and Comparators.............................. 288
AHelper Classfor Keys.coo ... 291
The Mapper. 294
The CombINer. e 298
The Reducer i 298
The Driver 301
The Pluses and Minuses of the Brute-Force Design 302
Design 2: Custom Partitioner for Segmenting the Address Space 302
The Simple IP Range Partitioner 302
Search Space Keys for Each Reduce Task That May
Contain Matching Keys 305
Helper Class for Keys Modifications 311
Design 3: Future Possibilities 326
SUMMAY. 327
Projects Based On Hadoop and Future Directions 329
Hadoop Core—Related Projects 329
HBase: HDFS-Based Column-Qriented Table 329
Hive: The Data Warehouse that Facebook Built 330
Pig, the Other Latin: A Scripting Language for Dataset Analysis . . . 332
Mahout: Machine Learning Algorithms 332
Hama: A Parallel Matrix Computation Framework.............. 333
ZooKeeper: A High-Performance Collaboration Service 333
Lucene: The Open Source SearchEngine 333
Thrift and Protocol Buffers................. 334
Cascading: A Map Reduce Framework for Complex Flows 334
CloudStore: A Distributed File System 334
Hypertable: A Distributed Column-Oriented Database 334
Greenplum: An Analytic Engine with SQL 334
CloudBase: Data Warehousing 334
HadoopintheCloud, 335
AMazon 335
Cloudera i 335
ScaleUnlimited. 336

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS xiii

API Changes inHadoop 0.20.0ol 336

Vaidya: A Rule-Based Performance Diagnostic Tool for
MapReduce Jobs 337
Service Level Authorization (SLA), 337
Removal of LZO Compression Codecs and the API Glue. 337

New MapReduce Context APIs and Deprecation of the
Old Parameter Passing APIS 337
Additional Features in the Example Code 337
Zero-Configuration, Two-Node Virtual Cluster for Testing 337
Eclipse Project for the Example Code. 338
SUMMANY. .. 338
APPENDIXA The JobConf Objectin Detail 339
JobConf Objectin the Driverand Tasks........................... .340
JobConflsaPropertiesTable 341
Variable Expansion 341
FinalValues. i 344
ConStruCtors 347
publicJobConf()...... ... 347
public JobConf(Class exampleClass) 347
public JobConf(Configurationconf) 347
public JobConf(Configuration conf, Class exampleClass).. 347
public JobConf(String config). 348
public JobConf(Path config)o.... 348
public JobConf(boolean loadDefaults) 348
Methods for Loading Additional Configuration Resources 349
public void setQuietMode(boolean quietmode)................. 349
public void addResource(Stringname)........................ 349
public void addResource(URL url)............................ 350
public void addResource(Path file) 350
public void addResource(InputStreamin) 350
public void reloadConfiguration(). 350
Basic Getters and Setters.l 350
public String get(Stringname)................... 350
public String getRaw(Stringname)........................... 351
public void set(String name, String value)..................... 351
public String get(String name, String defaultvalue)............. 351
public int getint(String name, int defaultValue)................. 351
public void setInt(String name, intvalue)...................... 351

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

public long getLong(String name, long defaultValue) 351
public void setLong(String name, long value).................. 351
public float getFloat(String name, float defaultValue) 351
public boolean getBoolean(String name, boolean

defaultValue) 352
public void setBoolean(String name, boolean value) 352
public Configuration.IntegerRanges getRange(String name,

String defaultValue) 352
public Collection<String> getStringCollection(String name) 353
public String[] getStrings(String name). 353
public String[] getStrings(String name, String... defaultValue). . . 354
public void setStrings(String name, String... values)............ 354
public Class<?> getClassByName(String name) throws

ClassNotFoundException.........................ooo... 355
public Class<?>[] getClasses(String name, Class<?>...

defaultValue) 355
public Class<?> getClass(String name, Class<?>

defaultValue) 355
public <U> Class<? extends U> getClass(String name,

Class<? extends U> defaultValue, Class<U> xface) 356
public void setClass(String name, Class<?> theClass,

Class<?>xface) ... 356

Getters for Localized and Load Balanced Paths..................... 356
public Path getLocalPath(String dirsProp, String pathTrailer)

throws [OException. 357
public File getFile(String dirsProp, String pathTrailer) throws

IOException ... 357
public String[] getLocalDirs() throws IOException.............. 357
public void deleteLocalFiles() throws IOException.............. 358

public void deleteLocalFiles(String subdir)throws I0Exception . . . 358
public Path getLocalPath(String pathString) throws

IOException o 358

public String getJoblLocalDir() 358

Methods for Accessing Classpath Resources....................... 359

public URL getResource(Stringname) 359
public InputStream getConfResourceAsInputStream

(Stringname). ... 359

public Reader getConfResourceAsReader(String name)......... 359

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Methods for Controlling the Task Classpath........................ 360
public Stringgetdar()................ ... 360
public void setdar(Stringjar) 360
public void setJarByClass(Class cls).......................... 360

Methods for Controlling the Task Execution Environment 360
public String getUser(). 360
public void setUser(String user)., 361
public void setKeepFailedTaskFiles(boolean keep) 361
public boolean getKeepFailedTaskFiles()...................... 361
public void setkKeepTaskFilesPattern(String pattern)............ 361
public String getKeepTaskFilesPattern() 361
public void setWorkingDirectory(Path dir) 361
public Path getWorkingDirectory(). 362
public void setNumTasksToExecutePerJvm(int numTasks). 362
public int getNumTasksToExecutePerdvm() 362

Methods for Controlling the Input and Output ofthe Job 362
public InputFormat getlnputFormat() 363
public void setinputFormat(Class<? extends InputFormat>

theClass). ... 363
public OutputFormat getOutputFormat() 363
public void setOutputFormat(Class<? extends OutputFormat>

theClass).o 363
public OutputCommitter getOutputCommitter() 363
public void setOutputCommitter(Class<? extends

OutputCommitter> theClass) 364
public void setCompressMapOutput(boolean compress) 364
public boolean getCompressMapOutput() 364
public void setMapQutputCompressorClass(Class<? extends

CompressionCodec> codecClass)......................... 365

public Class<? extends CompressionCodec>
getMapOutputCompressorClass(Class<? extends

CompressionCodec> defaultValue)........................ 365
public void setMapOutputkKeyClass(Class<?> theClass). 366
public Class<?> getMapOutputKeyClass() 366
public Class<?> getMapOutputValueClass()................... 366
public void setMapOutputValueClass(Class<?> theClass). 366
public Class<?> getOutputkeyClass() 367
public void setOutputKeyClass(Class<?> theClass) 367
public Class<?> getOutputValueClass()....................... 367
public void setOutputValueClass(Class<?> theClass)........... 367

www.it-ebooks.info

http://www.it-ebooks.info/

Methods for Controlling Output Partitioning and Sorting for

theReduce............. . 367
public RawComparator getOutputkeyComparator()............. 368

public void setOutputKeyComparatorClass(Class<? extends
RawComparator>theClass)
public void setKeyFieldComparatorOptions(String keySpec)
public String getKeyFieldComparatorOption()..................
public Class<? extends Partitioner> getPartitionerClass().
public void setPartitionerClass(Class<? extends Partitioner>
theClass). ...

368
368
369
370

public void setKeyFieldPartitionerOptions(String keySpec). 370
public String getKeyFieldPartitionerOption() 371

public RawComparator getOutputValueGroupingComparator() . . .
public void setOutputValueGroupingComparator(Class<?

extends RawComparator> theClass).

Methods that Control Map and Reduce Tasks

public Class<? extends Mapper> getMapperClass()............ 373

public void setMapperClass(Class<? extends Mapper>
theClass).o

public Class<? extends MapRunnable> getMapRunnerClass(). . . 373

public void setMapRunnerClass(Class<? extends
MapRunnable>theClass)

public Class<? extends Reducer> getReducerClass() 374

public void setReducerClass(Class<? extends Reducer>
theClass).o
public Class<? extends Reducer> getCombinerClass()
public void setCombinerClass(Class<? extends Reducer>
theClass). ...
public boolean getSpeculativeExecution().....................
public void setSpeculativeExecution(boolean
speculativeExecution)
public boolean getMapSpeculativeExecution().................
public void setMapSpeculativeExecution(boolean
speculativeExecution)

374
374

374
375

public boolean getReduceSpeculativeExecution() 376

public void setReduceSpeculativeExecution(boolean
speculativeExecution)

public int getNumMapTasks()cooiii... 376
public void setNumMapTasks(intn).......................... 376

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS Xvii

public int getNumReduceTasks().covvinn... 376
public void setNumReduceTasks(intn) 376
public int getMaxMapAttempts()............................. 377
public void setMaxMapAttempts(intn)........................ 377
public int getMaxReduceAttempts() 377
public void setMaxReduceAttempts(intn)..................... 377
public void setMaxTaskFailuresPerTracker(int noFailures). 377
public int getMaxTaskFailuresPerTracker().................... 377
public int getMaxMapTaskFailuresPercent()................... 378
public void setMaxMapTaskFailuresPercent(int percent) 378
public int getMaxReduceTaskFailuresPercent() 378
public void setMaxReduceTaskFailuresPercent(int percent) 378
Methods Providing Control Over Job Execution and Naming.......... 379
public String getJobName() 379
public void setJobName(Stringname) 379
public String getSessionld()l 379
public void setSessionld(String sessionld). 380
public JobPriority getJobPriority()............................ 380
public void setJobPriority(JobPriority prio) 380
public boolean getProfileEnabled() 380
public void setProfileEnabled(boolean newValue) 381
public String getProfileParams() 381
public void setProfileParams(String value) 381
public Configuration.IntegerRanges getProfileTaskRange
(booleanisMap).c.oo i 381
public void setProfileTaskRange(boolean isMap, String
newVvalue). 382
public String getMapDebugScript()........................... 382
public void setMapDebugScript(String mDbgScript) 383
public String getReduceDebugScript()........................ 383
public void setReduceDebugScript(String rDbgScript) 383
public String getJobEndNotificationURI()...................... 384
public void setJobEndNotificationURI(String uri). 384
public String getQueueName().......................oials. 384
public void setQueueName(String queueName)................ 384
long getMaxVirtualMemoryForTask(){........................ 385
void setMaxVirtualMemoryForTask(long vmem) { 385

www.it-ebooks.info

http://www.it-ebooks.info/

ABOUT THE AUTHOR

<
|s.

Convenience Methods. 385
publicintsize()............co 385
publicvoidclear(). 385
public lterator<Map.Entry<String,String>> iterator()........... 385
public void writeXml(OutputStream out) throws I0Exception. 386
public ClassLoader getClassLoader() 386
public void setClassLoader(ClassLoader classLoader) 386
public String toString() 386

Methods Used to Pass Configurations Through SequenceFiles. 386
public void readFields(Datalnput in) throws IOException 386
public void write(DataOutput out) throws I0Exception 386

INDEX .. 387

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

JASON VENNER is a software developer with more than 20 years of experience developing
highly scaled, high-performance systems. Earlier, he worked primarily in the financial services
industry, building high-performance check-processing systems. His more recent experience
has been building the infrastructure to support highly utilized web sites. He has an avid inter-
est in the biological sciences and is an FAA certificated flight instructor.

www.it-ebooks.info

Xix

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

About the Technical Reviewer

SIA CYRUS’s experience in computing spans many decades and areas of software develop-
ment. During the 1980s, he specialized in database development in Europe. In the 1990s, he
moved to the United States, where he focused on client/server applications. Since 2000, he has
architected a number of middle-tier business processes. And most recently, he has been spe-
cializing in Web 2.0, Ajax, portals, and cloud computing.

Sia is an independent software consultant who is an expert in Java and development of
Java enterprise-class applications. He has been responsible for innovative and generic soft-
ware, holding a U.S. patent in database-driven user interfaces. Sia created a very successful
configuration-based framework for the telecommunications industry, which he later con-
verted to the Spring Framework. His passion could be entitled “Enterprise Architecture in
Open Source.”

When not experimenting with new technologies, Sia enjoys playing ice hockey, especially
with his two boys, Jason and Brandon.

XXi

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Acknowledgments

I would like to thank the people of Attributor.com, as they provided me the opportunity
to learn Hadoop. They gracefully let my mistakes pass—and there were some large-scale
mistakes—and welcomed my successes.

I'would also like to thank Richard M. Stallman, one of the giants who support the world.
I remember the days when I couldn’t afford to buy a compiler, and had to sneak time on
the university computers, when only people who signed horrible NDAs and who worked at
large organizations could read the Unix source code. His dedication and yes, fanaticism, has
changed our world substantially for the better. Thank you, Richard.

Hadoop rides on the back, sweat, and love of Doug Cutting, and many people of Yahoo!
Inc. Thank you Doug and Yahoo! crew. All of the Hadoop users and contributors who help
each other on the mailing lists are wonderful people. Thank you.

I'would also like to thank the Apress staff members who have applied their expertise to
make this book into something readable.

www.it-ebooks.info

xxiii

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

This book is a concise guide to getting started with Hadoop and getting the most out of your
Hadoop clusters. My early experiences with Hadoop were wonderful and stressful. While
Hadoop supplied the tools to scale applications, it lacked documentation on how to use the
framework effectively. This book provides that information. It enables you to rapidly and pain-
lessly get up to speed with Hadoop. This is the book I wish was available to me when I started
using Hadoop.

Who This Book Is For

This book has three primary audiences: developers who are relatively new to Hadoop or
MapReduce and must scale their applications using Hadoop; system administrators who must
deploy and manage the Hadoop clusters; and application designers looking for a detailed
understanding of what Hadoop will do for them. Hadoop experts will learn some new details
and gain insights to add to their expertise.

How This Book Is Structured

This book provides step-by-step instructions and examples that will take you from just begin-
ning to use Hadoop to running complex applications on large clusters of machines. Here’s a
brief rundown of the book’s contents:

Chapter 1, Getting Started with Hadoop Core: This chapter introduces Hadoop Core and
MapReduce applications. It then walks you through getting the software, installing it on
your computer, and running the basic examples.

Chapter 2, The Basics of a MapReduce Job: This chapter explores what is involved in writ-
ing the actual code that performs the map and the reduce portions of a MapReduce job,
and how to configure a job to use your map and reduce code.

Chapter 3, The Basics of Multimachine Clusters: This chapter walks you through the basics
of creating a multimachine Hadoop cluster. It explains what the servers are, how the serv-
ers interact, basic configuration, and how to verify that your cluster is up and running
successfully. You'll also find out what to do if a cluster doesn’t start.

Chapter 4, HDFS Details for Multimachine Clusters: This chapter covers the details of the
Hadoop Distributed File System (HDFS) and provides detailed guidance on the installa-
tion, running, troubleshooting, and recovery of your HDFS installations.

www.it-ebooks.info

XXV

http://www.it-ebooks.info/

XXVi

INTRODUCTION

Chapter 5, MapReduce Details for Multimachine Clusters: This chapter gives you a detailed
understanding of what a MapReduce job is and what the Hadoop Core framework actually
does to execute your MapReduce job. You will learn how to set your job classpath and use
shared libraries. It also covers the input and output formats used by MapReduce jobs.

Chapter 6, Tuning Your MapReduce Jobs: In this chapter, you will learn what you can tune,
how to tell what needs tuning, and how to tune it. With this knowledge, you will be able to
achieve optimal performance for your clusters.

Chapter 7, Unit Testing and Debugging: When your job is run across many machines,
debugging becomes quite a challenge. Chapter 7 walks you through how to debug your
jobs. The examples and unit testing framework provided in this chapter also help you
know when your job is working as designed.

Chapter 8, Advanced and Alternate MapReduce Techniques: This chapter demonstrates
how to use several advanced features of Hadoop Core: map-side joins, chain mapping,
streaming, pipes, and aggregators. You will also learn how to configure your jobs to con-
tinue running when some input is bad. Streaming is a particularly powerful tool, as it
allows scripts and other external programs to be used to provide the MapReduce func-
tionality.

Chapter 9, Solving Problems with Hadoop: This chapter describes step-by-step develop-
ment of a nontrivial MapReduce job, including the whys of the design decisions. The
sample MapReduce job performs range joins, and uses custom comparator and parti-
tioner classes.

Chapter 10, Projects Based on Hadoop and Future Directions: This chapter provides a
summary of several projects that are being built on top of Hadoop Core: distributed
column-oriented databases, distributed search, matrix manipulation, and machine learn-
ing. There are also references for training and support and future directions for Hadoop
Core. Additionally, this chapter provides a short summary of my favorite tools in the
examples: a zero-configuration, two-node virtual cluster.

Appendix, The JobConf Object in Detail: The JobConf object is the heart of the application
developer’s interaction with Hadoop. This book’s appendix goes through each method in
detail.

Prerequisites

For those of you who are new to Hadoop, I strongly urge you to try Cloudera’s open source
Distribution for Hadoop (http://www.cloudera.com/hadoop). It provides the stable base of
Hadoop 0.18.3 with bug fixes and some new features back-ported in and added-in hooks to
the support scribe log file aggregation service (http://scribeserver.wiki.sourceforge.net/).
The Cloudera folks have Amazon machine images (AMIs), Debian and RPM installer files, and
an online configuration tool to generate configuration files. If you are struggling with Hadoop
0.19 issues, or some of the 0.18.3 issues are biting you, please shift to this distribution. It will
reduce your pain.

www.it-ebooks.info

http://www.cloudera.com/hadoop
http://scribeserver.wiki.sourceforge.net/
http://www.it-ebooks.info/

INTRODUCTION

The following are the stock Hadoop Core distributions at the time of this writing:

e Hadoop 0.18.3 is a good distribution, but has a couple of issues related to file descriptor
leakage and reduce task stalls.

e Hadoop 0.19.0 should be avoided, as it has data corruption issues related to the append
and sync changes.

e Hadoop 0.19.1 looks to be a reasonably stable release with many useful features.

e Hadoop 0.20.0 has some major API changes and is still unstable.

The examples in this book will work with Hadoop 0.19.0, and 0.19.1, and most of the
examples will work with the Cloudera 0.18.3 distribution. Separate Eclipse projects are pro-
vided for each of these releases.

Downloading the Code

All of the examples presented in this book can be downloaded from the Apress web site
(http://www.apress.com). You can access the source code from this book’s details page or
find the source code at the following URL (search for Hadoop): http://www.apress.com/book/
sourcecode.

The sample code is designed to be imported into Eclipse as a complete project. There
are several versions of the code, each a designated version of Hadoop Core that includes that
Hadoop Core version.

The src directory has the source code for the examples. The bulk of the examples are in
the package com.apress.hadoopbook.examples, and subpackages are organized by chapter:
ch2, chs, ch7, and ch9, as well as jobconf and advancedtechniques. The test examples are under
test/srcin the corresponding package directory. The directory src/config contains the con-
figuration files that are loaded as Java resources.

Three directories contain JAR or zip files that have specific licenses. The directory apache
licensed 1ib contains the JARs and source zip files for Apache licensed items. The directory
bsd license contains the items that are provided under the BSD license. The directory other
licenses contains items that have other licenses. The relevant license files are also in these
directories.

A README . txt file has more details about the downloadable code.

Contacting the Author

Jason Venner can be contacted via e-mail at jvenner@prohadoopbook.com. Also, visit this book’s
web site at http://www.prohadoopbook. com.

www.it-ebooks.info

XXvii

http://www.apress.com
http://www.apress.com/book/
mailto:jvenner@prohadoopbook.com
http://www.prohadoopbook.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

Getting Started with
Hadoop Core

Applications frequently require more resources than are available on an inexpensive
machine. Many organizations find themselves with business processes that no longer fit on

a single cost-effective computer. A simple but expensive solution has been to buy specialty
machines that have a lot of memory and many CPUs. This solution scales as far as what is sup-
ported by the fastest machines available, and usually the only limiting factor is your budget.
An alternative solution is to build a high-availability cluster. Such a cluster typically attempts
to look like a single machine, and typically requires very specialized installation and adminis-
tration services. Many high-availability clusters are proprietary and expensive.

A more economical solution for acquiring the necessary computational resources is cloud
computing. A common pattern is to have bulk data that needs to be transformed, where the
processing of each data item is essentially independent of other data items; that is, using a
single-instruction multiple-data (SIMD) algorithm. Hadoop Core provides an open source
framework for cloud computing, as well as a distributed file system.

This book is designed to be a practical guide to developing and running software using
Hadoop Core, a project hosted by the Apache Software Foundation. This chapter introduces
Hadoop Core and details how to get a basic Hadoop Core installation up and running.

Introducing the MapReduce Model

Hadoop supports the MapReduce model, which was introduced by Google as a method of
solving a class of petascale problems with large clusters of inexpensive machines. The model is
based on two distinct steps for an application:

* Map: An initial ingestion and transformation step, in which individual input records
can be processed in parallel.

* Reduce: An aggregation or summarization step, in which all associated records must be
processed together by a single entity.

The core concept of MapReduce in Hadoop is that input may be split into logical chunks,
and each chunk may be initially processed independently, by a map task. The results of these
individual processing chunks can be physically partitioned into distinct sets, which are then

www.it-ebooks.info

http://www.it-ebooks.info/

2

CHAPTER 1 GETTING STARTED WITH HADOOP CORE

sorted. Each sorted chunk is passed to a reduce task. Figure 1-1 illustrates how the MapReduce
model works.

The Map The Reduce

Value3
Key1 Valuel o | |[Key2 | value7
Key7 || Value2 E Value8 o—
= ecort
Record " Map Task e
Fw— split P Key2 [Value3 3 Valuea | Reduce Record
ecor =1 ([Key4 Task
Record Key4 || Valued g Value9 Record
Key8 Value5 & Record
Record [Key6 | ValueC
Record Record
S Value5
Record Key8
E LK Ve o
s Record g
'Q_).‘ N =
§ Record Spiit Map Task Key2 Value7 §
- Key2 Value8 g
Record Valuel o
Key4 Value9 I
Record Y Keyt Value0
Record @ Record
Record ot Val S| | Key3 || ValueA | Reduce Record
Record Split ey alue0 2| | Key5 || ValueB Task
Map Task Key3 || ValueA =l Record
Record Key5 ValueB @ Record
3| [Key7 |[value2 Record
Key6 ValueC
Key8 ValueD

Figure 1-1. The MapReduce model

A map task may run on any compute node in the cluster, and multiple map tasks may be
running in parallel across the cluster. The map task is responsible for transforming the input
records into key/value pairs. The output of all of the maps will be partitioned, and each parti-
tion will be sorted. There will be one partition for each reduce task. Each partition’s sorted
keys and the values associated with the keys are then processed by the reduce task. There may
be multiple reduce tasks running in parallel on the cluster.

The application developer needs to provide only four items to the Hadoop framework: the
class that will read the input records and transform them into one key/value pair per record,

a map method, a reduce method, and a class that will transform the key/value pairs that the
reduce method outputs into output records.

My first MapReduce application was a specialized web crawler. This crawler received as
input large sets of media URLs that were to have their content fetched and processed. The
media items were large, and fetching them had a significant cost in time and resources.

The job had several steps:

1. Ingest the URLs and their associated metadata.
2. Normalize the URLs.
3. Eliminate duplicate URLs.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 GETTING STARTED WITH HADOOP CORE

Filter the URLs against a set of exclusion and inclusion filters.
Filter the URLs against a do not fetch list.

Filter the URLs against a recently seen set.

Fetch the URLs.

Fingerprint the content items.

© 0 N o g ~

Update the recently seen set.

10. Prepare the work list for the next application.

I had 20 machines to work with on this project. The previous incarnation of the appli-
cation was very complex and used an open source queuing framework for distribution. It
performed very poorly. Hundreds of work hours were invested in writing and tuning the appli-
cation, and the project was on the brink of failure. Hadoop was suggested by a member of a
different team.

After spending a day getting a cluster running on the 20 machines, and running the exam-
ples, the team spent a few hours working up a plan for nine map methods and three reduce
methods. The goal was to have each map or reduce method take less than 100 lines of code. By
the end of the first week, our Hadoop-based application was running substantially faster and
more reliably than the prior implementation. Figure 1-2 illustrates its architecture. The finger-
print step used a third-party library that had a habit of crashing and occasionally taking down
the entire machine.

Recently
5 Seen
2 Map
c > Dataset
S Ingest and
- .
§ Normalize ¢
a Reduce Map Map Map
s Suppress | > DoNot [—f |
§ Duplicates Filters Fetch
i Reduce Map Map Recently
Suppress > > =Y Seen
Duplicates Fetch Fingerprint Updates
Reduce
Summarize Summary

Figure 1-2. The architecture of my first MapReduce application

The ease with which Hadoop distributed the application across the cluster, along with the
ability to continue to run in the event of individual machine failures, made Hadoop one of my
favorite tools.

Both Google and Yahoo handle applications on the petabyte scale with MapReduce
clusters. In early 2008, Google announced that it processes 20 petabytes of data a day with
MapReduce (see http://googleblog.blogspot.com/2008/11/sorting-1pb-with-mapreduce.
html).

www.it-ebooks.info

http://googleblog.blogspot.com/2008/11/sorting-1pb-with-mapreduce
http://www.it-ebooks.info/

CHAPTER 1 GETTING STARTED WITH HADOOP CORE

Introducing Hadoop

Hadoop is the Apache Software Foundation top-level project that holds the various Hadoop
subprojects that graduated from the Apache Incubator. The Hadoop project provides and sup-
ports the development of open source software that supplies a framework for the development
of highly scalable distributed computing applications. The Hadoop framework handles the
processing details, leaving developers free to focus on application logic.

Note The Hadoop logo is a stuffed yellow elephant. And Hadoop happened to be the name of a stuffed
yellow elephant owned by the child of the principle architect.

The introduction on the Hadoop project web page (http://hadoop.apache.org/) states:

The Apache Hadoop project develops open-source software for reliable, scalable, distrib-
uted computing, including:

Hadoop Core, our flagship sub-project, provides a distributed filesystem (HDFS) and
support for the MapReduce distributed computing metaphor.

HBase builds on Hadoop Core to provide a scalable, distributed database.

Pig is a high-level data-flow language and execution framework for parallel computa-
tion. It is built on top of Hadoop Core.

ZooKeeper is a highly available and reliable coordination system. Distributed applica-
tions use ZooKeeper to store and mediate updates for critical shared state.

Hive is a data warehouse infrastructure built on Hadoop Core that provides data sum-
marization, adhoc querying and analysis of datasets.

The Hadoop Core project provides the basic services for building a cloud computing envi-
ronment with commodity hardware, and the APIs for developing software that will run on that
cloud. The two fundamental pieces of Hadoop Core are the MapReduce framework, the cloud
computing environment, and he Hadoop Distributed File System (HDEFS).

Note Within the Hadoop Core framework, MapReduce is often referred to as mapred, and HDFS is often
referred to as dfs.

www.it-ebooks.info

http://hadoop.apache.org/
http://www.it-ebooks.info/

CHAPTER 1 GETTING STARTED WITH HADOOP CORE

The Hadoop Core MapReduce framework requires a shared file system. This shared file
system does not need to be a system-level file system, as long as there is a distributed file
system plug-in available to the framework. While Hadoop Core provides HDFS, HDFS is not
required. In Hadoop JIRA (the issue-tracking system), item 4686 is a tracking ticket to separate
HDFS into its own Hadoop project. In addition to HDFS, Hadoop Core supports the Cloud-
Store (formerly Kosmos) file system (http://kosmosfs.sourceforge.net/) and Amazon Simple
Storage Service (S3) file system (http://aws.amazon.com/s3/). The Hadoop Core framework
comes with plug-ins for HDFS, CloudStore, and S3. Users are also free to use any distributed
file system that is visible as a system-mounted file system, such as Network File System (NES),
Global File System (GFS), or Lustre.

When HDFS is used as the shared file system, Hadoop is able to take advantage of knowl-
edge about which node hosts a physical copy of input data, and will attempt to schedule the
task that is to read that data, to run on that machine. This book mainly focuses on using HDFS
as the file system.

Hadoop Core MapReduce

The Hadoop Distributed File System (HDFS)MapReduce environment provides the user with a
sophisticated framework to manage the execution of map and reduce tasks across a cluster of
machines. The user is required to tell the framework the following:

¢ The location(s) in the distributed file system of the job input

¢ The location(s) in the distributed file system for the job output
¢ The input format

¢ The output format

¢ The class containing the map function

¢ Optionally. the class containing the reduce function

¢ The JAR file(s) containing the map and reduce functions and any support classes

If a job does not need a reduce function, the user does not need to specify a reducer class,
and a reduce phase of the job will not be run. The framework will partition the input, and
schedule and execute map tasks across the cluster. If requested, it will sort the results of the
map task and execute the reduce task(s) with the map output. The final output will be moved
to the output directory, and the job status will be reported to the user.

MapReduce is oriented around key/value pairs. The framework will convert each record
of input into a key/value pair, and each pair will be input to the map function once. The map
output is a set of key/value pairs—nominally one pair that is the transformed input pair, but it
is perfectly acceptable to output multiple pairs. The map output pairs are grouped and sorted
by key. The reduce function is called one time for each key, in sort sequence, with the key and
the set of values that share that key. The reduce method may output an arbitrary number of
key/value pairs, which are written to the output files in the job output directory. If the reduce
output keys are unchanged from the reduce input keys, the final output will be sorted.

www.it-ebooks.info

http://kosmosfs.sourceforge.net/
http://aws.amazon.com/s3/
http://www.it-ebooks.info/

CHAPTER 1 GETTING STARTED WITH HADOOP CORE

The framework provides two processes that handle the management of MapReduce jobs:

¢ TaskTracker manages the execution of individual map and reduce tasks on a compute
node in the cluster.

¢ JobTracker accepts job submissions, provides job monitoring and control, and man-
ages the distribution of tasks to the TaskTracker nodes.

Generally, there is one JobTracker process per cluster and one or more TaskTracker pro-
cesses per node in the cluster. The JobTracker is a single point of failure, and the JobTracker
will work around the failure of individual TaskTracker processes.

Note One very nice feature of the Hadoop Core MapReduce environment is that you can add TaskTracker
nodes to a cluster while a job is running and have the job spread out onto the new nodes.

The Hadoop Distributed File System

HDFS is a file system that is designed for use for MapReduce jobs that read input in large
chunks of input, process it, and write potentially large chunks of output. HDES does not
handle random access particularly well. For reliability, file data is simply mirrored to multiple
storage nodes. This is referred to as replication in the Hadoop community. As long as at least
one replica of a data chunk is available, the consumer of that data will not know of storage
server failures.

HDEFS services are provided by two processes:

¢ NameNode handles management of the file system metadata, and provides manage-
ment and control services.

¢ DataNode provides block storage and retrieval services.

There will be one NameNode process in an HDFS file system, and this is a single point of
failure. Hadoop Core provides recovery and automatic backup of the NameNode, but no hot
failover services. There will be multiple DataNode processes within the cluster, with typically
one DataNode process per storage node in a cluster.

Note Itis common for a node in a cluster to provide both TaskTracker services and DataNode services. It
is also common for one node to provide the JobTracker and NameNode services.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 GETTING STARTED WITH HADOOP CORE

Installing Hadoop

As with all software, you need some prerequisite pieces before you can actually use Hadoop.
It is possible to run and develop Hadoop applications under Windows, provided that Cygwin
is installed. It is strongly suggested that nodes in a production Hadoop cluster run a modern
Linux distribution.

Note To use Hadoop, you'll need a basic working knowledge of Linux and Java. All the examples in this
book are set up for the bash shell.

The Prerequisites

The examples in this book were developed with the following:

e Fedora8
e Sunjava 1.6

¢ Hadoop 0.19.0 or later

Hadoop versions prior to 0.18.2 make much less use of generics, and the book examples
are unlikely to compile with those versions. Java versions prior to 1.6 will not support all of the
language features that Hadoop Core requires. In addition, Hadoop Core appears to run most
stably with the Sun Java Development Kits JDKs); there are periodic requests for help from
users of other vendors’ JDKs. The examples in later chapters of this book are based on Hadoop
0.19.0, which requires JDK 1.6.

Any modern Linux distribution will work. I prefer the Red Hat Package Manager (RPM)
tool that is used by Red Hat, Fedora, and CentOS, and the examples reference RPM-based
installation procedures.

The wonderful folks of the Fedora project provide torrents (downloaded with BitTorrent)
for most of the Fedora versions at http://torrent.fedoraproject.org/. For those who want to
bypass the update process, the people of Fedora Unity provide distributions of Fedora releases
that have the updates applied, at http://spins.fedoraunity.org/spins. These are referred
to as re-spins. They do not provide older releases. The re-spins require the use of the custom
download tool Jigdo.

For the novice Linux user who just wants to play around a bit, the Live CD and a USB stick
for permanent storage can provide a simple and quick way to boot up a test environment. For
a more sophisticated user, VMware Linux installation images are readily available at http://
www.vmware.com/appliances/directory/cat/45?sort=changed.

Hadoop on a Linux System

After Linux is installed, it is necessary to work out where the JDK is installed on the computer
so that the JAVA_HOME environment variable and the PATH environment variable may be set
correctly.

www.it-ebooks.info

http://torrent.fedoraproject.org/
http://spins.fedoraunity.org/spins
http://www.vmware.com/appliances/directory/cat/45?sort=changed
http://www.vmware.com/appliances/directory/cat/45?sort=changed
http://www.it-ebooks.info/

CHAPTER 1 GETTING STARTED WITH HADOOP CORE

The rpm command has options that will tell you which files were in an RPM package: -q to
query, -1 to list, and -p to specify that the path to package you are querying is the next argu-
ment. Look for the string ' /bin/javac$’, using the egrep program, which searches for simple
regular expressions in its input stream:

cloud9: ~/Downloads$ rpm -q -1 -p ~/Downloads/jdk-6u7-linux-i586.rpm =
| egrep '/bin/javac$'

/usr/java/jdk1.6.0_07/bin/javac

Note The single quotes surrounding the /bin/javac$ are required. If you don’t use quotes, or use
double quotes, the shell may try to resolve the $ character as a variable.

This assumes a working directory of ~/Downloads when running the JDK installation pro-
gram, as the installer unpacks the bundled RPM files in the current working directory.

The output indicates that the JDK was installed in /usr/java/jdk1.6.0_07 and the java
programs are in the directory /usr/java/jdk1.6.0_07/bin.

Add the following two lines to your .bashrc or .bash_profile:

export JAVA HOME=/usr/java/jdk1.6.0 07
export PATH=${JAVA HOME}/bin:${PATH}

The update_env.sh script, shown in Listing 1-1, will attempt to do this setup for you (this
script is provided along with the downloadable code for this book). This script assumes you
downloaded the RPM installer for the JDK.

Listing 1-1. The update_env.sh Script

#! /bin/sh

This script attempts to work out the installation directory of the jdk,
given the installer file.

The script assumes that the installer is an rpm based installer and
that the name of the downloaded installer ends in

-rpm-bin

#

The script first attempts to verify there is one argument and the
argument is an existing file

The file may be either the installer binary, the -rpm.bin

or the actual installation rpm that was unpacked by the installer
#

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 GETTING STARTED WITH HADOOP CORE

The script will use the rpm command to work out the
installation package name from the rpm file, and then
use the rpm command to query the installation database,
for where the files of the rpm were installed.

H oH B H

This query of the installation is done rather than

directly querying the rpm, on the off

chance that the installation was installed in a different root
directory than the default.

H oH HF H

Finally, the proper environment set commands are appended

to the user's .bashrc and .bash _profile file, if they exist, and
echoed to the standard out so the user may apply them to

their currently running shell sessions.

H oH B H

Verify that there was a single command line argument
which will be referenced as $1
if [$# 1= 1]; then
echo "No jdk rpm specified"
echo "Usage: $0 jdk.rpm" 1>&2
exit 1
fi

Verify that the command argument exists in the file system

if [! -e $1]; then
echo "the argument specified ($1) for the jdk rpm does not exist" 1>&2
exit 1

fi

Does the argument end in '-rpm.bin' which is the suggested install
file, is the argument the actual .rpm file, or something else
set the variable RPM to the expected location of the rpm file that
was extracted from the installer file
if echo $1 | grep -q -e '-rpm.bin'; then
RPM="dirname $1°/ basename $1 -rpm.bin”.rpm
elif echo $1 | grep -q -e '.rpm'; then
RPM=$1
else
echo -n "$1 does not appear to be the downloaded rpm.bin file or" 1>&2
echo " the extracted rpm file" 1>82
exit 1
fi

Verify that the rpm file exists and is readable

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 GETTING STARTED WITH HADOOP CORE

if [! -r $RPM]; then
echo -n "The jdk rpm file (${RPM}) does not appear to exist" 1>&2
echo -n " have you run "sh ${RPM}" as root?" 1>&2
exit 1

fi

Work out the actual installed package name using the rpm command
#. man rpm for details
INSTALLED="1pm -q --qf %{Name}-%{Version}-%{Release} -p ${RPM}"
if [$? -ne 0]; then
(echo -n "Unable to extract package name from rpm (${RPM}),"
Echo " have you installed it yet?") 1>&2
exit 1
fi

Where did the rpm install process place the java compiler program 'javac'
JAVAC="1pm -q -1 ${INSTALLED} | egrep '/bin/javac$'"

If there was no javac found, then issue an error

if [$? -ne 0]; then
(echo -n "Unable to determine the JAVA HOME location from $RPM, "
echo "was the rpm installed? Try rpm -Uvh ${RPM} as root.") 1>&2
exit 1

fi

If we found javac, then we can compute the setting for JAVA HOME
JAVA _HOME="echo $JAVAC | sed -e 's;/bin/javac;;'"

echo "The setting for the JAVA HOME environment variable is ${JAVA HOME}"

echo -n "update the user's .bashrc if they have one with the"
echo " setting for JAVA HOME and the PATH."
if [-w ~/.bashrc]; then
echo "Updating the ~/.bashrc file with the java environment variables";
(echo export JAVA HOME=${JAVA HOME} ;
echo export PATH='${JAVA HOME}'/bin:'${PATH}"') >> ~/.bashrc
echo
fi

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 GETTING STARTED WITH HADOOP CORE

echo -n "update the user's .bash profile if they have one with the"
echo " setting for JAVA HOME and the PATH."
if [-w ~/.bash _profile]; then
echo "Updating the ~/.bash profile file with the java environment variables";
(echo export JAVA HOME=${JAVA HOME} ;
echo export PATH='${JAVA HOME}'/bin:'${PATH}") >> ~/.bash profile
echo
fi

echo "paste the following two lines into your running shell sessions"”
echo export JAVA HOME=${JAVA HOME}
echo export PATH='${JAVA HOME}'/bin:'${PATH}"

Run the script in Listing 1-1 to work out the JDK installation directory and update your
environment so that the JDK will be used by the examples:

update_env.sh "FULL_PATH TO DOWNLOADED JDK"

./update_env.sh ~/Download/jdk-6u7-1linux-1i586-rpm.bin

The setting for the JAVA HOME environment variable is /usr/java/jdk1.6.0 07

update the user's .bashrc if they have one with the setting w»
for JAVA HOME and the PATH.

Updating the ~/.bashrc file with the java environment variables

update the user's .bash profile if they have one with the setting w»
for JAVA HOME and the PATH.

Updating the ~/.bash profile file with the java environment variables

paste the following two lines into your running shell sessions
export JAVA HOME=/usr/java/jdk1.6.0 07

export PATH=${JAVA HOME}/bin:${PATH}

Hadoop on a Windows System: How To and Common Problems

To use Hadoop on a Windows system, you will need to install the Sun JDK and the Cygwin
environment (available from http://sources.redhat.com/cygwin).

www.it-ebooks.info

11

http://sources.redhat.com/cygwin
http://www.it-ebooks.info/

12

CHAPTER 1 GETTING STARTED WITH HADOOP CORE

Run a Cygwin bash shell by clicking the icon shown in Figure 1-3. You will need to make a
symbolic link in the ~ directory between the JDK installation directory and java, so that cd ~/
java will change the working directory to the root of the JDK directory. The appropriate setting
for JAVA_HOME becomes export JAVA HOME="/java. This will set up your default process environ-
ment to have the java programs in your path and let programs, such as Hadoop, know where
the Java installation is on your computer.

c

Figure 1-3. The Cygwin bash shell icon

I'was unable to make the bin/hadoop script work if the path in the JAVA_HOME environment
variable contained space characters, and the normal installation is in C: \Program Files\java\
jdkRELEASE_VERSION. When a symbolic link is made and the JAVA_HOME set to the symbolic
link location, bin/hadoop works well enough to use. For my Cygwin installation, I have the
following:

$ echo $JAVA HOME

/home/Jason/jdk1.6.0 12/

$ 1s -1 /home/Jason/jdk1.6.0_ 12

lrwxrwxrwx 1 Jason None 43 Mar 20 16:32 /home/Jason/jdk1.6.0 12 =
-> /cygdrive/c/Program Files/Java/jdk1.6.0 12/

Cygwin maps Windows drive letters to the path /cygdrive/X, where X is the drive letter,
and the Cygwin path element separator character is /, compared to Windows use of \.

You must keep two views of your files in mind, particularly when running Java programs
via the bin/hadoop script. The bin/hadoop script and all of the Cygwin utilities see a file system
that is a subtree of the Windows file system, with the Windows drives mapped to the /cygdrive
directory. The Windows programs see the traditional C:\ file system. An example of this is /
tmp. In a standard Cygwin installation, the /tmp directory is also the C:\cygwin\tmp directory.
Java will parse /tmp as C:\tmp, a completely different directory. When you receive File Not
Found errors from Windows applications launched from Cygwin, the common problem is that
the Windows application (Java being a Windows application) is looking in a different directory
than you expect.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 GETTING STARTED WITH HADOOP CORE

Note You will need to customize the Cygwin setup for your system. The exact details change with differ-
ent Sun JDK releases and with different Windows installations. In particular, the username will probably not
be Jason, the JDK version may not be 1.6.0 12, and the Java installation location may not be C: \Program
Files\Java.

Getting Hadoop Running

After you have your Linux or Cygwin under Windows environment set up, you're ready to
download and install Hadoop.

Go to the Hadoop download site at http://www.apache.org/dyn/closer.cgi/hadoop/
core/. From there, find the tar.gz file of the distribution of your choice, bearing in mind what
I said in the introduction, and download that file.

If you are a cautious person, go to the backup site and get the PGP checksum or the MD5
checksum of the download file.

Unpack the tar file in the directory where you would like your test installation installed. I
typically unpack this in a src directory, off my personal home directory:

~jason/src.

mkdir ~/src

cd ~/src

tar zxf ~/Downloads/hadoop-0.19.0.tar.gz

This will create a directory named hadoop-0.19.0 in my ~/src directory.
Add the following two lines to your .bashrc or .bash_profile file and execute them in your
current shell:

export HADOOP_HOME=~/src/hadoop-0.19.0
export PATH=${HADOOP_HOME}/bin:${PATH}

If you chose a different directory than ~/src, adjust these export statements to reflect your
chosen location.

Checking Your Environment

After installing Hadoop, you should check that you have updated your shell environment with
the JAVA_HOME and HADOOP_HOME environment variables correctly; that your PATH environment
variable has ${JAVA HOME}/bin and ${HADOOP_HOME}/bin to the left of any other Java or Hadoop
installations in your path, preferably as the first to elements of your PATH; and that your shell’s
current working directory is ${HADOOP_HOME }. These settings are required to run the examples
in this book.

The shell script check_basic_env.sh, shown in Listing 1-2, will verify your runtime envi-
ronment (this script is provided along with the other downloadable code for this book).

www.it-ebooks.info

13

http://www.apache.org/dyn/closer.cgi/hadoop/
http://www.it-ebooks.info/

14

CHAPTER 1 GETTING STARTED WITH HADOOP CORE

Listing 1-2. The check_basic_env.sh Script
#! /bin/sh

This block is trying to do the basics of checking to see if

the HADOOP_HOME and the JAVA HOME variables have been set correctly

and if they are not been set, suggest a setting in line with the earlier examples
The script actually tests for:

the presence of the java binary and the hadoop script,

and verifies that the expected versions are present

that the version of java and hadoop is as expected (warning if not)

that the version of java and hadoop referred to by the

JAVA_HOME and HADOOP_HOME environment variables are default version to run.
#

#

The 'if [' construct you see is a shortcut for 'if test'

the -z tests for a zero length string

the -d tests for a directory

the -x tests for the execute bit

-eq tests numbers

= tests strings

man test will describe all of the options

The '1>82' construct directs the standard output of the

command to the standard error stream.

if [-z "$HADOOP HOME"]; then
echo "The HADOOP_HOME environment variable is not set" 1>&2
if [-d ~/src/hadoop-0.19.0]; then
echo "Try export HADOOP_HOME=~/src/hadoop-0.19.0" 1>&2
fi
exit 1;
fi

This block is trying to do the basics of checking to see if
the JAVA HOME variable has been set
and if it hasn't been set, suggest a setting in line with the earlier examples

if [-z "$JAVA HOME"]; then
echo "The JAVA HOME environment variable is not set" 1>82
if [-d /usr/java/jdk1.6.0 07]; then
echo "Try export JAVA HOME=/usr/java/jdk1.6.0 07" 1>&2
fi
exit 1
fi

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 GETTING STARTED WITH HADOOP CORE

We are now going to see if a java program and hadoop programs
are in the path, and if they are the ones we are expecting.

The which command returns the full path to the first instance
of the program in the PATH environment variable

#

JAVA BIN="which java’

HADOOP_BIN="which hadoop"

Check for the presence of java in the path and suggest an
appropriate path setting if java is not found
if [-z "${JAVA BIN}"]; then
echo "The java binary was not found using your PATH settings" 1>82
if [-x ${JAVA HOME}/bin/java]; then
echo 'Try export PATH=${JAVA HOME}/bin' 1>&2
fi
exit 1
fi

Check for the presence of hadoop in the path and suggest an
appropriate path setting if java is not found
if [-z "${HADOOP_BIN}"]; then
echo "The hadoop binary was not found using your PATH settings" 1>82
if [-x ${HADOOP_HOME}/bin/hadoop]; then
echo 'Try export PATH=${HADOOP_HOME}/bin:${PATH}"' 1>&2
fi
exit 1
fi

Double check that the version of java installed in ${JAVA HOME}
is the one stated in the examples.
If you have installed a different version your results may vary.
#
if | ${JAVA HOME}/bin/java -version 2>&1 | grep -q 1.6.0 _07; then
(echo -n "Your JAVA HOME version of java is not the"
echo -n " 1.6.0_07 version, your results may vary from"
echo " the book examples.") 1>&2
fi

Double check that the java in the PATH is the expected version.
if | java -version 2>&1 | grep -q 1.6.0 07; then
(echo -n "Your default java version is not the 1.6.0 07 "
echo -n "version, your results may vary from the book"
echo " examples.") 1>&2
fi

www.it-ebooks.info

15

http://www.it-ebooks.info/

CHAPTER 1 GETTING STARTED WITH HADOOP CORE

Try to get the location of the hadoop core jar file

This is used to verify the version of hadoop installed

HADOOP_JAR="1s -1 ${HADOOP_ HOME}/hadoop-0.19.0-core.jar"

HADOOP_ALT JAR="1s -1 ${HADOOP HOME}/hadoop-*-core.jar"

If a hadoop jar was not found, either the installation

was incorrect or a different version installed

if [-z "${HADOOP JAR}" -a -z "${HADOOP ALT JAR}"]; then
(echo -n "Your HADOOP_HOME does not provide a hadoop"
echo -n " core jar. Your installation probably needs"
echo -n " to be redone or the HADOOP_HOME environment"
echo variable needs to be correctly set.") 1>&2
exit 1

fi

if [-z "${HADOOP_JAR}" -a ! -z "${HADOOP_ALT JAR}"]; then
(echo -n "Your hadoop version appears to be different"”
echo -n " than the 0.19.0 version, your results may vary"
echo " from the book examples.") 1>&2

fi

if [“pwd™ != ${HADOOP HOME}]; then
(echo -n 'Please change your working directory to"
echo -n " ${HADOOP_HOME}. cd ${HADOOP HOME} <Enters>") 1>8&2
exit 1

fi

echo "You are good to go"

echo -n "your JAVA HOME is set to ${JAVA HOME} which "

echo "appears to exist and be the right version for the examples."”
echo -n "your HADOOP_HOME is set to ${HADOOP_HOME} which "

echo "appears to exist and be the right version for the examples.
echo "your java program is the one in ${JAVA HOME}"

echo "your hadoop program is the one in ${HADOOP_HOME}"

echo -n "The shell current working directory is ${HADOOP_HOME} "
echo "as the examples require."

if ["${JAVA BIN}" = "${JAVA HOME}/bin/java"]; then

echo "Your PATH appears to have the JAVA HOME java program as the default java."
else

echo -n "Your PATH does not appear to provide the JAVA HOME"

echo " java program as the default java."
fi

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 GETTING STARTED WITH HADOOP CORE

if ["${HADOOP BIN}" = "${HADOOP_HOME}/bin/hadoop"]; then
echo -n "Your PATH appears to have the HADOOP_HOME"
echo " hadoop program as the default hadoop."
else
echo -n "Your PATH does not appear to provide the the HADOOP_HOME "
echo "hadoop program as the default hadoop program."
fi

exit 0
Run the script as follows:

[scyrus@localhost ~]$./check basic_env.sh

Please change your working directory to ${HADOOP_HOME}. cd =
${HADOOP_HOME} <Enter>

[scyrus@localhost ~]$ cd $HADOOP HOME
[scyrus@localhost hadoop-0.19.0]%

[scyrus@localhost hadoop-0.19.0]$ ~/check basic_env.sh

You are good to go

your JAVA HOME is set to /usr/java/jdk1.6.0_07 which appears to exist
and be the right version for the examples.

your HADOOP_HOME is set to /home/scyrus/src/hadoop-0.19.0 which appears
to exist and be the right version for the examples.

your java program is the one in /usr/java/jdk1.6.0_07

your hadoop program is the one in /home/scyrus/src/hadoop-0.19.0

The shell current working directory is /home/scyrus/src/hadoop-0.19.0 as
the examples require.

Your PATH appears to have the JAVA HOME java program as the default
Jjava.

Your PATH appears to have the HADOOP_HOME hadoop program as the default
hadoop.

Running Hadoop Examples and Tests

The Hadoop installation provides JAR files with sample programs and tests that you can
run. Before you run these, you should have verified that your installation is complete and
that your runtime environment is set up correctly. As discussed in the previous section, the

www.it-ebooks.info

17

mailto:scyrus@localhosthadoop-0.19.0
mailto:scyrus@localhosthadoop-0.19.0
http://www.it-ebooks.info/

18

CHAPTER 1

GETTING STARTED WITH HADOOP CORE

check_basic_env.sh script will help verify your installation and suggest corrections if any are

required.

Hadoop Examples

The hadoop-0.19.0-examples. jar file includes ready-to-run sample programs. Included in the
JAR file are the programs listed in Table 2-1.

Table 2-1. Examples in hadoop-0.19.0-examples.jar

Program Description

aggregatewordcount An aggregate-based MapReduce program that counts the words in the
input files

aggregatewordhist An aggregate-based MapReduce program that computes the histogram of
the words in the input files

grep A MapReduce program that counts the matches of a regular expression in
the input

join A job that performs a join over sorted, equally partitioned datasets

multifilewc A job that counts words from several files

pentomino A MapReduce tile-laying program to find solutions to pentomino problems

pi A MapReduce program that estimates pi using the Monte Carlo method

randomtextwriter A MapReduce program that writes 10GB of random textual data per node

randomwriter A MapReduce program that writes 10GB of random data per node

sleep Ajob that sleeps at each map and reduce task

sort A MapReduce program that sorts the data written by the random writer

sudoku A sudoku solver

wordcount A MapReduce program that counts the words in the input files

To demonstrate using the Hadoop examples, let’s walk through running the pi program.

Running the Pi Estimator

The pi example estimates pi using the Monte Carlo method. The web site http://www.chem.
unl.edu/zeng/joy/mclab/mcintro.html provides a good discussion of this technique. The
number of samples is the number of points randomly set in the square. The larger this value,
the more accurate the calculation of pi. For the sake of simplicity, we are going to make a very
poor estimate of pi by using very few operations.

The pi program takes two integer arguments: the number of maps and the number of
samples per map. The total number of samples used in the calculation is the number of maps
times the number of samples per map.

The map task generates a random point in a 1 X 1 area. For each sample where X?+Y? <=1,

the point is inside; otherwise, the point is outside. The map outputs a key of 1 or 0 and a value
of 1 for a point that is inside or outside the circle, diameter 1. The reduce task sums the num-
ber of inside points and the number of outside points. The ratio between this is, in the limit, pi.

www.it-ebooks.info

http://www.chem
http://www.it-ebooks.info/

CHAPTER 1 GETTING STARTED WITH HADOOP CORE

In this example, to help the job run quicker and with less output, you will choose 2 maps,
with 10 samples each, for a total of 20 samples.

To run the example, change the working directory of your shell to HADOOP_HOME (via cd
${HADOOP_HOME}) and enter the following:

jason@cloud9:~/src/hadoop-0.19.0% hadoop jar hadoop-0.19.0-examples.jar pi 2 10

The bin/hadoop jar command submits jobs to the cluster. The command-line arguments
are processed in three steps, with each step consuming some of the command-line arguments.
We'll see this in detail in Chapter 5, but for now the hadoop-0.19.0-examples. jar file contains
the main class for the application. The next three arguments are passed to this class.

Examining the Output: Input Splits, Shuffles, Spills, and Sorts

Your output will look something like that shown in Listing 2-3.

Listing 2-3. Output from the Sample Pi Program

Number of Maps = 2 Samples per Map = 10

Wrote input for Map #0

Wrote input for Map #1

Starting Job

jvm.JvmMetrics: Initializing JVM Metrics with processName=JobTracker, sessionId=
mapred.FileInputFormat: Total input paths to process : 2
mapred.FileInputFormat: Total input paths to process : 2
mapred.JobClient: Running job: job local 0001
mapred.FileInputFormat: Total input paths to process : 2
mapred.FileInputFormat: Total input paths to process : 2
mapred.MapTask: numReduceTasks: 1

mapred.MapTask: io.sort.mb = 100

mapred.MapTask: data buffer = 79691776/99614720
mapred.MapTask: record buffer = 262144/327680
mapred.JobClient: map 0% reduce 0%

mapred.MapTask: Starting flush of map output

mapred.MapTask: bufstart = 0; bufend = 32; bufvoid = 99614720
mapred.MapTask: kvstart = 0; kvend = 2; length = 327680
mapred.LocalJobRunner: Generated 1 samples

mapred.MapTask: Index: (0, 38, 38)

mapred.MapTask: Finished spill 0

mapred.LocalJobRunner: Generated 1 samples.
mapred.TaskRunner: Task 'attempt local 0001 m 000000 0' done.
mapred.TaskRunner: Saved output of task 'attempt local 0001 m 000000 0' =
to file:/home/jason/src/hadoop-0.19.0/test-mini-mr/outmapred.
MapTask: numReduceTasks: 1

mapred.MapTask: io.sort.mb = 100

mapred.JobClient: map 0% reduce 0%

mapred.LocalJobRunner: Generated 1 samples

mapred.MapTask: data buffer = 79691776/99614720

www.it-ebooks.info

19

http://www.it-ebooks.info/

CHAPTER 1 GETTING STARTED WITH HADOOP CORE

mapred.MapTask: record buffer = 262144/327680

mapred.MapTask: Starting flush of map output

mapred.MapTask: bufstart = 0; bufend = 32; bufvoid = 99614720
mapred.MapTask: kvstart = 0; kvend = 2; length = 327680
mapred.JobClient: map 100% reduce 0%

mapred.MapTask: Index: (0, 38, 38)

mapred.MapTask: Finished spill 0

mapred.LocalJobRunner: Generated 1 samples.

mapred.TaskRunner: Task 'attempt local 0001 m 000001 0' done.
mapred.TaskRunner: Saved output of task 'attempt local 0001 m 000001 0' =
to file:/home/jason/src/hadoop-0.19.0/test-mini-mr/out
mapred.ReduceTask: Initiating final on-disk merge with 2 files
mapred.Merger: Merging 2 sorted segments

mapred.Merger: Down to the last merge-pass, with 2 segments left of =
total size: 76 bytes

mapred.LocalJobRunner: reduce > reduce

mapred.TaskRunner: Task 'attempt local 0001 r 000000 0' done.
mapred.TaskRunner: Saved output of task 'attempt local 0001 r 000000 0' =
to file:/home/jason/src/hadoop-0.19.0/test-mini-mr/out
mapred.JobClient: Job complete: job_local 0001

mapred.JobClient: Counters: 11

mapred.JobClient: File Systems

mapred.JobClient: Local bytes read=314895
mapred.JobClient: Local bytes written=359635
mapred.JobClient: Map-Reduce Framework
mapred.JobClient: Reduce input groups=2
mapred.JobClient: Combine output records=0
mapred.JobClient: Map input records=2
mapred.JobClient: Reduce output records=0
mapred.JobClient: Map output bytes=64
mapred.JobClient: Map input bytes=48
mapred.JobClient: Combine input records=0
mapred.JobClient: Map output records=4
mapred.JobClient: Reduce input records=4

Job Finished in 2.322 seconds
Estimated value of PI is 3.8

Note The Hadoop projects use the Apache Foundation’s log4j package for logging. By default, all out-
put by the framework will have a leading date stamp, a log level, and the name of the class that emitted
the message. In addition, the default is only to emit log messages of level INFO or higher. For brevity, I've
removed the data stamp and log level from the output reproduced in this book.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 GETTING STARTED WITH HADOOP CORE

Of particular interest here is that the last line of output states something of the form “Esti-
mated value of Pl is...”. In that case, you know that your local installation of Hadoop is ready
for you to play with.

Now we will go through the output in Listing 2-3 chunk by chunk, so that you have an
understanding of what is going on and can recognize when something is wrong.

The first section is output by the pi estimator as it is setting up the job. Here, you
requested 2 maps and 10 samples:

Number of Maps = 2 Samples per Map = 10
Wrote input for Map #0
Wrote input for Map #1

The framework has taken over at this point and sets up input splits (each fragment of
input is called an input split) for the map tasks.

The following line provides the job ID, which you could use to refer to this job with the
job control tools:

Running job: job local 0001
The following lines let you know that there are two input files and two input splits:

jvm.JvmMetrics: Initializing JVM Metrics with processName=JobTracker, sessionld=
mapred.FileInputFormat: Total input paths to process : 2

mapred.FileInputFormat: Total input paths to process : 2

mapred.JobClient: Running job: job local 0001

mapred.FileInputFormat: Total input paths to process : 2

mapred.FileInputFormat: Total input paths to process : 2

The map output key/value pairs are partitioned, and then the partitions are sorted, which
is referred to as the shuffle. The file created for each sorted partition is called a spill. There will
be one spill file for each configured reduce task. For each reduce task, the framework will pull
its spill from the output of each map task, and merge-sort these spills. This step is referred to
as the sort.

In Listing 2-3, the next block provides detailed information on the map task and shuffle
process that was run. The framework is expecting to produce output for one reduce task
(numReduceTasks: 1), which receives all of the map task output records. Also, it expects that
the map outputs have been partitioned and sorted and stored in the file system (Finished
spill 0). If there were multiple reduce tasks specified, you would see a Finished spill N for
each reduce task. The rest of the lines primarily have to do with output buffering and may be
ignored.

Next, you see the following:

mapred.MapTask: numReduceTasks: 1

mapred.MapTask: Finished spill 0
mapred.LocalJobRunner: Generated 1 samples.

mapred.TaskRunner: Task 'attempt local 0001 m 000000 0' =
done.mapred.TaskRunner: Saved output of task =
"attempt_local 0001 m 000000 O' =

to file:/home/jason/src/hadoop-0.19.0/test-mini-mr/out

www.it-ebooks.info

21

http://www.it-ebooks.info/

22

CHAPTER 1 GETTING STARTED WITH HADOOP CORE

Generated 1 samples is the output of the ending status of the map job. The Hadoop frame-
work is telling you that the first map task is done via Task 'attempt local 0001 m_ 000000 O'
done, and that the output was saved to the default file system at file:/home/jason/src/
hadoop-0.19.0/test-mini-mr/out.

The following block handles the sort:

mapred.ReduceTask: Initiating final on-disk merge with 2 files
mapred.Merger: Merging 2 sorted segments

mapred.Merger: Down to the last merge-pass, with 2 segments left of =
total size: 76 bytes

Listing 2-3 has exactly two map tasks, per your command-line instructions to the task,
and one reduce task, per the job design.. With a single reduce task, each map task’s output
is placed into a single partition and sorted. This results in two files, or spills, as input to the
framework sort phase. Each reduce task in a job will have its output go to the output directory
and be named part-0N, where N is the ordinal number starting from zero of the reduce task.
The numeric portion of the name is traditionally five digits, with leading zeros as needed.

The next block describes the single reduce task that will be run:

mapred.LocalJobRunner: reduce > reduce

mapred.TaskRunner: Task 'attempt local 0001 r 000000 0' done.
mapred.TaskRunner: Saved output of task 'attempt local 0001 r 000000 0' to =
file:/home/jason/src/hadoop-0.19.0/test-mini-mr/out

The output of this reduce task is written to attempt local 0001 r 000000 0, and then will
be renamed to part-00000 in the job output directory.
The next block of output provides summary information about the completed job:

mapred.JobClient: Job complete: job_local 0001
mapred.JobClient: Counters: 11
mapred.JobClient: File Systems

mapred.JobClient: Local bytes read=314895
mapred.JobClient: Local bytes written=359635
mapred.JobClient: Map-Reduce Framework
mapred.JobClient: Reduce input groups=2
mapred.JobClient: Combine output records=0
mapred.JobClient: Map input records=2
mapred.JobClient: Reduce output records=0
mapred.JobClient: Map output bytes=64
mapred.JobClient: Map input bytes=48
mapred.JobClient: Combine input records=0
mapred.JobClient: Map output records=4
mapred.JobClient: Reduce input records=4

The final two lines are printed by the PiEstimator code, not the framework.

Job Finished in 2.322 seconds
Estimated value of PI is 3.8

www.it-ebooks.info

http://www.it-ebooks.info/

Hadoop Tests

CHAPTER 1 GETTING STARTED WITH HADOOP CORE

Hadoop provides a JAR that contains tests hadoop-0.19.0-test.jar, which are primarily for
testing the distributed file system or MapReduce jobs on top of the distributed file system.

Table 2-2 lists the tests provided

Table 2-2. Tests in hadoop-0.19.0-test.jar

Test Description

DFSCIOTest Distributed I/0 benchmark of 1ibhdfs, a shared library that
provides HDFS file services for C/C++ applications

DistributedFSCheck Distributed checkup of the file system consistency

TestDFSIO Distributed I/0 benchmark

clustertestdfs A pseudo distributed test for the distributed file system

dfsthroughput Measures HDFS throughput

filebench Benchmark SequenceFileInputFormat and SequenceFileOut-
putFormat, with BLOCK compression, RECORD compression, and
no compression; and TextInputFormat and TextOutputFormat,
compressed and uncompressed

loadgen Generic MapReduce load generator

mapredtest A MapReduce test check

mrbench A MapReduce benchmark that can create many small jobs

nnbench A benchmark that stresses the NameNode

testarrayfile A test for flat files of binary key/value pairs

testbigmapoutput A MapReduce program that works on a very big nonsplittable
file and does an identity MapReduce

testfilesystem A test for file system read/write

testipc A test for Hadoop Core interprocess communications

testmapredsort A MapReduce program that validates the MapReduce frame-
work’s sort

testrpc A test for remote procedure calls

testsequencefile A test for flat files of binary key/value pairs

testsequencefileinputformat
testsetfile
testtextinputformat
threadedmapbench

A test for sequence file input format
A test for flat files of binary key/value pairs
A test for text input format

A MapReduce benchmark that compares the performance of
maps with multiple spills over maps with one spill

www.it-ebooks.info

23

http://www.it-ebooks.info/

24

CHAPTER 1 GETTING STARTED WITH HADOOP CORE

Troubleshooting

The issues that can cause problems in running the examples in this book will most likely be
due to environment differences. You may also experience problems if you have space short-
ages on your computer.

The following environment variables are important:

JAVA _HOME: This is the root of the Java installations. All of the examples assume that

the JAVA_HOME environment variable contains the root of the Sun JDK 1.6_07 installation,
which is expected to be installed into the directory /usr/java/jdk1.6.0 07. So, this envi-
ronment variable is set as follows: export JAVA HOME=/usr/java/jdk1.6.0 07.

HADOOP_HOME: This is the root of the Hadoop installations. You should have unpacked the
hadoop-0.19.0.tar.gz downloaded file with a parent directory of ~/src, such that the
Hadoop program is available as ~/src/hadoop-0.19.0/bin/hadoop. The HADOOP_HOME envi-
ronment variable is expected to be set to the root of the Hadoop installation, which in
the examples is ~/src/hadoop-0.19.0. This environment variable is set as follows: export
HADOOP_HOME=~/sxc/hadoop-0.19.0.

PATH: The user’s path is expected to have ${JAVA HOME}/bin and ${HADOOP_HOME}/bin as the
first two elements. This environment variable is set as follows: export PATH=${JAVA HOME}/
bin:${HADOOP_HOME}/bin:${PATH}.

For Windows users, C:\cygwin\bin;C:\cygwin\usr\bin must be added to the system
environment Path variable, or the Hadoop Core servers will not start. You can set this system
variable through the System Control Panel. In the System Properties dialog box, click the
Advanced tab, and then click the Environment Variables button. In the System Variables
section of the Environment Variables dialog box, select Path, click Edit, and add the follow-
ing string:

C:\cygwin\bin;C:\cygwin\usr\bin

The semicolon (;) is the separator character.

While not critical, the current working directory for the shell session used for running the
examples is expected to be ${HADOOP_HOME}.

If you see the message java.lang.OutOfMemoryError: Java heap space in your output,
your computer either has insufficient free RAM or the Java heap is set too small. The PiEs-
timator example with 2 maps and 100 samples will run with a Java Virtual Machine (JVM)
maximum heap size of 128MB (-Xmx128m). To force this, you may execute the following:

HADOOP_OPTS="-Xmx128m" hadoop jar hadoop-0.19.0-examples.jar pi 2 100

Summary

Hadoop Core provides a robust framework for distributing tasks across large numbers of
general-purpose computers. Application developers just need to write the map and reduce
methods for their data, and use one of the existing input and output formats. The framework
provides a rich set of input and output handlers, and you can create custom handlers, if
necessary.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 GETTING STARTED WITH HADOOP CORE

Getting over the installation hurdle can be difficult, but it is getting simpler as more
people and organizations understand the issues and refine the processes and procedures.
Cloudera (http://www.cloudera.com) now provides a self-installing Hadoop distribution in
RPM format.

New features and functionality are being tried. Read the information on the http://
hadoop.apache.org/core web site, join the mailing lists referenced there (to join the Core user
mailing list, send an e-mail to core-user-subscribe@hadoop.apache.org), and have fun writing
your applications.

The chapters to come will guide you through the trouble spots as you develop your own
applications with Hadoop.

www.it-ebooks.info

25

http://www.cloudera.com
http://hadoop.apache.org/core
http://hadoop.apache.org/core
mailto:core-user-subscribe@hadoop.apache.org
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

The Basics of a MapReduce Job

This chapter walks you through what is involved in a MapReduce job. You will be able to write
and run simple stand-alone MapReduce programs by the end of the chapter.

The examples in this chapter assume the setup as described in Chapter 1. They should be
explicitly run in a special local mode configuration for executing on a single machine, with no
requirements for a running the Hadoop Core framework. This single machine (local) configu-
ration is also ideal for debugging and for unit tests. The code for the examples is available from
this book’s details page at the Apress web site (http://www.apress.com). The downloadable
code also includes a JAR file you can use to run the examples.

Let’s start by examining the parts that make up a MapReduce job.

The Parts of a Hadoop MapReduce Job

The user configures and submits a MapReduce job (or just job for short) to the framework,
which will decompose the job into a set of map tasks, shuffles, a sort, and a set of reduce tasks.
The framework will then manage the distribution and execution of the tasks, collect the out-
put, and report the status to the user.

The job consists of the parts shown in Figure 2-1 and listed in Table 2-1.

Table 2-1. Parts of a MapReduce Job

Part Handled By
Configuration of the job User

Input splitting and distribution Hadoop framework
Start of the individual map tasks with their input split Hadoop framework
Map function, called once for each input key/value pair User

Shuffle, which partitions and sorts the per-map output Hadoop framework
Sort, which merge sorts the shuffle output for each partition of all map Hadoop framework
outputs

Start of the individual reduce tasks, with their input partition Hadoop framework
Reduce function, which is called once for each unique input key, with all of User

the input values that share that key

Collection of the output and storage in the configured job output directory, Hadoop framework
in N parts, where N is the number of reduce tasks

27

www.it-ebooks.info

http://www.apress.com
http://www.it-ebooks.info/

28 CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

Provided by Hadoop
Provided by User Framework

Joh Configuration »
Input Splitting &

Distribution
Input Format

Start of Individual
Input Locations /V Map Tasks
L1
Map Function ¢

\

A

Number of Shuffle, Partition/Sort
Reduce Tasks per Map Output
v
Merge Sort for
Output Map Outputs for Each
Reduce Task

Key Type \
Output ¢
Value Type Start of Individual

Reduce Tasks

Output Format ¢
Output Location \

Collection of
Final Output

Figure 2-1. Parts of a MapReduce job

The user is responsible for handling the job setup, specifying the input location(s), speci-
fying the input, and ensuring the input is in the expected format and location. The framework
is responsible for distributing the job among the TaskTracker nodes of the cluster; running the
map, shuffle, sort, and reduce phases; placing the output in the output directory; and inform-
ing the user of the job-completion status.

All the examples in this chapter are based on the file MapReduceIntro. java, shown in
Listing 2-1. The job created by the code in MapReduceIntro.java will read all of its textual
input line by line, and sort the lines based on that portion of the line before the first tab char-
acter. If there are no tab characters in the line, the sort will be based on the entire line. The
MapReduceIntro.java file is structured to provide a simple example of configuring and running
a MapReduce job.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

Listing 2-1. MapReducelntro.java

package com.apress.hadoopbook.examples.ch2;

import

import
import
import
import
import
import
import
import
import
import

java.io.IOException;

org.apache.hadoop.io.Text;
org.apache.hadoop.mapred.FileInputFormat;
org.apache.hadoop.mapred.FileOutputFormat;
org.apache.hadoop.mapred.JobClient;
org.apache.hadoop.mapred.JobConf;
org.apache.hadoop.mapred.KeyValueTextInputFormat;
org.apache.hadoop.mapred.RunningJob;
org.apache.hadoop.mapred.lib.IdentityMapper;
org.apache.hadoop.mapred.lib.IdentityReducer;
org.apache.log4j.Logger;

/** A very simple MapReduce example that reads textual input where
* each record is a single line, and sorts all of the input lines into
a single output file.

The

records are parsed into Key and Value using the first TAB

line is the Key. *

@author Jason Venner

*/
public

*
*
*
* character as a separator. If there is no TAB character the entire
*
*
*
*

class MapReduceIntro {

protected static Logger logger = Logger.getlogger(MapReduceIntro.class);

/**

*

*

*

*/

Configure and run the MapReduceIntro job.

@param args
Not used.

public static void main(final String[] args) {

try {

/** Construct the job conf object that will be used to submit this job
* to the Hadoop framework. ensure that the jar or directory that

* contains MapReduceIntroConfig.class is made available to all of the
* Tasktracker nodes that will run maps or reduces for this job.

*/

final JobConf conf = new JobConf(MapReducelIntro.class);

www.it-ebooks.info

29

http://www.it-ebooks.info/

30

CHAPTER 2

THE BASICS OF A MAPREDUCE JOB

/**
* Take care of some housekeeping to ensure that this simple example
* job will run
*/
MapReduceIntroConfig.
exampleHouseKeeping(conf,
MapReduceIntroConfig.getInputDirectory(),
MapReduceIntroConfig.getOutputDirectory());
/**
This section is the actual job configuration portion /**
Configure the inputDirectory and the type of input. In this case
we are stating that the input is text, and each record is a
single line, and the first TAB is the separator between the key
and the value of the record.

EE G SR

*/
conf.setInputFormat(KeyValueTextInputFormat.class);
FileInputFormat.setInputPaths(conf,
MapReduceIntroConfig.getInputDirectory());

/** Inform the framework that the mapper class will be the
* {@link IdentityMapper}. This class simply passes the

* input Key Value pairs directly to its output, which in
* our case will be the shuffle.

*/

conf.setMapperClass(IdentityMapper.class);

/** Configure the output of the job to go to the output
* directory. Inform the framework that the Output Key
and Value classes will be {@link Text} and the output

file format will {@link TextOutputFormat}. The
TextOutput format class joins produces a record of
output for each Key,Value pair, with the following
format. Formatter.format("%s\t%s%n", key.toString(),
value.toString());.

In addition indicate to the framework that there will be
1 reduce. This results in all input keys being placed
into the same, single, partition, and the final output
being a single sorted file.

* X X X X X X X X ¥ ¥

*/
FileOutputFormat.setOutputPath(conf,
MapReduceIntroConfig.getOutputDirectory());
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(Text.class);
conf.setNumReduceTasks(1);

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

/** Inform the framework that the reducer class will be the {@link
* IdentityReducer}. This class simply writes an output record key,
* value record for each value in the key, valueset it receives as
* input. The value ordering is arbitrary.
*/
conf.setReducerClass(IdentityReducer.class);

logger .info("Launching the job.");
/** Send the job configuration to the framework and request that the
* job be run.

*/
final RunningJob job = JobClient.runJob(conf);
logger.info("The job has completed.");
if (!job.isSuccessful()) {
logger.error("The job failed.");
System.exit(1);
}
logger.info("The job completed successfully.");
System.exit(0);
} catch (final IOException e) {
logger.error("The job has failed due to an IO Exception”, e);
e.printStackTrace();
}
}
}
Input Splitting

For the framework to be able to distribute pieces of the job to multiple machines, it needs to
fragment the input into individual pieces, which can in turn be provided as input to the indi-
vidual distributed tasks. Each fragment of input is called an input split. The default rules for
how input splits are constructed from the actual input files are a combination of configura-
tion parameters and the capabilities of the class that actually reads the input records. These
parameters are covered in Chapter 6.

An input split will normally be a contiguous group of records from a single input file, and
in this case, there will be at least N input splits, where N is the number of input files. If the
number of requested map tasks is larger than this number, or the individual files are larger
than the suggested fragment size, there may be multiple input splits constructed of each input
file. The user has considerable control over the number of input splits. The number and size of
the input splits strongly influence overall job performance.

A Simple Map Function: IdentityMapper

The Hadoop framework provides a very simple map function, called IdentityMapper. It
is used in jobs that only need to reduce the input, and not transform the raw input. We

www.it-ebooks.info

31

http://www.it-ebooks.info/

32

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

are going to examine the code of the IdentityMapper class, shown in Listing 2-2, in this
section. If you have downloaded a Hadoop Core installation and followed the instruc-
tions in Chapter 1, this code is also available in the directory where you installed it,
${HADOOP_HOME}/src/mapred/org/apache/hadoop/mapred/lib/IdentityMapper.java

Listing 2-2. IdentityMapper.java

/x*

Licensed to the Apache Software Foundation (ASF) under one
or more contributor license agreements. See the NOTICE file
distributed with this work for additional information
regarding copyright ownership. The ASF licenses this file
to you under the Apache License, Version 2.0 (the
"License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

* X XK X X XK X X X X X X X X ¥

*
~

package org.apache.hadoop.mapred.lib;
import java.io.IOException;

import org.apache.hadoop.mapred.Mapper;

import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reporter;

import org.apache.hadoop.mapred.MapReduceBase;

/** Implements the identity function, mapping inputs directly to outputs. */
public class IdentityMapper<K, V>
extends MapReduceBase implements Mapper<K, V, K, V> {

/** The identify function. Input key/value pair is written directly to
* output.*/
public void map(K key, V val,
OutputCollector<K, V> output, Reporter reporter)

throws IOException {

output.collect(key, val);
}

}

www.it-ebooks.info

http://www.apache.org/licenses/LICENSE-2.0
http://www.it-ebooks.info/

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

The magic piece of code is the line output.collect(key, val), which passes a key/value
pair back to the framework for further processing.

All map functions must implement the Mapper interface, which guarantees that the map
function will always be called with a key. The key is an instance of a WritableComparable
object, a value that is an instance of a Writable object, an output object, and a reporter. For
now, just remember that the reporter is useful. Reporters are discussed in more detail in the
“Creating a Custom Mapper and Reducer” section later in this chapter.

Note The code for the Mapper. java and Reducer . java interfaces is available from this book’s details
page at the Apress web site (http://www.apress.com), along with the rest of the downloadable code for
this book.

The framework will make one call to your map function for each record in your input.
There will be multiple instances of your map function running, potentially in multiple Java
Virtual Machines (JVMs), and potentially on multiple machines. The framework coordinates
all of this for you.

COMMON MAPPERS

One common mapper drops the values and passes only the keys forward:

public void map(K key,
V val,
OutputCollector<K, V> output,
Reporter reporter)
throws IOException {

output.collect(key, null); /** Note, no value, just a null */

Another common mapper converts the key to lowercase:

/** put the keys in lower case. */
public void map(Text key,
V val,
OutputCollector<Text, V> output,
Reporter reporter)
throws IOException {

Text lowerCaseKey = new Text(key.toString().toLowerCase());
output.collect(lowerCaseKey, value);

www.it-ebooks.info

33

http://www.apress.com
http://www.it-ebooks.info/

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

A Simple Reduce Function: IdentityReducer

The Hadoop framework calls the reduce function one time for each unique key. The frame-
work provides the key and the set of values that share that key.

The framework-supplied class IdentityReducer is a simple example that produces one
output record for every value. Listing 2-3 shows this class.

Listing 2-3. IdentityReducer.java

/**

Licensed to the Apache Software Foundation (ASF) under one
or more contributor license agreements. See the NOTICE file
distributed with this work for additional information
regarding copyright ownership. The ASF licenses this file
to you under the Apache License, Version 2.0 (the
"License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

* X X X X XK X X X X X X X X X

*
~

package org.apache.hadoop.mapred.lib;

import java.io.IOException;

import java.util.Iterator;

import org.apache.hadoop.mapred.Reducer;

import org.apache.hadoop.mapred.OutputCollector;

import org.apache.hadoop.mapred.Reporter;

import org.apache.hadoop.mapred.MapReduceBase;

/** Performs no reduction, writing all input values directly to the output. */

public class IdentityReducer<K, V>
extends MapReduceBase implements Reducer<K, V, K, V> {

www.it-ebooks.info

http://www.apache.org/licenses/LICENSE-2.0
http://www.it-ebooks.info/

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

/** Writes all keys and values directly to output. */
public void reduce(K key, Iterator<V> values,
OutputCollector<K, V> output, Reporter reporter)
throws IOException {
while (values.hasNext()) {
output.collect(key, values.next());

}
}

If you require the output of your job to be sorted, the reducer function must pass the key
objects to the output.collect() method unchanged. The reduce phase is, however, free to
output any number of records, including zero records, with the same key and different values.
This particular constraint is also why the map tasks may be multithreaded, while the reduce
tasks are explicitly only single-threaded.

COMMON REDUCERS

A common reducer drops the values and passes only the keys forward:

public void map(K key,
V val,
OutputCollector<K, V> output,
Reporter reporter)
throws IOException {

output.collect(key, null);

Another common reducer provides count information for each key:

protected Text count = new Text();
/** Writes all keys and values directly to output. */
public void reduce(K key, Iterator<V> values,
OutputCollector<K, V> output, Reporter reporter)

throws IOException {

int 1 = 0;

while (values.hasNext()) {

i++

¥

count.set(+1);

output.collect(key, count);

www.it-ebooks.info

35

http://www.it-ebooks.info/

36

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

Configuring a Job

All Hadoop jobs have a driver program that configures the actual MapReduce job and submits
it to the Hadoop framework. This configuration is handled through the JobConf object. The
sample class MapReduceIntro provides a walk-through for using the JobConf object to config-
ure and submit a job to the Hadoop framework for execution. The code relies on a class called
MapReduceIntroConfig, shown in Listing 2-4, which ensures that the input and output directo-
ries are set up and ready.

Listing 2-4. MapReducelntroConfig.java

package com.apress.hadoopbook.examples.ch2;

import java.io.IOException;
import java.util.Formatter;
import java.util.Random;

import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.FileStatus;

import org.apache.hadoop.fs.FileSystem;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.mapred.JobConf;

import org.apache.log4j.Logger;

/** A simple class to handle the housekeeping for the MapReduceIntro
* example job.

<p>

This job explicitly configures the job to run, locally and without a
distributed file system, as a stand alone application.

</p>

<p>

The input is read from the directory /tmp/MapReduceIntroInput and
the output is written to the directory

/tmp/MapReduceIntroOutput. If the directory
/tmp/MapReduceIntroInput is missing or empty, it is created and
some input data files generated. If the directory
/tmp/MapReduceIntroOutput is present, it is removed.

</p>

¥ K X K X X K X K X X X X X X ¥

@author Jason Venner
*/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

public class MapReduceIntroConfig {
/**
* Log4j is the recommended way to provide textual information to the user
* about the job.
*/
protected static Logger logger =
Logger.getLogger (MapReduceIntroConfig.class);

/** Some simple defaults for the job input and job output. */
/**
* This is the directory that the framework will look for input files in.
* The search is recursive if the entry is a directory.
*/
protected static Path inputDirectory =
new Path("file:///tmp/MapReduceIntroInput");
/**
* This is the directory that the job output will be written to. It must not
* exist at Job Submission time.
*/
protected static Path outputDirectory =
new Path("file:///tmp/MapReduceIntroOutput");

Ve
Ensure that there is some input in the <code>inputDirectory</code>,

the <code>outputDirectory</code> does not exist and that this job will
be run as a local stand alone application.

The {@link JobConf} object that is required for doing file
system access.

@param inputDirectory

The directory the input will reside in.

* @param outputDirectory

*
*
*
*
* @param conf
*
*
*
*

* The directory that the output will reside in
* @throws IOException
*/

protected static void exampleHouseKeeping(final JobConf conf,
final Path inputDirectory, final Path outputDirectory)
throws IOException {
/**
* Ensure that this job will be run stand alone rather than relying on
* the services of an external JobTracker.
*/
conf.set("mapred.job.tracker", "local");

www.it-ebooks.info

37

file:///tmp/MapReduceIntroInput
file:///tmp/MapReduceIntroOutput
http://www.it-ebooks.info/

38 CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

/** Ensure that no global file system is required to run this job. */
conf.set("fs.default.name", "file:///");
/**
* Reduce the in ram sort space, so that the user does not need to
* increase the jvm memory size. This sets the sort space to 1 Mbyte,
* which is very small for a real job.
*/
conf.setInt("io.sort.mb", 1);
/**
* Generate some sample input if the <code>inputDirectory</code> is
* empty or absent.
*/
generateSampleInputIf(conf, inputDirectory);

Vo

* Remove the file system item at <code>outputDirectory</code> if it

* exists.

*/

if (!removeIf(conf, outputDirectory)) {
logger.error("Unable to remove " + outputDirectory + "job aborted");
System.exit(1);

}

}
Vil

* Generate <code>fileCount</code> files in the directory

* <code>inputDirectory</code>, where the individual lines of the file
* are a random integer TAB file name.

*

* The file names will be file-N where N is between 0 and

* <code>fileCount</code> - 1. There will be between 1 and

* <code>maxLines</code> + 1 lines in each file.

*

* @param fs

* The file system that <code>inputDirectory</code> exists in.
* @param inputDirectory

* The directory to create the files in. This directory must
* already exist.

* @param fileCount

* The number of files to create.

* @param maxLines

* The maximum number of lines to write to the file.
* @throws IOException
*/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

protected static void generateRandomFiles(final FileSystem fs,
final Path inputDirectory, final int fileCount, final int maxLines)
throws IOException {

final Random random = new Random();
logger .info("Generating 3 input files of random data," +
"each record is a random number TAB the input file name");

for (int file = 0; file < fileCount; file++) {

final Path outputFile = new Path(inputDirectory, "file-" + file);

final String qualifiedOutputFile = outputFile.makeQualified(fs)
.toUri().toASCIIString();

FSDataOutputStream out = null;

try {
/**
* This is the standard way to create a file using the Hadoop
* Framework. An error will be thrown if the file already
* exists.
*/
out = fs.create(outputFile);

final Formatter fmt = new Formatter(out);
final int lineCount = (int) (Math.abs(random.nextFloat())
* maxLines + 1);
for (int line = 0; line < lineCount; line++) {
fmt. format ("%d\t%s%n", Math.abs(random.nextInt()),
qualifiedOutputFile);

}
fmt.flush();

} finally {
/x*
* It is very important to ensure that file descriptors are
* closed. The distributed file system code can run out of file
* descriptors and the errors generated in that case are
* misleading.
*/
out.close();

www.it-ebooks.info

39

http://www.it-ebooks.info/

40 CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

/**

This method will generate some sample input, if the
<code>inputDirectory</code> is missing or empty.

This method also demonstrates some of the basic APIs for interacting
with file systems and files. Note: the code has no particular knowledge
of the type of file system.

@param conf
The Job Configuration object, used for acquiring the
{@link FileSystem} objects.

* @param inputDirectory

* X X X X X X X X X

* The directory to ensure has sample files.
* @throws IOException
*/

protected static void generateSampleInputIf(final JobConf conf,
final Path inputDirectory) throws IOException {

boolean inputDirectoryExists;
final FileSystem fs = inputDirectory.getFileSystem(conf);

if ((inputDirectoryExists = fs.exists(inputDirectory))
88 !isEmptyDirectory(fs, inputDirectory)) {
if (logger.isDebugEnabled()) {

logger
.debug("The inputDirectory "
+ inputDirectory
+ " exists and is either a"
+ " file or a non empty directory");
}
return;
}
Vaki

* We should only get here if <code>inputDirectory</code> does not
* exist, or is an empty directory.
*/
if (!inputDirectoryExists) {
if (!fs.mkdirs(inputDirectory)) {
logger.error("Unable to make the inputDirectory "
+ inputDirectory.makeQualified(fs) + " aborting job");
System.exit(1);

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

final int fileCount = 3;
final int maxLines = 100;
generateRandomFiles(fs, inputDirectory, fileCount, maxlLines);

}

/**
* bean access getter to the {@link #inputDirectory} field.
ES
* @return the value of inputDirectory.
*/
public static Path getInputDirectory() {
return inputDirectory;

}

/**
* bean access getter to the {@link outputDirectory} field.
*
* @return the value of outputDirectory.
*/
public static Path getOutputDirectory() {
return outputDirectory;

}

Vo
* Determine if a directory has any non zero files in it or its descendant

* directories.
*

* @param fs

* The {@link FileSystem} object to use for access.

* @param inputDirectory

* The root of the directory tree to search

* @return true if the directory is missing or does not contain at least one
* non empty file.

* @throws IOException

*/

private static boolean isEmptyDirectory(final FileSystem fs,
final Path inputDirectory) throws IOException {

Vaki
* This is the standard way to read a directory's contents. This can be
* quite expensive for a large directory.

*/
final FileStatus[] statai = fs.listStatus(inputDirectory);

www.it-ebooks.info

41

http://www.it-ebooks.info/

42 CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

/**

* This method returns null under some circumstances, in particular if
* the directory does not exist.
*/
if ((statai == null) || (statai.length == 0)) {
if (logger.isDebugEnabled()) {
logger.debug(inputDirectory.makeQualified(fs).toUri()
+ " is empty or missing");
}
return true;
}
if (logger.isDebugEnabled()) {
logger.debug(inputDirectory.makeQualified(fs).toUri()
+ " is not empty");
}
/** Try to find a file in the top level that is not empty. */
for (final FileStatus status : statai) {
if (!status.isDir() & (status.getlen() != 0)) {
if (logger.isDebugEnabled()) {
logger.debug("A non empty file
+ status.getPath().makeQualified(fs).toUri()

+ " was found");
return false;

}
}

/** Recurse if there are sub directories,

* looking for a non empty file.

*/

for (final FileStatus status : statai) {
if (status.isDir() && isEmptyDirectory(fs, status.getPath())) {

continue;
}
Vak
* If status is a directory it must not be empty or the previous
* test block would have triggered.
*/
if (status.isDir()) {
return false;

}

}

Vak

* Only get here if no non empty files were found in the entire subtree

* of <code>inputPath</code>.

*/

return true;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

/**

Ensure that the <code>outputDirectory</code> does not exist.

<p>

The framework requires that the output directory not be present at job
submission time.

</p>

<p>

This method also demonstrates how to remove a directory using the
{@link FileSystem} API.

</p>

@param conf
The configuration object. This is needed to know what file
systems and file system plugins are being used.

@param outputDirectory

The directory that must be removed if present.

@return true if the the <code>outputPath</code> is now missing, or
false if the <code>outputPath</code> is present and was unable
to be removed.

@throws IOException

If there is an error loading or configuring the FileSystem
plugin, or other IO error when attempting to access or remove
the <code>outputDirectory</code>.

¥ OX X K X K X X X X K X XK X X KX X XK X X X X ¥

*/
protected static boolean removeIf(final JobConf conf,
final Path outputDirectory) throws IOException {

/** This is standard way to acquire a FileSystem object. */
final FileSystem fs = outputDirectory.getFileSystem(conf);

Vioio
* It the <code>outputDirectory</code> does not exist this method is
* done.
*/
if (!fs.exists(outputDirectory)) {
if (logger.isDebugEnabled()) {
logger .debug("The output directory does not exist,"

n

+ " no removal needed.");

}

return true;

}

Vak

* The getFileStatus command will throw an IOException if the path does
* not exist.

*/

www.it-ebooks.info

43

http://www.it-ebooks.info/

44 CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

final FileStatus status = fs.getFileStatus(outputDirectory);
logger.info("The job output directory "

+ outputDirectory.makeQualified(fs) + " exists"

+ (status.isDir() ? " and is not a directory" : "")

+ " and will be removed");

/**
* Attempt to delete the file or directory. delete recursively just in
* case <code>outputDirectory</code> is a directory with
* sub-directories.
*/
if (!fs.delete(outputDirectory, true)) {

logger.error("Unable to delete the configured output directory "

+ outputDirectory);
return false;

}

/** The outputDirectory did exist, but has now been removed. */
return true;

}

Vs

* bean access setter to the {@link inputDirectory} field.

*

* @param inputDirectory

* The value to set inputDirectory to.

*/

public static void setInputDirectory(final Path inputDirectory) {
MapReduceIntroConfig.inputDirectory = inputDirectory;

}

Vass

* bean access setter for the {@link outpuDirectory field.

*

* @param outputDirectory

* The value to set outputDirectory to.

*/

public static void setOutputDirectory(final Path outputDirectory) {
MapReduceIntroConfig.outputDirectory = outputDirectory;

}

First, you must create a JobConf object. It is good practice to pass in a class that is con-
tained in the JAR file that has your map and reduce functions. This ensures that the framework
will make the JAR available to the map and reduce tasks run for your job.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

JobConf conf = new JobConf(MapReduceIntro.class);

Now that you have a JobConfig object, conf, you need to set the required parameters for
the job. These include the input and output directory locations, the format of the input and
output, and the mapper and reducer classes.

All jobs will have a map phase, and the map phase is responsible for handling the job
input. The configuration of the map phase requires you to specify the input locations and the
class that will produce the key/value pairs from the input, the mapper class, and potentially,
the suggested number of map tasks, map output types, and per-map task threading, as listed
in Table 2-2.

Table 2-2. Map Phase Configuration

Element Required? Default
Input path(s) Yes

Class to read and convert the input path elements to key/ Yes
value pairs

Map output key class No Job output key class
Map output value class No Job output value class
Class supplying the map function Yes

Suggested minimum number of map tasks No Cluster default
Number of threads to run in each map task No 1

Most Hadoop Core jobs have their input as some set of files, and these files are either a
textual key/value pair per line or a Hadoop-specific binary file format that provides serialized
key/value pairs. The class that handles the key/value text input is KeyValueTextInputFormat.
The class that handles the Hadoop-specific binary file is SequenceFileInputFormat.

Specifying Input Formats

The Hadoop framework provides a large variety of input formats. The major distinctions
are between textual input formats and binary input formats. The following are the available
formats:

* KeyValueTextInputFormat: Key/value pairs, one per line.
e TextInputFormant: The key is the line number, and the value is the line.

e NLineInputFormat: Similar to KeyValueTextInputFormat, but the splits are based on N
lines of input rather than Y bytes of input.

e MultiFileInputFormat: An abstract class that lets the user implement an input format
that aggregates multiple files into one split.

e SequenceFIleInputFormat: The input file is a Hadoop sequence file, containing serial-
ized key/value pairs.

KeyValueTextInputFormat and SequenceFileInputFormat are the most commonly used
input formats. The examples in this chapter use KeyValueTextInputFormat, as the input files
are human-readable.

www.it-ebooks.info

45

http://www.it-ebooks.info/

46

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

The following block of code informs the framework of the type and location of the
job input:

JHk

* This section is the actual job configuration portion /**

* Configure the inputDirectory and the type of input. In this case

* we are stating that the input is text, and each record is a

* single line, and the first TAB is the separator between the key

* and the value of the record.

*/
conf.setInputFormat(KeyValueTextInputFormat.class);
FileInputFormat.setInputPaths(conf,

MapReduceIntroConfig.getInputDirectory());

The line conf.setInputFormat(KeyValueTextInputFormat.class) informs the framework
that all of the files used for input will be textual key/value pairs, one per line.

THE KEYVALUETEXTINPUTFORMAT CLASS

The KeyValueTextInputFormat format reads a text file and splits it into records, one record per line. The
records are further divided into key/value pairs by splitting the line at the first tab character. If there is no tab
character in the line, the entire line is the key, and the value object will contain a zero-length string. There is
no way to distinguish an input line that contains a single tab as the last character and the same line without a
trailing tab character.

Suppose that an input file has the following three lines, where TAB is replaced by an US-ASCII horizontal
tab character (0x09):

key1TABvalue1
key2
key3TABvalue3TABvalue4

Your mapper would be called with the following key/value pairs:

e key1, valuel
° key2
* key3, value3TABvalue4

The actual order in which the keys are passed to your map function is indeterminate. In a real-world
example, the actual machine that ran the map that got a given key would be indeterminate. It is very likely,
however, that sets of contiguous records in the input will be processed by the same map task, as each task is
given one input split from which to work.

The input bytes are considered to be in the UTF-8 character set. As of Hadoop 0.18.2, there
is no configurable way to change the character set interpretation of the input files handled by the
KeyValueTextInputFormat class.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

Now that the framework knows where to look for the input files and the class to use to
generate key/value pairs from the input files, you need to inform the framework which map
function to use.

/** Inform the framework that the mapper class will be the {@link
* IdentityMapper}. This class simply passes the input key-value
* pairs directly to its output, which in our case will be the

* shuffle.

*/

conf.setMapperClass(IdentityMapper.class);

Note The simple example in this chapter does not use the optional configuration parameters. If the map
function needs to output a different key or value class than the job output, those classes may be set here. In
addition, Hadoop supports threading for map functions. This is ideal if the map function is not able to fully
utilize the resources allocated for the map task. A simple case of where this might be beneficial is a map
task that performs DNS lookups on the IP addresses in a server log.

Setting the Output Parameters

The framework requires that the output parameters be configured, even if the job will not
produce any output. The framework will collect the output from the specified tasks (either the
output of the map tasks for a MapReduce job that did not include reduce tasks or the output
of the job’s reduce tasks) and place them into the configured output directory. To avoid issues
with file name collisions when placing the task output into the output directory, the frame-
work requires that the output directory not exist when you start the job.

In our simple example, the MapReduceIntroConfig class handles ensuring that the output
directory does not exist and provides the path to the output directory. The output parameters
are actually a little more comprehensive than just the setting of the output path. The code will
also set the output format and the output key and value classes.

The Text class is the functional equivalent of a String. It implements the
WritableComparable interface, which is necessary for keys, and the Writable interface (which is
actually a subset of WritableComparable), which is necessary for values. Unlike String, Text is
mutable, and the Text class has some explicit methods for UTF-8 byte handling.

The key feature of a Writable is that the framework knows how to serialize and deserial-
ize aWritable object. The WritableComparable adds the compareTo interface so the framework
knows how to sort the WritableComparable objects. The interface references for Writable
Comparable and Writable are shown in Listings 2-5 and 2-6.

The following code block provides an example of the minimum required configuration for
the output of a MapReduce job:

www.it-ebooks.info

47

http://www.it-ebooks.info/

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

/** Configure the output of the job to go to the output directory.

* Inform the framework that the Output Key and Value classes will be
{@link Text} and the output file format will {@link
TextOutputFormat}. The TextOutput format class produces a record of
output for each Key,Value pair, with the following format.
Formatter.format("%s\t¥#s%n", key.toString(), value.toString());.

In addition indicate to the framework that there will be
1 reduce. This results in all input keys being placed
into the same, single, partition, and the final output
being a single sorted file.

* K X K X X X X ¥

*/
FileOutputFormat.setOutputPath(conf,
MapReduceIntroConfig.getOutputDirectory());
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(Text.class);

The
FileOutputFormat.setOutputPath(conf, MapReduceIntroConfig.getOutputDirectory())
setting is familiar from the input example discussed earlier in the chapter. The
conf.setOutputKeyClass(Text.class) and conf.setOutputValueClass(Text.class) settings
are new. These settings inform the framework of the types of the key/value pairs to expect for
the reduce phase. By default, these classes will also be used to set the values the framework
will expect from the map output. Unsurprisingly, the method to set the output key class for the
map output is conf. setMapOutputKeyClass(Class<? extends WritableComparable>). To set the
output value class, the method is conf.setMapOutputValueClass(Class<? extends Writable>).

Listing 2-5. WritableComparable.java

Vak

Licensed to the Apache Software Foundation (ASF) under one
or more contributor license agreements. See the NOTICE file
distributed with this work for additional information
regarding copyright ownership. The ASF licenses this file
to you under the Apache License, Version 2.0 (the
"License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

* K X K X X X X K X XK X X X X

*
~

www.it-ebooks.info

http://www.apache.org/licenses/LICENSE-2.0
http://www.it-ebooks.info/

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

package org.apache.hadoop.io;

/**
* A {@link Writable} which is also {@link Comparable}.

<p><code>WritableComparable</code>s can be compared to each other, typically
via <code>Comparator</code>s. Any type which is to be used as a
<code>key</code> in the Hadoop Map-Reduce framework should implement this
interface.</p>

<p>Example:</p>
<p><blockquote><pre>
public class MyWritableComparable implements WritableComparable {
// Some data
private int counter;
private long timestamp;

public void write(DataOutput out) throws IOException {
out.writeInt(counter);
out.writelong(timestamp);

}

public void readFields(DatalInput in) throws IOException {
counter = in.readInt();
timestamp = in.readlong();

}

public int compareTo(MyWritableComparable w) {

int thisValue = this.value;

int thatValue = ((IntWritable)o).value;

return (thisValue &1t; thatValue ? -1 : (thisValue==thatValue ? 0 : 1));
}

}
</pre></blockquote></p>

¥ OX K K X K X X X X K X K X X K X K X XK X X KX X X X X X X ¥

*/
public interface WritableComparable<T> extends Writable, Comparable<T> {

}

Listing 2-6. Writable.java
/ k3%

* |icensed to the Apache Software Foundation (ASF) under one

* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information

* regarding copyright ownership. The ASF licenses this file

www.it-ebooks.info

http://www.it-ebooks.info/

50 CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

to you under the Apache License, Version 2.0 (the
"License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

* X X K X X X X X X ¥

*
~

package org.apache.hadoop.io;

import java.io.DataOutput;
import java.io.Datalnput;
import java.io.IOException;

/%K

* A serializable object which implements a simple, efficient, serialization
protocol, based on {@link DataInput} and {@link DataOutput}.

<p>Any <code>key</code> or <code>value</code> type in the Hadoop Map-Reduce
framework implements this interface.</p>

<p>Implementations typically implement a static <code>read(DataInput)</code>
method which constructs a new instance, calls {@link #readFields(DataInput)}
and returns the instance.</p>

<p>Example:</p>
<p><blockquote><pre>
public class MyWritable implements Writable {
// Some data
private int counter;
private long timestamp;

public void write(DataOutput out) throws IOException {
out.writeInt(counter);
out.writelong(timestamp);

}

public void readFields(DataInput in) throws IOException {
counter = in.readInt();
timestamp = in.readlong();

}

¥ OX K X X K X X X X K X K X XK X X K X X X X X X X X

www.it-ebooks.info

http://www.apache.org/licenses/LICENSE-2.0
http://www.it-ebooks.info/

EE G S

ES

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

public static MyWritable read(DataInput in) throws IOException {
MyWritable w = new MyWritable();
w.readFields(in);
return w;
}
}

* </pre></blockquote></p>

*/

public interface Writable {

Vioio

* Serialize the fields of this object to <code>out</code>.

*

* @param out <code>DataOuput</code> to serialize this object into.
* @throws IOException

*/

void write(DataOutput out) throws IOException;

Vioio

Deserialize the fields of this object from <code>in</code>.

*
*
* <p>For efficiency, implementations should attempt to re-use storage in the
* existing object where possible.</p>
*
*

@param in <code>Datalnput</code> to deseriablize this object from.
* @throws IOException

*/

void readFields(DataInput in) throws IOException;

}

Configuring the Reduce Phase

To configure the reduce phase, the user must supply the framework with five pieces of
information:

The number of reduce tasks; if zero, no reduce phase is run
The class supplying the reduce method

The input key and value types for the reduce task; by default, the same as the reduce
output

The output key and value types for the reduce task

The output file type for the reduce task output

The input and output key and value types, as well as the output file type, are the same as
those covered in the previous “Setting the Output Parameters” section. Here, we will look at
setting the number of reduce tasks and the reducer class.

www.it-ebooks.info

51

http://www.it-ebooks.info/

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

The configured number of reduce tasks determines the number of output files for a job
that will run the reduce phase. Tuning this value will have a significant impact on the overall
performance of your job. The time spent sorting the keys for each output file is a function of
the number of keys. In addition, the number of reduce tasks determines the maximum num-
ber of reduce tasks that can be run in parallel.

The framework generally has a default number of reduce tasks configured. This value is
set by the mapred.reduce.tasks parameter, which defaults to 1. This will result in a single out-
put file containing all of the output keys, in sorted order. There will be one reduce task, run on
a single machine that processes every key.

The number of reduce tasks is commonly set in the configuration phase of a job.

conf.setNumReduceTasks(1);

In general, unless there is a significant need for a single output file, the number of reduce
tasks is set to roughly the number of simultaneous execution slots in the cluster. In Chapter 9,
the class DataJoinReduceOutput is provided as a sample for efficiently merging multiple reduce
task outputs into a single sorted file.

CLUSTER EXECUTION SLOTS

A typical cluster is composed of M TaskTracker machines, with € CPUs, each of which supports T threads.
This would resultin M* C* T execution slots in the cluster. In my environment, the machines typically have
eight CPUs that support one thread per CPU, and a small cluster might have ten TaskTracker machines. This
gives us 10 * 8 * 1 = 80 execution slots in the cluster.

If your tasks tend not to be CPU-bound, you may adjust the number of execution slots configured to opti-
mize the CPU utilization on your TaskTracker machines.

The configuration parameter mapred. tasktracker.map.tasks.maximum controls the maximum
number of map tasks that will be run simultaneously on a TaskTracker node.

The configuration parameter mapred. tasktracker.reduce.tasks.maximum controls the maxi-
mum number of reduce tasks that will be run simultaneously on a TaskTracker node.

This requires tuning on a per-job basis and is a weakness in Hadoop at present, as the maximum values
are not per-job configurable and instead require a cluster restart.

The reducer class needs to be set only if the number of reduce tasks is not zero. It is very
common to not need a reducer, since frequently you do not require sorted output or value
grouping by key. The actual setting of the reducer class is straightforward:

/** Inform the framework that the reducer class will be the

* {@link IdentityReducer}. This class simply writes an output record
* key/value record for each value in the key/value set it receives as
* input. The value ordering is arbitrary.

*/

conf.setReducerClass(IdentityReducer.class);

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

A COMMON EXCEPTION

The framework relies on the output parameters being set correctly. One of the more common errors is to have
each reduce task fail with an exception of the form:

java.io.IOException: Type mismatch in key from map: expected
org.apache.hadoop.io.LongWritable, recieved org.apache.hadoop.io.Text

This error indicates that output key class has been defaulted by the framework, or was set incorrectly
during the job configuration.
To correct this, use the following:

conf.setOutputKeyClass(Text.class)

Or if your map output is not the same as your job output, use this form:
conf.setMapOutputKeyClass(Text.class)

This error may occur for the value class as well:

java.io.IOException: Type mismatch in value from map: expected
org.apache.hadoop.io.LongWritable, recieved org.apache.hadoop.io.Text

The corresponding setOutputValueClass() or setMapOutputValue() class methods are needed
to correct this.

Running a Job

The ultimate aim of all your MapReduce job configuration is to actually run that job. The
MapReduceIntro.java example (Listing 2-1) demonstrates a common and simple way to run
ajob:

logger .info("Launching the job.");

/** Send the job configuration to the framework
* and request that the job be run.

*/

final RunningJob job = JobClient.runJob(conf);
logger.info("The job has completed.");

The method runJob() submits the configuration information to the framework and waits
for the framework to finish running the job. The response is provided in the job object.

The RunningJob class provides a number of methods for examining the response. Perhaps
the most useful is job.isSuccessful().

Run MapReduceIntro.java as follows (using the CH2. jar file provided with this book’s
downloadable code):

www.it-ebooks.info

53

http://www.it-ebooks.info/

54

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

hadoop jar DOWNLOAD PATH/ch2.jar =
com.apress.hadoopbook.examples.ch2.MapReduceIntro

The response should be as follows:

ch2.MapReduceIntroConfig: Generating 3 input files of random data, each record
is a random number TAB the input file name

ch2.MapReduceIntro: Launching the job.

jvm.JvmMetrics: Initializing JVM Metrics with processName=JobTracker, sessionId=
mapred.JobClient: Use GenericOptionsParser for parsing the arguments.
Applications should implement Tool for the same.
mapred.FileInputFormat: Total input paths to process :
mapred.FileInputFormat: Total input paths to process :
mapred.FileInputFormat: Total input paths to process :
mapred.FileInputFormat: Total input paths to process :
mapred.JobClient: Running job: job local 0001
mapred.MapTask: numReduceTasks: 1

mapred.MapTask: io.sort.mb = 1

mapred.MapTask: data buffer = 796928/996160
mapred.MapTask: record buffer = 2620/3276
mapred.MapTask: Starting flush of map output
mapred.MapTask: bufstart = 0; bufend = 664; bufvoid = 996160
mapred.MapTask: kvstart = 0; kvend = 14; length = 3276

mapred.MapTask: Index: (0, 694, 694)

mapred.MapTask: Finished spill 0

mapred.LocalJobRunner: file:/tmp/MapReduceIntroInput/file-2:0+664
mapred.TaskRunner: Task 'attempt local 0001 m 000000 0' done.
mapred.TaskRunner: Saved output of task 'attempt local 0001 m 000000 0' to
file:/tmp/MapReduceIntroOutput

mapred.MapTask: numReduceTasks: 1

mapred.MapTask: io.sort.mb = 1

mapred.MapTask: data buffer = 796928/996160

mapred.MapTask: record buffer = 2620/3276

mapred.MapTask: Starting flush of map output

mapred.MapTask: bufstart = 0; bufend = 3418; bufvoid = 996160
mapred.MapTask: kvstart = 0; kvend = 72; length = 3276

mapred.MapTask: Index: (0, 3564, 3564)

mapred.MapTask: Finished spill O

mapred.LocalJobRunner: file:/tmp/MapReduceIntroInput/file-1:0+3418
mapred.TaskRunner: Task 'attempt local 0001 m 000001 0' done.
mapred.TaskRunner: Saved output of task 'attempt local 0001 m 000001 0' to
file:/tmp/MapReduceIntroOutput

mapred.MapTask: numReduceTasks: 1

mapred.MapTask: io.sort.mb = 1

mapred.MapTask: data buffer = 796928/996160

mapred.MapTask: record buffer = 2620/3276

w w w w

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

mapred.MapTask: Starting flush of map output

mapred.MapTask: bufstart = 0; bufend = 3986; bufvoid = 996160
mapred.MapTask: kvstart = 0; kvend = 84; length = 3276

mapred.MapTask: Index: (0, 4156, 4156)

mapred.MapTask: Finished spill 0

mapred.LocalJobRunner: file:/tmp/MapReduceIntroInput/file-0:0+3986
mapred.TaskRunner: Task 'attempt local 0001 m 000002 0' done.
mapred.TaskRunner: Saved output of task 'attempt local 0001 m 000002 0' to
file:/tmp/MapReduceIntroOutput

mapred.ReduceTask: Initiating final on-disk merge with 3 files
mapred.Merger: Merging 3 sorted segments

mapred.Merger: Down to the last merge-pass, with 3 segments left of total size:
8414 bytes

mapred.LocalJobRunner: reduce > reduce

mapred.TaskRunner: Task 'attempt local 0001 r 000000 0' done.
mapred.TaskRunner: Saved output of task 'attempt local 0001 r 000000 0' to
file:/tmp/MapReduceIntroOutput

mapred.JobClient: Job complete: job local 0001

mapred.JobClient: Counters: 11

mapred.JobClient: File Systems

mapred.JobClient: Local bytes read=230060
mapred.JobClient: Local bytes written=319797
mapred.JobClient: Map-Reduce Framework
mapred.JobClient: Reduce input groups=170
mapred.JobClient: Combine output records=0
mapred.JobClient: Map input records=170
mapred.JobClient: Reduce output records=170
mapred.JobClient: Map output bytes=8068
mapred.JobClient: Map input bytes=8068
mapred.JobClient: Combine input records=0
mapred.JobClient: Map output records=170
mapred.JobClient: Reduce input records=170

ch2.MapReduceIntro: The job has completed.
ch2.MapReduceIntro: The job completed successfully.

Congratulations, you have run a MapReduce job.

The single output file of the reduce task in the file /tmp/MapReduceIntroOutput/part-00000
will have a series of lines of the form Number TAB file:/tmp/MapReduceIntroInput/file-N. The
first thing you will notice is that the numbers don’t seem to be in order. The code that gener-
ates the input produces a random number for the key of each line, but the example tells the
framework that the keys are Text. Therefore, the numbers have been sorted as text rather than
as numbers.

www.it-ebooks.info

55

http://www.it-ebooks.info/

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

Creating a Custom Mapper and Reducer

As you've seen, your first Hadoop job, in MapReduceIntro, produced sorted output, but the
sorting was not suitable, as it sorted lexically rather than numerically, and the keys for the
job were numbers. Now, let’s work out what is required to sort numerically, using a custom
mapper. Then we’ll look at a custom reducer that outputs the values in a format that is easy
to parse.

Setting Up a Custom Mapper

Sorting numerically doesn’t sound difficult. Let’s try making the output key class a
LongWritable, another class supplied by the framework:

conf.setOutputKeyClass(Longhiritable.class);
instead of:
conf.setOutputKeyClass(Text.class);

The class with this change is available as MapReduceIntroLongWritable. java. Run this
class via this command:

hadoop jar DOWNLOAD PATH/ch2.jar =
com.apress.hadoopbook.examples.ch2.MapReduceIntrolLonghritable

You will see the following in the output:

mapred.LocalJobRunner: job local 0001
java.io.IOException: Type mismatch in key from map: expected
org.apache.hadoop.io.Longhritable, recieved org.apache.hadoop.io.Text
at org.apache.hadoop.mapred.MapTask$MapOutputBuffer.collect(MapTask.java:415)
at org.apache.hadoop.mapred.lib.IdentityMapper.map(IdentityMapper.java:37)
at org.apache.hadoop.mapred.MapRunner.run(MapRunner.java:47)
at org.apache.hadoop.mapred.MapTask.run(MapTask.java:227)
at org.apache.hadoop.mapred.LocalJobRunner$Job.run(LocalJobRunner.java:157)
ch2.MapReduceIntrolLongiritable: The job has failed due to an IO Exception

As you can see, just changing the output key class was insufficient. If you are going to
change the output key class to a LongWritable, you also need to modify the map function so
that it outputs Longhritable keys.

For the job to actually produce output that is sorted numerically, you must change the
job configuration and provide a custom mapper class. This is done by two calls on the JobConf
object:

e conf.setOutputKeyClass(Longhritable.class): Informs the framework of the key class
for map and reduce output.

e conf.setMapperClass(TransformKeysToLongMapper.class): Informs the framework of
the custom class that provides the map method that takes as input Text keys and out-
puts LonglWritable keys.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

A demonstration class MapReduceIntrolonghritableCorrect.java provides the configu-
ration for this. This class is identical to MapReduceIntro, except for these two replacement
method calls.

Note The job configuration could also provide a custom sort option. One way to do this is to provide a
custom class that implements WritableComparable and use that as the key class. Another way is to spec-
ify a CustomComparator in the job configuration via the setOutputKeyComparatorClass() method on the
JobCon+ object. An example of implementing a custom comparator is provided in Chapter 9.

You also need to provide a mapper class that performs the transforma-
tion. The sample mapper class TransformKeysToLongMapper . java does this. The
TransformKeysTolLongMapper. java class file has a number of changes from the IdentityMapper
class (shown earlier in Listing 2-2).

First, the class declaration is no longer generic; the types have been made concrete:

/** Transform the input Text, Text key value
* pairs into LongWritable, Text key/value pairs.
*/
public class TransformKeysTolLongMapperMapper
extends MapReduceBase implements Mapper<Text, Text, LongWritable, Text>

Notice that the code actually provides the types for the key/value pairs for input and for
output. The original IdentityMapper class was completely generic. In addition, the identity
mapper’s declaration was implements Mapper<K, V, K, V>.In TransformKeysTolLongMapperMapp
er, the declaration is implements Mapper<Text, Text, LongWritable, Text>.

The map () method of TransformKeysToLongMapper is substantially different from the
IdentityMapper and introduces the use of the reporter object.

The Reporter Object

The map and reduce methods both take four parameters: the key, the value, the output collec-
tor, and the reporter. The reporter object provides a mechanism for informing the framework
of the current status of your job.

The reporter object provides three methods:

¢ incrCounter(): Provides counters that are aggregated and reported at the end of
the job.

e setStatus(): Provides a status line for this map or reduce task.

e getInputSplit(): Returns information about the input source for this task. If the input
is simple files, this can provide useful information for log messages.

Each call on the reporter object or the output collector provides a heartbeat to the frame-
work, informing it that the task is not deadlocked or otherwise unresponsive. If your map or
reduce method takes substantial time, the method must make periodic calls on the reporter

www.it-ebooks.info

57

http://www.it-ebooks.info/

58

CHAPTER 2

THE BASICS OF A MAPREDUCE JOB

object methods, to inform the framework that it is still working. The framework will kill tasks
that have not reported in 600 seconds by default.

Listing 2-6 shows the body of the TransformKeysToLongMapper mapper that uses the
reporter object.

Listing 2-6. The Reporter Object in TransformKeysToLongMapper.java

/** Map i
* keys 1
* The va
*

* Report
* @param
* @param
* @param
* {@link
* @param
* to rep
* @excep
*/

public vo

throws

try {
t

}

}
} cat
/

nput to the output, transforming the input {@link Text}
nto {@link LongWritable} keys.
lues are passed through unchanged.

on the status of the job.
key The input key, supplied by the framework, a {@link Text} value.
value The input value, supplied by the framework, a {@link Text} value.
output The {@link OutputCollector} that takes
Longhritable}, {@link Text} pairs.
reporter The object that provides a way
ort status back to the framework.
tion IOException if there is any error.

id map(Text key, Text value,
OutputCollector<Longhiritable, Text> output, Reporter reporter)

IOException {

ry {
reporter.incrCounter("Input", "total records", 1);
LonghWritable newKey =

new LongWritable(Long.parselLong(key.toString()));

reporter.incrCounter("Input", "parsed records", 1);
output.collect(newKey, value);

catch(NumberFormatException e) {

/** This is a somewhat expected case and we handle it specially. */
logger.warn("Unable to parse key as a long for key,"

+" value " + key + + value, e);
reporter.incrCounter("Input", "number format", 1);
return;

ch(Throwable e) {

*k It is very important to report back if there were

* exceptions in the mapper.

* In particular it is very handy to report the number of exceptions.
* If this is done, the driver can make better assumptions

* on the success or failure of the job.

*/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

logger.error("Unexpected exception in mapper for key,"

+ " value " + key + ", " + value, e);
reporter.incrCounter("Input", "Exception", 1);
reporter.incrCounter("Exceptions", e.getClass().getName(), 1);
if (e instanceof IOException) {

throw (IOException) e;

}

if (e instanceof RuntimeException) {
throw (RuntimeException) e;

}

throw new IOException("Unknown Exception", e);

This block of code introduces a new object, reporter, and some best practice patterns.
The key piece of this is the transformation of the Text key to a LonghWritable key.

LongWritable newKey = new LongWritable(Long.parselLong(key.toString()));
output.collect(newKey, value);

The code in Listing 2-6 is sufficient to perform the transformation, and also includes some
additional code for tracking and reporting.

CODE EFFICIENCY

The pattern of creating a new key object in the mapper for the transformation object is not the most effi-
cient pattern. Most key classes provide a set () method, which sets the current value of the key. The
output.collect() method uses the current value of the key, and once the collect () method is com-
plete, the key object or the value object is free to be reused.

If the job is configured to multithread the map method, via conf. setMapRunner (Multithreaded
MapRunner.class), the map method will be called by multiple threads. Extreme care must be taken in
using the mapper class member variables. A ThreadLocal LongWritable object could be used to ensure
thread safety. To simplify the example, a new LongWritable is constructed. In the reduce method; there are
no threading issues.

Object churn is a significant performance issue in a map method, and to a lesser extent, in the reduce
method. Object reuse can provide a significant performance gain.

The Counters and Exceptions

This example includes two try/catch blocks and several calls to the reporter.incrCounter()
method. It is a good practice to wrap your map and reduce methods in a try block that catches
Throwables and reports on the catches.

The JobTracker, the Hadoop Core server process that manages job execution on the
cluster, accumulates the counter values and provides a final count in the job output, as well

www.it-ebooks.info

59

http://www.it-ebooks.info/

60

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

as making the instantaneous count available in the JobTracker web interface (available on
http://jobtracker_host:50030/ by default). This interface will be discussed in more detail in
Chapter 6, which covers the setup of a multimachine cluster.

You can now run the job:

hadoop jar ch2.jar =
com.apress.hadoopbook.examples.ch2.MapReduceIntrolLonghritableCorrect

The output that reflects the counters is as follows:

mapred.JobClient: Job complete: job_local 0001
mapred.JobClient: Counters: 13
mapred.JobClient: File Systems

mapred.JobClient: Local bytes read=78562
mapred.JobClient: Local bytes written=157868
mapred.JobClient: Input

mapred.JobClient: total records=126
mapred.JobClient: parsed records=126
mapred.JobClient: Map-Reduce Framework
mapred.JobClient: Reduce input groups=126
mapred.JobClient: Combine output records=0
mapred.JobClient: Map input records=126
mapred.JobClient: Reduce output records=126
mapred.JobClient: Map output bytes=5670
mapred.JobClient: Map input bytes=5992
mapred.JobClient: Combine input records=0
mapred.JobClient: Map output records=126
mapred.JobClient: Reduce input records=126

The first catch block handles exceptions related to
reporter.incrCounter("Input", "number format", 1);, which may be thrown during the
key transformation:

} catch(NumberFormatException e) {
/** This is a somewhat expected case and we handle it specially. */
reporter.incrCounter("Input", "number format", 1);
return;

}

You expect that some of the keys may not convert correctly into Long values, so you
capture the exception. The reporter. incrCounter() call tells the framework to increment a
counter in the Input group, of the name number format, by 1. If the counter does not already
exist, it will be created.

In the sample input, there are no records that will cause a number format exception.
The only counters that are accumulated are Input.total records and Input.parsed records.
These two counters will show up in the job output as part of the Input group:

www.it-ebooks.info

http://jobtracker_host:50030/
http://www.it-ebooks.info/

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

mapred.JobClient: Input
mapred.JobClient: total records=126
mapred.JobClient: parsed records=126

If one or more keys caused an exception during the conversion to Long, the output might
look more like this:

mapred.JobClient: Input

mapred.JobClient: total records=126
mapred.JobClient: parsed records=125
mapred.JobClient: number format=1

Note The sum of the parsed records and the number formats should equal the total records. The coun-
ters are also available via the RunningJob object, allowing for a more comprehensive check of the success
status. The totals for your job will vary from this example.

After the Job Finishes

Once the job finishes, the framework will provide you with a filled-out RunningJob object. This
object has information about the framework’s opinion on the success status of your job via the
conf.isSuccessful() method. The framework will report that the job was unsuccessful if it was
unable to complete any single map task or if the job was killed.

This generally doesn’t provide enough information to make a determination on the actual
success. It may be that there was an exception in the map or method for every key or for most
keys. If the map or reduce function provides job counters for these cases, your job driver will
be able to make a better determination regarding the actual success or failure of your job.

In the sample mapper, several counters were collected under different circumstances:

e reporter.incrCounter(TransformKeysTolLongMapper.INPUT, TransformKeys
ToLongMapper.TOTAL_RECORDS, 1):Reports the total number of input records seen.

e reporter.incrCounter(TransformKeysToLongMapper.INPUT, TransformKeys
TolLongMapper.PARSED RECORDS, 1): Reports the total number of records successfully
parsed.

e reporter.incrCounter(TransformKeysToLongMapper.INPUT, TransformKeys
TolLongMapper .NUMBER_FORMAT, 1): Reports the total number of records where the
key could not be parsed.

www.it-ebooks.info

61

http://www.it-ebooks.info/

62

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

e reporter.incrCounter(TransformKeysToLongMapper.INPUT, TransformKeys
ToLongMapper.EXCEPTION, 1):Reports the number of records that generated an
exception when being processed.

e reporter.incrCounter(TransformKeysTolLongMapper.EXCEPTIONS, e.getClass().
getName(), 1):Reports the counts of exceptions by type.

Examining the Counters

Once the framework fills in the RunningJob object and returns control back to the job driver,
the driver is able to examine the values of the various counters, as well as the framework’s suc-
cess or failure status.

Making the counter values available is a multistep process.

/** Get the job counters. {@see RunningJob.getCounters()}. */
Counters jobCounters = job.getCounters();

/** Look up the "Input" Group of counters. */
Counters.Group inputGroup = jobCounters.getGroup(TransformKeysTolLongMapper.INPUT);

/** The map task potentially outputs 4 counters in the input group.

* Get each of them.

*/
long total = inputGroup.getCounter(TransformKeysTolLongMapper.TOTAL RECORDS);
long parsed = inputGroup.getCounter(TransformKeysTolLongMapper.PARSED RECORDS);
long format = inputGroup.getCounter(TransformKeysToLongMapper.NUMBER FORMAT);
long exceptions = inputGroup.getCounter(TransformKeysToLongMapper.EXCEPTION);

Now that the job driver has the counters issued by the map method, a much more accu-
rate determination of success can be made.

Caution An accurate determination of success is critical. In one of my production clusters, a TaskTracker
node was incorrectly configured. The result of this misconfiguration was that none of the computationally
intense work could be run in the map task, and the map method would return immediately with an exception.
As far as the framework was concerned, this machine was super fast, and it scheduled almost all of the map
tasks on this machine. The job was successful as far as the framework was concerned, but totally unsuc-
cessful per the business rules. At that point. the pattern of checking the exception count was not part of the
standard practice, and the failure was uncovered only when the consumer of the results noticed there were
no valid results. Save yourself much embarrassment—collect information about the successes and failures
in the mapper and reducer objects and check those results in your job driver.

Was This Job Really Successful?

The check for success primarily involves ensuring that the number of records output is roughly
the same as the number of records input. Hadoop jobs are generally dealing with bulk real-
world data, which is never 100% clean, so a small error rate is generally acceptable.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

if (format != 0) {
logger.warn("There were " + format + " keys that were not "
+ "transformable to long values");

}

/** Check to see if we had any unexpected exceptions.
* This usually indicates some significant problem,
* either with the machine running the task that had
* the exception, or the map or reduce function code.
* Log an error for each type of exception with the count.
*/
if (exceptions > 0) {
Counters.Group exceptionGroup = jobCounters.getGroup(
TransformKeysToLongMapper.EXCEPTIONS);
for (Counters.Counter counter : exceptionGroup) {
logger.error("There were " + counter.getCounter()
+ " exceptions of type " + counter.getDisplayName());

}

if (total == parsed) {
logger.info("The job completed successfully.");
System.exit(0);

}

// We had some failures in handling the input records.
// Did enough records process for this to be a successful job?
// is 90% good enough?
if (total * .9 <= parsed) {
logger.warn("The job completed with some errors,
+ (total - parsed) + " out of " + total);
System.exit(0);

}

logger.error("The job did not complete successfully,"
+" too many errors processing the input, only "
+ parsed + " of " + total + "records completed");
System.exit(1);

In this particular case, you would expect a small number of NumberFormatExceptions but
no other exceptions. If the total number of input records is roughly the number of parsed
input records, and you have no unexpected exceptions, this job is a success.

Creating a Custom Reducer

The reduce method is called once for each key, and passes the key and an iterator to all of the
map output values that share that key. The reduce task is an ideal place for summarizing data
and for doing basic duplicate suppression.

www.it-ebooks.info

63

http://www.it-ebooks.info/

64

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

Note For managing duplicate suppression against a prior seen set, it is usually best to keep the prior
seen set in either HBase (the Hadoop database) or in a sorted format, such as a Hadoop map file. If this is not
done, then the dataset of seen records and the dataset of input records must be merged and sorted, which
can take considerable time if either dataset is large. In the HBase case, if the input data is already sorted, the
duplicate status of an input record can be rapidly determined. With a simple sorted seen set, map-side joins
may be performed. HBase is discussed in Chapter 10, and map-side joins are covered in Chapters 8 and 9.

For the sample custom reducer, let’s merge the values into a comma-separated values
(CSV) form, so you have one output line per key, with all of the values in a simple-to-parse
format.

After your work with the custom mapper in the preceding sections, creating a custom
reducer will seem familiar. This version is in MapReduceIntroLongWritableReduce. java,
which is based on MapReduceIntrolLonghWritableCorrect.java. First, the framework needs to
be informed of the reducer class. The key piece is, as usual, to inform the framework of the
reducer class, so add the following single line:

/** Inform the framework that the reducer class will be the
* {@link MergeValuesToCSV}.
* This class simply writes an output record key,
* value record for each value in the key, valueset it receives as
* input.
* The value ordering is arbitrary.
*/
conf.setReducerClass(MergeValuesToCSV.class);

There have been no changes to the output classes, so no other changes are required to
MapReduceIntroLongWritableCorrect.java.

The class to actually perform the work is MergeValuesToCSVReducer . java. As with the map-
per example, TransformKeysToLongMapper, you start with your class declaration, which has
partially specified the generic types:

public class MergeValuesToCSVReducer<K, V>
extends MapReduceBase implements Reducer<K, V, K, Text> {

The reduce method doesn’t need to know the incoming value class; it requires only the
toString() method to work. The reduce method does need to construct a new output value,
and for simplicity’s sake, given this transformation, the output value is declared to be Text.

The actual method declaration also has the same type specification:

/** Merge the values for each key into a CSV text string.

*

* @param key The key object for this group.

* @param values Iterator to the set of values that share the <code>key</code>.
* @param output The {@see OutputCollector} to pass the transformed output to.
* @param reporter The reporter object to update counters and set task status.
* @exception IOException if there is an error.

*/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

public void reduce(K key, Iterator<V> values,
OutputCollector<K, Text> output, Reporter reporter)
throws IOException {

The framework will throw an error if the job is expecting a different output value type than
Text. As with the mapper example, you have a method body that employs the reporter.
incrCounter() method to make detailed information available to the job and via the web
interface. As a performance optimization, to reduce object churn, two class fields are declared.
These variables are used in the reduce() method:

/** Used to construct the merged value.
* The {@link Text.set() Text.set} method is used
* to prevent object churn.
*/
protected Text mergedValue = new Text();
/** Working storage for constructing the resulting string. */
protected StringBuilder buffer = new StringBuilder();

The buffer object is used to build the CSV-style line for the output, and mergedValue is the
actual object that is sent to the output on each reduce() call. It is safe to declare these as class
fields, rather than as local variables, because the individual reduce tasks are run only as single
threads by the framework.

Note There may be multiple reduce tasks running simultaneously, but each task is running in a separate
JVM, and the JVMs are potentially running on separate physical machines.

The reduce() method is called with the key and an iterator to the values that share that
key. Recall that, ideally, a reduce task will make no changes to the key, and will use that key as
the key argument to the output.collect() method calls in the reduce() method. The design
goal for this reduce () method is to output only a single row for every key, with a comma-
separated list of the values that shared that key. The core of the reduce() method has a bit of
boilerplate for the object churn optimizations to reset the StringBuilder object, and aloop to
process each of the values for this key:

buffer.setLength(0);
for (;values.hasNext(); valueCount++) {
reporter.incrCounter(OUTPUT, MergeValuesToCSVReducer.TOTAL VALUES, 1);
String value = values.next().toString();
if (value.contains("\"")) { // Perform Excel style quoting
value.replaceAll("\"", "\\\"");
}
buffer.append('"');
buffer.append(value);
buffer.append("\",");

}
buffer.setlLength(buffer.length() - 1);

www.it-ebooks.info

65

http://www.it-ebooks.info/

66

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

It is rare that a reduce() method doesn’t have a loop that iterates over the values. It is
good form to report on the number of values input. In this example, reporter.incrCounter
(OUTPUT, MergeValuesToCSVReducer.TOTAL VALUES, 1) handles the reporting.

This reducer relies on the toString() method of the value object, which seems rea-
sonable for a textual output job, as the framework would also be using the toString()
method to produce the output. The rest of the preceding code block simply builds a
comma-separated list of values, with Excel-style CSV quoting.

The actual output block must build a new value for the output. In this case, a class field
mergedValue will be used. In a larger job, there may be a billion keys passed through the
reduce() method, and by using the class field, the amount of object churn is greatly reduced.
In this example, there are also counters for the output records:

mergedValue.set(buffer.toString());
reporter.incrCounter(OUTPUT, TOTAL_OUTPUT RECORDS, 1);
output.collect(key, mergedvalue);

The value is set on the mergedValue object, using the mergedValue.set(buffer.toString())
statement, and the value is output using the output.collect(key, mergedValue) line. This
example uses Text as the output value class; it is acceptable to use any Writable as the output
value class. If the output format is a SequenceFile, there is no need for a functional toString()
method on your object.

Note The framework serializes the key and value into the output stream during the collect () method,
leaving the user free to change the objects values when the method returns.

Why Do the Mapper and Reducer Extend MapReduceBase?

The custom mapper class TransformKeysTolLongMapper and reducer class
MergeValuesToCSVReducer both extend the class org.apache.hadoop.mapred.MapReduceBase.
This class provides basic implementations of two additional methods that are required of a
mapper or a reducer by the framework. The framework calls the configure() method upon
initializing a task, and it calls the close() method when the task has finished processing its
input split:

/** Default implementation that does nothing. */
public void close() throws IOException {

}

/** Default implementation that does nothing. */
public void configure(JobConf job) {

}

The configure Method

The configure() method is the only way to get access to the JobConf object for your task. This
method is where any per-task configuration and setup is done. If your application relies on

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

the Spring Framework for setup, the application context would be established here and the
relevant beans found.

It is very common for the developer to have a JobConf member variable, which would be
initialized in this method with the passed-in JobConf object. (I prefer to issue a logging record
with detailed information about the input split.) The configure() method is also the ideal
place to open additional files that need to be read or written to during the map() or reduce()
method.

The close Method

The close() method is called by the framework when all of the input-split entries have been
processed by the applicable map() or reduce() method. It is very important to close any sup-
plemental files here to ensure that they are properly flushed to the file system. Particularly for
HDEFS, if the file is not closed, data in the last block may be lost.

The following example also makes a reporter call in the close() method:

/** Keep track of the maximum number of keys a value had.
* Report it in the counters so that per task counters can be examined as needed
* and set the task status to include this maximum count.
*/
@verride
public void close() throws IOException {
super.close();
if (reporter!=null) {
reporter.incrCounter(OUTPUT, MAX VALUES, maxValueCount);
reporter.setStatus("Job Complete, maxixmum ValueCount was
+ maxValueCount);

The reporter field was made a class instance field, via protected Reporter reporter, and
set in the reduce() method via this.reporter = reporter. In the reduce() method, the count
of values is kept in valueCount, and if it’s larger than the instance member field, maxValueCount,
maxValueCount is set to it. This enables you to output the maximum number of values that
shared a specific key.

In this case, the overall summary value is not particularly useful, as that value is the sum
of all of the maximum values, but the per-task value is interesting and available via the web
interface. A more useful solution would be to maintain an additional output file and output
the key/value counts into that file.

When you select a completed or running task through the web interface (which is on port
50030 on the machine running the JobTracker, by default), you are presented with the counter
summary for the job and links to detailed information about the map and reduce tasks. Each
map and reduce task will have a link to the counters.

Using a Custom Partitioner

By default, the framework partitions your output based on the hash value of the key, using the
HashPartitioner class. There are times when you need your output data partitioned differ-
ently. The standard example is a single output file where multiple output files would usually

www.it-ebooks.info

67

http://www.it-ebooks.info/

68

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

result, which is handled by setting the number of reduce tasks to 1, via conf. setNumReduces (1),
or unsorted/unreduced output, which is handled via conf.setNumReduces(0). If you need dif-
ferent partitioning, you have the option of setting a partitioner.

This chapter’s example has Long keys. Some simple partitioner concepts could be to sort
into odd/even or, if the minimum and maximum key values are known, to sort into key range-
based buckets. It is also possible to partition by the value.

HOW PARTITIONING IS DONE

When the framework is performing the shuffle, each key output by the mapper is examined, and the following
operation is performed:

int partition = partitioner.getPartition(key, value, partitions);

The value partitions is the number of reduce tasks to perform. The key, if actually output by the
reducer, will end up in the output file part partition, with an appropriate number of leading zeros so that
the file names are all the same length.

The critical issues are that the number of partitions is fixed at job start time and the parti-
tion is determined in the output.collect() method of the map task. The only information the
partitioner has is the key, the value, the number of partitions, and whatever data was made
available to it when it was instantiated.

The partitioner interface is very simple, as shown in Listing 2-7.

Listing 2-7. The Partitioner Interface
/ k%

Partitions the key space.

ES
ES
* <p><code>Partitioner</code> controls the partitioning of the keys of the

* intermediate map-outputs. The key (or a subset of the key) is used to derive
* the partition, typically by a hash function. The total number of partitions
* is the same as the number of reduce tasks for the job. Hence this controls

* which of the <code>m</code> reduce tasks the intermediate key (and hence the
* record) is sent for reduction.</p>

ES

* @see Reducer

*/

public interface Partitioner<K2, V2> extends JobConfigurable {

/**

* Get the paritition number for a given key (hence record) given the total

* number of partitions i.e. number of reduce-tasks for the job.
*

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 THE BASICS OF A MAPREDUCE JOB

* <p>Typically a hash function on a all or a subset of the key.</p>
ES

* @param key the key to be paritioned.

* @param value the entry value.

* @param numPartitions the total number of partitions.

* @return the partition number for the <code>key</code>.

*/
int getPartition(K2 key, V2 value, int numPartitions);

}

The JobConfigurable interface provides an additional configure() method, as the
MapReduceBase class does.

Summary

This chapter explained what is involved in executing a MapReduce job. You now have a basic
understanding of the JobConf object and how to use it to inform the framework of the require-
ments for your jobs.

You've seen how to write mapper and reducer classes, and how the reporter object is
one of your best friends, because of the wonderful information it can provide about what is
happening during the execution of your jobs. Output partitions finally make sense, and you
have a sense of when and why you configure your job to reduce, and how many reducers you
will use.

As a brilliant Hadoop expert, you are totally prepared to inform people of why the files
they open in mapper or reducer classes are empty or short, because you know you need to
close files before the framework will flush the last file system block size worth of data to disk.

In the next chapter, you'll learn how to set up of a multimachine cluster.

www.it-ebooks.info

69

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3

The Basics of Multimachine
Clusters

This chapter explains how to set up a multimachine cluster. You'll learn about the makeup
of a cluster, the tools for managing clusters, and how to configure a cluster. Here, we’ll walk-
through a simple cluster configuration, using the minimum HDFS setup necessary to bring up
the cluster. Chapter 4 will go into the details for a high-usage HDFS.

The Makeup of a Cluster

A typical Hadoop Core cluster is made up of machines running a set of cooperating server
processes. The machines in the cluster are not required to be homogeneous, and commonly
they are not. The cluster machines may even have different CPU architectures and operating
systems. But if the machines have similar processing power, memory, and disk bandwidth,
cluster administration is a lot easier, because in that case, only one set of configuration files
and runtime environments needs to be maintained and distributed.

Figure 3-1 illustrates a typical Hadoop cluster. A cluster will have one JobTracker server,
one NameNode server, and one secondary NameNode server, and DataNodes and Task-
Trackers. The JobTracker coordinates the activities of the TaskTrackers, and the NameNode
manages the DataNodes.

In the context of Hadoop, a node/machine running the TaskTracker or DataNode server
is considered a slave node. It is common to have nodes that run both the TaskTracker and
DataNode servers. The Hadoop server processes on the slave nodes are controlled by their
respective masters, the JobTracker and NameNode servers.

www.it-ebooks.info

7

http://www.it-ebooks.info/

72 CHAPTER 3 THE BASICS OF MULTIMACHINE CLUSTERS

One per Cluster Many per Cluster
Commonly Paired Commonly Paired
1 Pair per Machine
JobTracker -
T Commonly Paired
Manages the . :
running and Exed 1_Pa|r per Machine
queued jobs and redf |] 1Cgmmonl3:w Palt:gd
TaskTrackers thel e air per Machine :
(HTTP port 50030) red Ta{ Commonly Paired
th{ [Exaca 1 Pair per Machine
NameNode Mg L Commonly Paired
Manages metadata: st 1 Pair per Machine |7
(file names, file blocks, ~ _d Commonly Paired
block locations, open Commonly Paired r Machine E
files) and DadaNodes 1Pair per Machine fracker | | | =
(HTTP port 50070)
TaskTracker smapand [[. | |
Executes map and | [tBSKSfor | —
reduce tasks for | [<Tracker | | |
Secondary NameNode the TaskTracker. — .
Provides a backup for the piode
NameNode data and DataNode es block B
manages file system Manages block | [€forthe | [a
change history storage for the | [100€ and
NameNode and JIOC{(data | —
Real-time copy of file serves block data | [1®5'°""
system metadata to requestors.

Figure 3-1. A typical Hadoop cluster

Let’s look at each of the server processes run by the machines in a cluster:

JobTracker: The JobTracker provides command and control for job management. It sup-
plies the primary user interface to a MapReduce cluster. It also handles the distribution
and management of tasks. There is one instance of this server running on a cluster. The
machine running the JobTracker server is the MapReduce master.

TaskTracker: The TaskTracker provides execution services for the submitted jobs. Each
TaskTracker manages the execution of tasks on an individual compute node in the
MapReduce cluster. The JobTracker manages all of the TaskTracker processes. There is
one instance of this server per compute node.

Note If your MapReduce jobs utilize external packages or services, it is very important that these external
packages and services are identically configured across all of your TaskTracker machines. It is not uncom-
mon for external JAR files to be required for the successful running of a task. If these JAR files differ in
version or are absent, unexpected and difficult-to-diagnose errors occur.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 THE BASICS OF MULTIMACHINE CLUSTERS

NameNode: The NameNode provides metadata storage for the shared file system. The
NameNode supplies the primary user interface to the HDFS. It also manages all of the
metadata for the HDFS. There is one instance of this server running on a cluster. The
metadata includes such critical information as the file directory structure and which
DataNodes have copies of the data blocks that contain each file’s data. The machine
running the NameNode server process is the HDFS master.

Secondary NameNode: The secondary NameNode provides both file system metadata
backup and metadata compaction. It supplies near real-time backup of the metadata for
the NameNode. There is at least one instance of this server running on a cluster, ideally
on a separate physical machine than the one running the NameNode. The secondary
NameNode also merges the metadata change history, the edit log, into the NameNode’s
file system image.

Real-time backup of the NameNode data: Many installations configure the NameNode

to store the file system metadata to multiple locations, where at least one of these loca-
tions resides on a separate physical machine. Other installations use a tool such as DRBD
(http://www.drbd.org/) to replicate the host file system in near real time to a separate
physical machine.

DataNode: The DataNode provides data storage services for the shared file system. Each
DataNode supplies block storage services for the HDFS. The NameNode coordinates the
storage and retrieval of the individual data blocks managed by a DataNode. There is one
instance of this server process per HDES storage node.

Balancer: During normal usage, the disk utilization on the DataNode machines may
become uneven. This is particularly common if some DataNodes have less disk space
available for use by HDFS. The Balancer moves data blocks between DataNodes to even
out the per-DataNode available disk space. The Balancer will also rebalance the cluster
as new DataNodes are added to an existing cluster. The Balancer is not a started auto-
matically. It must be run by the user via the command bin/hadoop balancer [-threshold
<threshold>]. The optional argument is the maximum amount of variance in disk space
utilization between DataNodes for the cluster to be considered balanced. The default is
10%. As of Hadoop 0.19.0, this is not a configuration parameter.

These server processes are typically started once per cluster instance. DataNodes and

TaskTrackers may be dynamically added and removed from a running cluster, as described in
the next section.

All of these servers are implemented in Java and require at least Java version 1.6.

Cluster Administration Tools

The Hadoop Core installation provides a number of scripts in the bin subdirectory of the
installation that are used to stop and start the entire cluster or various pieces of the cluster.
There are also administrative scripts for the Hadoop Core servers. Table 3-1 lists the available
scripts for administering clusters.

www.it-ebooks.info

73

http://www.drbd.org/
http://www.it-ebooks.info/

74

CHAPTER 3 THE BASICS OF MULTIMACHINE CLUSTERS

The administrator has the option of starting or stopping the full set of Hadoop Core
servers with the start-all.sh and stop-all.sh scripts. These scripts start all of the server pro-
cesses on the cluster machines. The NameNode and JobTracker will be started or stopped on
the machine on which the script is run, and DataNodes and TaskTracker nodes will be started
on the configured slave machines. Any requested secondary NameNodes will also be started
on configured machines.

Table 3-1. Cluster Administration Scripts

Script Description
start-all.shand Start and stop the full set of Hadoop Core servers in the cluster.
stop-all.sh

start-mapred.sh and
stop-mapred.sh

start-dfs.shand
stop-dfs.sh

start-balancer.sh and
stop-balancer.sh

hadoop-daemon. sh

hadoop-daemons. sh

hadoop-config.sh
slaves.sh

hadoop

Icc

Start and stop just the MapReduce servers. These scripts start
or stop only the JobTracker and TaskTracker nodes. The JobTracker is
expected to run on the machine on which these scripts are executed.

Start and stop the HDEFS servers, in the same way as the
start-mapred.sh and stop-mapred scripts manage the MapReduce
servers.

Start and stop the Balancer. The Balancer is expected to run on the
machine on which these scripts are executed.

Starts or stops a single instance of a server on the current ma-
chine. The preceding start and stop scripts actually use the
hadoop-daemon. sh script to start or stop the servers.

Starts or stops a set of servers on the relevant set of machines. This
script is used by the start and stop scripts to start the DataNodes,
TaskTrackers, and secondary NameNodes. This script will use the
hadoop-daemon. sh script to start the servers on each specific machine
in the set of machines on which it operates.

Used by the other scripts to load the Hadoop configuration.

Runs its arguments as a command on each of the hosts listed in the
conf/slaves file, collecting the output and presenting the output back
the user, prefixed with the name of the host on which each output line
originated.

Provides command-level access to the services provided by the HDFS
and MapReduce servers.

Provides services for creating RPC interfaces. This feature of Hadoop
Core is expected to be discontinued. As of Hadoop 0.17, the Serial-
ization service is the preferred method for handling external data
structures.

Cluster Configuration

The Hadoop Core servers load their configuration from files in the conf directory of your
Hadoop Core installation. As a general rule, identical copies of the configuration files are
maintained in the conf directory of every machine in the cluster. The current default is to have

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 THE BASICS OF MULTIMACHINE CLUSTERS

one set of configuration files that provides the configuration for all of the server processes. It is
also common to have the NameNode and the JobTracker servers on the same node, especially
in smaller installations.

Note Many difficult-to-diagnose problems occur when the configuration files or the supporting runtime
environments differ between TaskTracker nodes.

Hadoop Configuration Files

The configuration files fall into the following groups:

Hadoop Core configuration: The Hadoop Core is configured by two XML files:
hadoop-default.xml and hadoop-site.xml. hadoop-default.xml provides reasonable
defaults and comes with the Hadoop distribution. The configuration provided by this
default file is suitable for a single machine instance and is the configuration used to
run the examples in Chapters 1 and 2. hadoop-site.xml is where cluster-specific infor-
mation is specified by the cluster administrator. In this chapter, we will walk through
constructing a hadoop-site.xml file for a small cluster.

Slaves and masters: Two files are used by the startup and shutdown commands dis-
cussed in the previous section to start and stop the DataNode, TaskTracker, and
secondary NameNode servers. The slaves file contains a list of hosts, one per line, that
are to host DataNode and TaskTracker servers. The masters file contains a list of hosts,
one per line, that are to host secondary NameNode servers. If the start-all.sh script is
used, a DataNode and TaskTracker will be started on each host in the slaves file, and a
secondary NameNode will be started on each host in the masters file. start-mapred. sh
starts only the TaskTracker servers. If the start-dfs.sh script is used, DataNodes will be
started on the hosts listed in slaves, and secondary NameNodes will be started on the
hosts listed in masters.

Per-process runtime environment: The file hadoop-env. sh is responsible for tailoring the
per-process environment. In particular, it includes the JAVA_HOME environment variable,
which provides the JVM installation location. This file also offers a way to provide custom
parameters for each of the servers. hadoop-env.sh is sourced by all of the Hadoop Core
scripts provided in the conf directory of the installation.

Reporting: Hadoop Core may be configured to report detailed information about the activ-
ities on the cluster. Hadoop Core may report to a file, via Ganglia (http://ganglia.info/),
which provides a framework for displaying graphical reports summarizing the activities of
large clusters of machines. The file hadoop-metrics.properties controls the reporting. The
default is to not report.

www.it-ebooks.info

75

http://ganglia.info/
http://www.it-ebooks.info/

76 CHAPTER 3 THE BASICS OF MULTIMACHINE CLUSTERS

Hadoop Core Server Configuration
The hadoop-default.xml file defines more than 150 parameters, divided into six groups:
¢ Global properties
¢ Logging properties
¢ /0 properties
¢ File system properties
* MapReduce properties
e [PC properties

Note Some of the parameters listed in hadoop-default.xml may be modified on a per-job basis by
setting alternate values using the JobConf. set* methods. The administrator may specify that a parameter
is final by adding <final>true</final> to the parameter’s declaration in the hadoop-site.xml file. In
general, the modification of the server configuration parameters by a job have no effect on the servers.

It is customary to consider the hadoop-default.xml file to be read-only, and to make
changes only to the hadoop-site.xml file. The framework will load configuration files in order,
with the values defined in later files superseding those earlier definitions. The loading order is
hadoop-default.xml, hadoop-site.xml, and then any user specified resources.

Note Values that have a ${text} are replaced with the system property value or a previously defined
value. The search order is system properties, then previously defined values.

Three critical parameters must be configured for any Hadoop cluster: hadoop. tmp.dir,
fs.default.name, and mapred.job.tracker. Several other parameters are important to tune
but not critical: mapred.tasktracker.map.tasks.maximum, mapred.tasktracker.reduce.tasks.
maximum, mapred.child. java.opts, and webinterface.private.actions. The default values for
these parameters are suitable for single-machine, single-CPU temporary use only. The follow-
ing sections discuss the minimum set for cluster configuration. The parameters required for
large-scale HDFS installations are covered in Chapters 4 and 5.

Note The hadoop-default.xml file includes some documentation on the parameters that control a
cluster and a job, although some configuration parameters are not documented here.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 THE BASICS OF MULTIMACHINE CLUSTERS

Per-Machine Data

The hadoop.tmp.dir parameter is critical to configure. If it is not configured, data loss will
occur. This parameter is poorly named. It informs the framework of the directory to use for all
Hadoop Core server data storage, as follows:

¢ The NameNode will store file system metadata in a subdirectory.

e The DataNodes will store per-file blocks in a subdirectory.

e The TaskTrackers will store intermediate output in a subdirectory.
¢ The JobTracker will store per-job data in a subdirectory.

¢ The secondary NameNode will store the backup metadata in a subdirectory.

In the default configuration, the parameters listed in Table 3-2 use the value of
${hadoop.tmp.dir} as the leading component of their paths. A high-performance cluster will
have values tailored to minimize I/O contention on individual devices. To maximize perfor-
mance, the I/0 for these various functions needs to be distributed over multiple devices.

Table 3-2. Parameters That Use the hadoop.tmp.dir Value

Parameter Description

fs.checkpoint.dir Determines where on the local file system the secondary NameNode
will store name data.

dfs.name.dir Determines where on the local file system the NameNode metadata
is stored. This may be a comma- or space-separated list of directories.
All the provided directories are used for redundant storage. This is of
critical importance and should be stored on a low-latency device with
redundancy.

dfs.client.buffer.dir = Determines where on the local file system data to be written to HDFS is
accumulated prior to transmission to the DataNodes. This directory will
experience bulk I/0 that has a short life.

dfs.data.dir Determines where on the local file system a DataNode stores blocks.
This may be a comma- or space-separated list of directories. The data
will be distributed among the directories. By default, HDFS replicates
data storage blocks to multiple DataNodes. This directory will experi-
ence bulk I/0 transactions.

mapred.local.dir The local directory where TaskTracker stores intermediate output. This
may be a comma-separated list of directories, preferably on different
devices. I/0 will be spread among the directories for increased perfor-
mance. This directory will also experience bulk I/0 that has a short life.

mapred.system.dir The shared directory where the JobTracker stores control files. This
value must be unique per JobTracker if multiple MapReduce clusters
share a single HDFS.

mapred.temp.dir A shared directory for temporary files. The default value of this setting is

${hadoop.tmp.dir}/mapred/temp}.

The cluster administrator must pick a location or locations for these directories that
provide the required I/0 performance and the required reliability. For example, consider the
dfs.data.dir parameter.

www.it-ebooks.info

77

http://www.it-ebooks.info/

78

CHAPTER 3 THE BASICS OF MULTIMACHINE CLUSTERS

The HDFS-level redundant block storage reduces the requirements for highly reliable
block storage for individual DataNodes. The directory specified by the dfs.data.dir parameter
will experience bulk I/0 transactions and should be optimized for maximum speed. There will
be a large number of files and directories created, each file being an HDFS data block.

The default value for dfs.data.dir is ${hadoop.tmp.dir}/dfs/data. If you don’t change
this default value for ${hadoop.tmp.dir}, the HDFS data will be stored in /tmp and deleted by
the system /tmp cleaning service. This causes interesting chaos for users when their HDFS file’s
data blocks start vanishing about a week after the file was created.

The framework will attempt to create the hadoop.tmp.dir directory and all of the subdirec-
tories if they do not exist. The user that the relevant server processes are running as must have
the required permissions to be able to create these directories and to add and remove files
from them.

A perhaps ideal configuration would be for the NameNode to have a RAID 10 array for the
dfs.name.dir, and for DataNodes and TaskTrackers to have RAID 0 arrays for dfs.data.dir,
mapred.local.dir, and dfs.client.buffer.dir. This configuration assumes that HDFS is doing
redundant block storage at the HDFS level.

Default Shared File System URI and NameNode Location for HDFS

The fs.default.name parameter is critical to configure. If it is not configured, there is no
shared file system. The URI specified here informs the Hadoop Core framework of the
default file system. The default value is file:///, which instructs the framework to use the
local file system.

An example of an HDFS URI is hdfs://NamenodeHost[:8020]/. The file system protocol is
hdfs, the host to contact for services is NamenodeHost, and the port to connect to is 8020, which
is the default port for HDFS. If the default 8020 port is used, the URI may be simplified as
hdfs://NamenodeHost/. This value may be altered by individual jobs. You can choose an arbi-
trary port for the hdfs NameNode.

JobTracker Host and Port

The mapred. job.tracker parameter is critical to configure. If it is not configured, only a single
machine will be used for task execution The URI specified in this parameter informs the
Hadoop Core framework of the JobTracker’s location. The default value is local, which indi-
cates that no JobTracker server is to be run, and all tasks will be run from a single JVM.

The appropriate value for a cluster is JobtrackerHost:8021. The JobtrackerHost is the
host on which the JobTracker server process will be run. This value may be altered by indi-
vidual jobs.

Maximum Concurrent Map Tasks per TaskTracker

The mapred.tasktracker.map.tasks.maximum parameter sets the maximum number of map
tasks that may be run by a TaskTracker server process on a host at one time. The default value
is 2. This value is read only when the TaskTracker is started. Changes made by a job will not be
honored or persist.

This parameter should be tuned to ensure that the CPU resources of the TaskTracker
nodes are fully utilized. If the machine hosts only the TaskTracker, it is common to set

www.it-ebooks.info

hdfs://NamenodeHost[:8020]/
hdfs://NamenodeHost/
http://www.it-ebooks.info/

CHAPTER 3 THE BASICS OF MULTIMACHINE CLUSTERS

this value to the effective number of CPUs on the node. This may result in a large memory
footprint, as each of the JVMs executing tasks will have a full memory allocation.

Many administrators set this value to 1 and require that individual jobs specify that the
class MultiThreadedMapRunner is to be used via the JobConf.setMapRunner (MultiThreadedMap
Runner.class) method, and specify the number of threads to use per map task. The default
number of threads as of Hadoop 0.18.2 is 10, and this value may be altered by setting the num-
ber of threads via the following:

JobConf.set("mapred.map.multithreadedrunner.threads", threadCount);

This latter choice is preferred, as the number of threads may be set on a per-job basis,
allowing the job to customize its CPU consumption.

The following sample snippet demonstrates a common pattern for per-job management
of map task parallelism. The choice of 100 was made for demonstration purposes and is not
suitable for a CPU-intensive map task.

if (conf.getInt("mapred.tasktracker.map.tasks.maximum", 2)==1) {
conf.setMapRunnerClass(MultithreadedMapRunner.class);
conf.setInt("mapred.map.multithreadedrunner.threads", 100);

Maximum Concurrent Reduce Tasks per TaskTracker

The mapred.tasktracker.reduce.tasks.maximum parameter sets the maximum number of
reduce tasks that may be run by an individual TaskTracker server at one time. Unlike in a map
task, the output key ordering is critical for a reduce tasks, which precludes running multi-
threaded reduce tasks. This value also determines the number of parts in which your job
output is placed. The default value, 2, is specified in the conf/hadoop-default.xml file.

Reduce tasks tend to be I/0 bound, and it is not uncommon to have the per-machine
maximum reduce task value set to 1 or 2. This value is utilized when the cluster is started.
Changes made by a job will not be honored or persist.

JVM Options for the Task Virtual Machines

The mapred.child. java.opts parameter is commonly used to set a default maximum heap size
for tasks. The default value is -Xmx200m. Most installation administrators immediately change
this value to -Xmx500m. A significant and unexpected influence on this is the heap requirements
(io.sort.mb), which by default will cause 100MB of space to be used for sorting.

During the run phase of a job, there may be up to mapred.tasktracker.map.tasks.maximum
map tasks and mapred.tasktracker.reduce.tasks.maximum reduce tasks running simulta-
neously on each TaskTracker node, as well as the TaskTracker JVM. The node must have
sufficient virtual memory to meet the memory requirements of all of the JVMs. JVMs have
non-heap memory requirements; for simplicity, 20MB is assumed.

A cluster that sets the map task maximum to 1, the reduce task maximum to 8, and the
JVM heap size to 500MB would need a minimum of (1 + 8 + 1) * (500+20) = 10 * 520 = 5200MB,
or 5GB, of virtual memory available for the JVMs on each TaskTracker host. This 5GB value
does not include memory for other processes or servers that may be running on the node.

The mapred.child. java.opts parameter is configurable by the job.

www.it-ebooks.info

79

http://www.it-ebooks.info/

80

CHAPTER 3 THE BASICS OF MULTIMACHINE CLUSTERS

Enable Job Control Options on the Web Interfaces

Both the JobTracker and the NameNode provide a web interface for monitoring and con-
trol. By default, the JobTracker provides web service on http://JobtrackerHost:50030 and
the NameNode provides web service on http://NamenodeHost :50070. If the webinterface.
private.actions parameter is set to true, the JobTracker web interface will add Kill This Job
and Change Job Priority options to the per-job detail page. The default location of these addi-
tional options is the bottom-left corner of the page (so you usually need to scroll down the
page to see them).

A Sample Cluster Configuration

In this section, we will walk through a simple configuration of a six-node Hadoop cluster. The
cluster will be composed of six machines: mastero1, slave01, slave02, slave03, slave04, and
slaveos. The JobTracker and NameNode will reside on the machine mastero1, and a secondary
NameNode will be placed on slave01. The DataNodes and TaskTrackers will be colocated on
the same machines, and the nodes will be named slave01 through slave05. Figure 3-2 shows
this setup.

Master
NameNode
|_http://master:50070/ |

JobTracker
http://master:50030/

Slave05

DataNode

TaskTracker

Figure 3-2. A simple six-node cluster

The standard machine configuration is usually an eight-CPU machine with 8GB of RAM,
and a hardware RAID controller presenting a single partition to the operating system. This
configuration is the favorite of IT departments. The single partition presentation is not ideal
for Hadoop Core, as there is no opportunity to segregate the I/0O for MapReduce and for HDFS.

Configuration Requirements

This configuration will require the customization of several files in the conf directory and com-
pliance with some simple network requirements. The user that will own the Hadoop processes
must also be determined.

Network Requirements

Hadoop Core uses Secure Shell (SSH) to launch the server processes on the slave nodes.
Hadoop Core requires that passwordless SSH work between the master machines and all of
the slave and secondary machines.

www.it-ebooks.info

http://JobtrackerHost:50030
http://NamenodeHost:50070
http://master:50070/
http://master:50030/
http://www.it-ebooks.info/

CHAPTER 3 THE BASICS OF MULTIMACHINE CLUSTERS

For example, for OpenSSH, you can generate an unencrypted key for the user that will
own the Hadoop Core server processes. The user will need to have a directory, ~/.ssh, that
only the user has access permissions for, on all machines in the cluster. The following com-
mand generates a dsa key with an empty password in the file ~/.ssh/id_dsa:

ssh-keygen -t dsa -P "' -f ~/.ssh/id dsa

This command will generate two files in the ~/.ssh directory: id_dsa and id_dsa.pub. The
quotes in the command are a pair of single quote characters, side by side.

For each machine in the cluster, append the contents of the ~/.ssh/id_dsa.pub file to
the ~/.ssh/authorized keys file. If required, create the ~/.ssh directory and the ~/.ssh/
authorized keys file.

Execute the command chmod og-rwx ~/.ssh on each machine in the cluster.

You should now be able to run bin/slaves.sh uptime and receive the output of uptime
from each of the machines listed in the conf/slaves file, as follows:

bin/slaves.sh uptime | sort

slave01l: 21:18:41 up 47 days, 22:22, 9 users, load average: 1.22, 1.23, 1.26

slave06: 21:18:22 up 20 days, 11:59, 3 users, load average: 0.02, 0.09, 0.13

These slave servers will need to contact their specific master (either the NameNode or the
JobTracker), and this will require that several ports in the low 50000 range be unblocked and
available. Table 3-3 lists the default ports that must be unfiltered and available.

Table 3-3. Default Ports Used by Hadoop Core

Port Setting Description

50030 mapred.job.tracker.http.address JobTracker administrative web GUI
50070 dfs.http.address NameNode administrative web GUI
50010 dfs.datanode.address DataNode control port (each DataNode

listens on this port and registers it with the
NameNode on startup)

50020 dfs.datanode.ipc.address DataNode IPC port, used for block transfer
50060 mapred.task.tracker.http.address Per TaskTracker web interface

50075 dfs.datanode.http.address Per DataNode web interface

50090 dfs.secondary.http.address Per secondary NameNode web interface
50470 dfs.https.address NameNode web GUI via HTTPS

50475 dfs.datanode.https.address Per DataNode web GUI via HTTPS

Note Hadoop Core uses a number of TCP ports in the low 50000 range. If other applications, such as
Squid, are also using ports in this range, difficult-to-diagnose problems may occur.

www.it-ebooks.info

81

http://www.it-ebooks.info/

82

CHAPTER 3 THE BASICS OF MULTIMACHINE CLUSTERS

Advanced Networking: Support for Multihomed Machines

In installations with more complex network topologies, it can become important to control
which network interface is used by Hadoop for interprocess communications (IPC). Some
installations have multiple network interfaces per machine. Hadoop provides two parameters
to control this:

e dfs.datanode.dns.interface: If set, this parameter is the name of the network interface
to be used for HDFS transactions to the DataNode. The IP address of this interface will
be advertised by the DataNode as its contact address.

e dfs.datanode.dns.nameserver: If set, this parameter is the hostname or IP address of a
machine to use to perform a reverse host lookup on the IP address associated with the
specified network interface.

An example of a more complex network setup is for the machines in the Amazon cloud.
Each Amazon cloud machine has two network interfaces: one for Internet access and one for
intracloud traffic. It is helpful to set dfs.datanode.dns.interface to the name of the intracloud
network interface.

Machine Configuration Requirements

In the simplest case, all of the machines in the cluster will be identically configured. They will
have the same number of CPUs, the same amount of physical RAM, and the same disk capac-
ity and configuration, with the same file system mount points. The same version of the JVM
will be installed in the same location, and the Hadoop installation directory will be the same
on all of the machines.

Hadoop Core maintains process ID files in the directory /tmp, by default. This directory
must exist and be writable by the user that will own the Hadoop server processes. This direc-
tory is configurable by editing the conf/hadoop-env. sh file and uncommenting and optionally
altering the setting for the environment variable HADOOP_PID DIR.

Caution Remember that the parent of the directory to be used for hadoop. tmp.dir must exist and be
writable by the Hadoop server user, or the hadoop . tmp.dir directory must exist and be writable by the
Hadoop server user.

Configuration Files for the Sample Cluster

The examples provided in this section were run using the VMware images provided by
Cloudera as part of its boot camp (http://www.cloudera.com/hadoop-training-basic). The
boot camp VMware image 0.2 is used.

The hadoop-site.xml File

The hadoop-site.xml file contains the XML-based configuration data for our sample cluster.
The source code for this file is provided with the rest of this book’s downloadable code.

www.it-ebooks.info

http://www.cloudera.com/hadoop-training-basic
http://www.it-ebooks.info/

CHAPTER 3 THE BASICS OF MULTIMACHINE CLUSTERS

The partition /hadoop is used as the value for hadoop.tmp.dir, and is assumed to be on the
hardware RAID partition.

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<configuration>

<property>
<name>hadoop.tmp.dir</name>
<value>/hadoop</value>
<description>A base for other temporary directories. Set to a
directory off of the user's home directory for the simple test.
</description>
</property>

The NameNode is configured by setting fs.default.name to hdfs://mastero1. The port of
8020 is implicit in the protocol declaration.

<property>
<name>fs.default.name</name>
<value>hdfs://masteroi</value>
<description>The name of the default file system. A URI whose
scheme and authority determine the FileSystem implementation. The
uri's scheme determines the config property (fs.SCHEME.impl) naming
the FileSystem implementation class. The uri's authority is used to
determine the host, port, etc. for a filesystem. Pass in the hostname
via the -Dhadoop.namenode=NAMENODE HOST java option.
</description>
</property>

The JobTracker is configured by setting mapred. job.tracker to master01:8011. The value
for mapred.job.tracker is not interpreted as a URI, but rather as a host:port pair. The port
must be specified explicitly.

<property>
<name>mapred. job.tracker</name>
<value>master01:8012</value>
<description>The host and port that the MapReduce job tracker runs
at. If "local", then jobs are run in-process as a single map
and reduce task.
Pass in the jobtracker hostname via the
-Dhadoop. jobtracker=JOBTRACKER _HOST java option.
</description>
</property>

For setting the maximum number of map and reduce tasks per TaskTracker, several
assumptions are made. The first assumption is that the map tasks will be threaded, and the
individual jobs will choose a thread count that optimizes CPU utilization. This results in a set-
ting of 1 for mapred. tasktracker.map.tasks.maximum.

www.it-ebooks.info

83

hdfs://master01
hdfs://master01</value
http://www.it-ebooks.info/

84 CHAPTER 3 THE BASICS OF MULTIMACHINE CLUSTERS

<property>
<name>mapred.tasktracker.map.tasks.maximum
</name>
<value>1</value>
<description>The maximum number of map tasks that will be run
simultaneously by a task tracker.
</description>
</property>

The DataNode also will run on the same machine; therefore, you must budget for CPU
and memory resources. In the best of all worlds, the DataNode would use a different set of
disks for I/0 than the TaskTracker. The setting for the mapred.tasktracker.reduce.tasks.
maximum parameter is 6. This leaves CPU and I/0 available for the DataNode. It is possible that
the reduce tasks jobs are CPU-bound, but generally, the shuffle phase is CPU-bound and the
reduce phase is I/0 bound. In a high-performance cluster, these parameters will be carefully
tuned for specific jobs.

<property>
<name>mapred.tasktracker.reduce.tasks.maximum
</name>
<value>6</value>
<description>The maximum number of reduce tasks that will be run
simultaneously by a task tracker.
</description>
</property>

Very few MapReduce jobs will run in the 200MB default heap size specified for the JVMs.
To alter this to a more reasonable default, mapred.child. java.opts is set to -Xmx512m -server
The -server configures the JVM for the HotSpot JVM and provides other performance
optimizations.

<property>
<name>mapred.child. java.opts</name>
<value>-Xmx512m -server</value>
<description>Java opts for the task tracker child processes.
The following symbol, if present, will be interpolated: @taskid@ is
replaced by current TaskID. Any other occurrences of '@' will go
unchanged.
For example, to enable verbose gc logging to a file named
for the taskid in /tmp and to set the heap maximum to be a gigabyte,
pass a 'value' of:
-Xmx1024m -verbose:gc -Xloggc:/tmp/@taskid@.gc
The configuration variable mapred.child.ulimit can be used to control
the maximum virtual memory of the child processes.
Leave this unchanged from the default as io.sort.mb has been reduced for
our test purposes.
</description>
</property>

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 THE BASICS OF MULTIMACHINE CLUSTERS

Finally, webinterface.private.actions is set to true, the recommended value for any
cluster that doesn’t require significant security.

<property>
<name>webinterface.private.actions</name>
<value>true</value>
<description> If set to true, the web interfaces of JT and NN may
contain actions, such as kill job, delete file, etc., that should
not be exposed to public. Enable this option if the interfaces
are only reachable by those who have the right authorization.
Enable this option if at all possible as it greatly simplifies
debugging.
</description>
</property>

</configuration>

The slaves and masters Files

The slaves file contains five lines, each with one slave machine’s hostname.

slaveo1
slave02
slave03
slaveo4
slaveos

The masters file controls which machines run secondary NameNodes. The default con-
figuration contains a single line containing localhost, which provides no real protection from
machine or disk failure. It is a wise precaution to have a secondary NameNode on another
machine. For this simple configuration example, the masters file has a single line with slave01.

slave0o1

The hadoop-metrics.properties File

The hadoop-metrics.properties file assumes that Ganglia is set up on the machine mastero1,
and that some machine is set up with the Ganglia web interface and pulling data from
master01. Installation and use of Ganglia are covered in Chapter 8.

Configuration of the "dfs" context for null
#dfs.class=org.apache.hadoop.metrics.spi.NullContext

Configuration of the "dfs" context for file
#dfs.class=org.apache.hadoop.metrics.file.FileContext
#dfs.period=10

#dfs.fileName=/tmp/dfsmetrics.log

www.it-ebooks.info

85

http://www.it-ebooks.info/

86

CHAPTER 3 THE BASICS OF MULTIMACHINE CLUSTERS

Configuration of the "dfs" context for ganglia
dfs.class=org.apache.hadoop.metrics.ganglia.GangliaContext
dfs.period=10

dfs.servers=master01:8649

Configuration of the "mapred" context for null
mapred.class=org.apache.hadoop.metrics.spi.NullContext

Configuration of the "mapred" context for file
#fmapred.class=org.apache.hadoop.metrics.file.FileContext
#fmapred.period=10

#fmapred.fileName=/tmp/mrmetrics.log

Configuration of the "mapred" context for ganglia
mapred.class=org.apache.hadoop.metrics.ganglia.GangliaContext
mapred.period=10

mapred.servers=master01:8649

Configuration of the "jvm" context for null
#jvm.class=org.apache.hadoop.metrics.spi.NullContext

Configuration of the "jvm" context for file
#jvm.class=org.apache.hadoop.metrics.file.FileContext
#jvm.period=10

#jvm.fileName=/tmp/jvmmetrics.log

Configuration of the "jvm" context for ganglia
jvm.class=org.apache.hadoop.metrics.ganglia.GangliaContext
jvm.period=10

jvm.servers=master01:8649

Distributing the Configuration

One of the reasons for requiring that all of the machines be essentially identical is that this
greatly simplifies managing the cluster configuration. All of the core configuration files can
be identical, which allows the use of the Unix rsync command to distribute the configura-
tion files.

The command I like to use assumes that HADOOP_HOME is set correctly:

for a in “sort -u $HADOOP HOME/conf/{slaves,masters} ; do =
rsync -e ssh -a --exclude 'logs/*' --exclude 'src/* w»
--exclude 'docs/*' "${HADOOP_HOME}" ${a}:"${HADOOP HOME}"; done

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 THE BASICS OF MULTIMACHINE CLUSTERS

Note This command assumes that the current machine is not listed in the slaves or masters file. It's a
very good test of the passwordless SSH configuration.

This command says that for each host that will run a server, distribute all of the Hadoop
installation files except for the src (--exclude 'src/*'),logs (--exclude 'logs/*'), and
docs (--exclude 'docs/*'). This ensures that all servers are running the same configuration
files and the same Hadoop JARs. The -e ssh forces rsync to use SSH to establish the remote
machine connections.

If your installation requires different configuration files on a per-machine basis, some
other mechanism will be required to ensure consistency and correctness for the Hadoop
installations and configuration files.

Verifying the Cluster Configuration

You should take a few steps to verify that that the cluster is installed and configured properly.
At this point, you can assume that the Hadoop installation has been replicated to the same
location across the cluster machines and that passwordless SSH is working. So, you should
check the location of the JVM and make sure that HADOOP_PID DIR can be written.

To verify that the JVM is in place and that JAVA_HOME is set correctly, run the following
commands from the master machine:

master01% $for a in w»
“sort -u "${HADOOP_HOME}"/conf/slaves ${HADOOP HOME}"/conf/masters”; w
do echo -n $a " ";ssh $a -n 1s -1 ""${JAVA HOME}"/bin/java'; done

slave01 /usr/java/..../bin/java
slave02 /usr/java/..../bin/java
slave03 /usr/java/..../bin/java
slave04 /usr/java/..../bin/java
slave05 /usr/java/..../bin/java

masterol% ls -1 "${JAVA HOME}"/bin/java

/usr/java/..../bin/java

Every slave machine, as well as the local machine, should have an output line. If Java is
not available on a machine in the expected location, install the JVM on that machine and set
the JAVA_HOME environment variable to reflect the JVM installation directory.

The next item to verify is that the various required paths exist with the proper permis-
sions or that the proper paths can be created. There are two directories to check: the directory
specified as the hadoop. tmp.dir, in this case /hadoop, and the directory specified in the
conf/hadoop.env.sh script for HADOOP_PID DIR, in this case /var/hadoop/pids.

www.it-ebooks.info

87

http://www.it-ebooks.info/

88

CHAPTER 3 THE BASICS OF MULTIMACHINE CLUSTERS

Caution Al of the commands in this section must be run from the master machine and as the user that
will own the cluster servers. Failure to do this will invalidate the verification process and may cause the
cluster startup to fail in complex ways. The shell environment is also expected to be set up, as detailed in
Chapter 2, such that both java and the bin directory of the Hadoop installation are the first two components
of the PATH environment variable. The user that owns the cluster processes will be referred to in some of the
following text as CLUSTER _USER.

Execute the following command to verify that HADOOP_PID DIR and hadmp.tmp.dir are
writable.

master01% for a in =
“sort -u "${HADOOP_HOME}/conf/slaves" "${HADOOP HOME}/conf/masters"” “hostname”; w»
do echo "${a} "; touch /var/hadoop/pids/dummy; touch /hadoop/dummy; done

slaveo1
slave02
slave03
slaveo4
slave05
master0l

The command must not have any errors. Any error message about being unable to create
the file dummy must be corrected before the next step is attempted.

At this point, you have checked that the cluster installation and configuration are correct,
and that passwordless SSH is enabled. It is time to format the HDFS file system and to start the
HDEFS and MapReduce services.

Formatting HDFS

The command to format HDFS is very simple. If there has been an existing HDFS file system
with the same hadoop.tmp.dir, it is best to remove all traces of it with the Unix rm command
before formatting a new file system.

hadoop namenode -format

08/12/21 19:45:32 INFO dfs.NameNode: STARTUP_MSG:
/**
STARTUP_MSG: Starting NameNode

STARTUP_MSG: host = master01/127.0.0.1

STARTUP_MSG: args = [-format]

STARTUP_MSG: version = 0.18.2-dev

STARTUP_MSG: build = -1 ; compiled by 'jason' on Sun Nov 16 20:16:42 PST 2008
**/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 THE BASICS OF MULTIMACHINE CLUSTERS

fs.FSNamesystem: fsOwner=jason,jason,lp

fs.FSNamesystem: supergroup=supergroup

fs.FSNamesystem: isPermissionEnabled=true

dfs.Storage: Image file of size 79 saved in 0 seconds.

dfs.Storage: Storage directory /hadoop/dfs/name has been successfully formatted.
dfs.NameNode: SHUTDOWN MSG:
/**

SHUTDOWN_MSG: Shutting down NameNode at at/127.0.0.1
**/

Starting HDFS

Starting HDFS is also quite simple. It may be started with the MapReduce portion of the clus-
ter via start-all.sh. Here, I'll show you how to start HDFS separately to demonstrate the
commands, as it is common to separate the HDFS master and configuration from the MapRe-
duce master and configuration.

master0oi1% bin/start-dfs.sh

starting namenode, logging to w»
/home/training/hadoop-0.19.0/bin/../logs/HT-namenode-masterol.out
slaveo1l: starting datanode, logging to w»
/home/training/hadoop-0.19.0/bin/../logs/HT-datanode-slave01.out
slave02: starting datanode, logging to w»
/home/training/hadoop-0.19.0/bin/../logs/HT-datanode-slave02.out
slaveos5: starting datanode, logging to w»
/home/training/hadoop-0.19.0/bin/../logs/HT-datanode-slave05.out
slave03: starting datanode, logging to w»
/home/training/hadoop-0.19.0/bin/../logs/HT-datanode-slave03.out
slaveo4: starting datanode, logging to w»
/home/training/hadoop-0.19.0/bin/../logs/HT-datanode-slave04.out
slaveo1l: starting secondarynamenode, logging to w»

= /home/training/hadoop-0.19.0/bin/../logs/HT-secondarynamenode-slave01.out

Your output should look similar to the preceding sample output. Some common reasons
for failures are listed in the next section.

After roughly one minute, allowing the DataNodes time to start and connect to the
NameNode, issue the command that reports on the status of the DataNodes:

hadoop dfsadmin -report

Total raw bytes: 5368709120 (5 GB)
Remaining raw bytes: 5368709120 (5 GB)
Used raw bytes: 0 (0 GB)

% used: 0.00%

www.it-ebooks.info

89

http://www.it-ebooks.info/

90

CHAPTER 3 THE BASICS OF MULTIMACHINE CLUSTERS

Total effective bytes: 0 (0 KB)
Effective replication multiplier: Infinity

Datanodes available: 5

Name: 192.168.0.10:50010

State : In Service

Total raw bytes: 1073741824 (1 GB)
Remaining raw bytes: 1073741824(1.04 GB)
Used raw bytes: 0 (2.18 GB)

% used: 0.00%

Last contact: Sun Dec 21 19:30:14 PST 2008

Name: 192.168.0.11:50010

State : In Service

Total raw bytes: 1073741824 (1 GB)
Remaining raw bytes: 1073741824(1.04 GB)
Used raw bytes: 0 (2.18 GB)

% used: 0.00%

Last contact: Sun Dec 21 19:30:14 PST 2008

Name: 192.168.0.12:50010

State : In Service

Total raw bytes: 1073741824 (1 GB)
Remaining raw bytes: 1073741824(1.04 GB)
Used raw bytes: 0 (2.18 GB)

% used: 0.00%

Last contact: Sun Dec 21 19:30:14 PST 2008

Name: 192.168.0.13:50010

State : In Service

Total raw bytes: 1073741824 (1 GB)
Remaining raw bytes: 1073741824(1.04 GB)
Used raw bytes: 0 (2.18 GB)

% used: 0.00%

Last contact: Sun Dec 21 19:30:14 PST 2008

Name: 192.168.0.14:50010

State : In Service

Total raw bytes: 1073741824 (1 GB)
Remaining raw bytes: 1073741824(1.04 GB)
Used raw bytes: 0 (2.18 GB)

% used: 0.00%

Last contact: Sun Dec 21 19:30:14 PST 2008

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 THE BASICS OF MULTIMACHINE CLUSTERS

In the sample cluster configuration, five DataNodes should report. If there are not five
DataNodes, or the HDFS reports that it is in safe mode, something has gone wrong. Detailed
log messages will be available in the logs directory of the Hadoop installation on the slave that
is not reporting. The log file will be named hadoop-datanode-slaveXxX.log.

The final test is to attempt to copy a file into HDFS, as follows:

bin/hadoop dfs -touchz my first file
bin/hadoop dfs -1s my first file.

-Iw-r--r-- 3 training supergroup 0 2009-04-03 01:57 =
/user/training/my first file

A zero-length file named my first file will be created in the /user/USERNAME directory,
where USERNANME is the username of the user running the touchz command.

Correcting Errors

The most common errors should not occur if the verification steps detailed in the preceding
sections completed with no errors. Here are some errors you might come across:

e HADOOP_PID DIR is not writable by the CLUSTER_USER.

 The directory specified for hadoop.tmp.dir does not exist with full access permissions
for CLUSTER_USER, or could not be created.

¢ The JVM may be missing or installed in a different location.

¢ The environment set up on login for CLUSTER_USER may not set up JAVA_HOME and
HADOOP_HOME correctly.

e HADOOP_HOME is not in an identical location on all of the cluster machines.

e Passwordless SSH to some subset of the machines may not be working, or the master
machine cannot connect to the slave machines via SSH due to firewall or network
topology reasons. This will be clear from the error response of the start command.

¢ The servers on the slave machines may not be able to connect to their respective mas-
ter server due to firewall or network topology issues. If this is a problem, there will be
a somewhat descriptive error message in the server (TaskTracker or DataNode) log file
on the slave machine. Resolving network topology and firewall issues will require sup-
port from your local network administrator.

The most exotic error should not occur at this point, as your installation should be using
the Hadoop Core default classpath. If there is an error message in a log file that indicates that
Jetty could not start its web server, there is a nonvalidating XML parser in the classpath ahead
of the validating XML parser that Hadoop Core supplies. This may be fixed by reordering the
classpath or by explicitly setting the XML parser by setting a Java property. You can modify the
HADOOP_OPTS environment variable to include this string:

-Djavax.xml.parsers.SAXParserFactory=org.apache.xerces.jaxp.SAXParserFactoryImpl

Alternatively, you can alter the setting of HADOOP_OPTS in conf/hadoop-env.sh.

www.it-ebooks.info

91

http://www.it-ebooks.info/

CHAPTER 3 THE BASICS OF MULTIMACHINE CLUSTERS

Caution It is highly recommended that you verify the termination of all Hadoop Core server processes
across the cluster before attempting a restart. It is also strongly recommended that the hadoop . tmp.dir
have its contents wiped on all cluster machines between attempts to start a new HDFS, and then the file sys-
tem be reformatted as described in this chapter.

The Web Interface to HDFS

The NameNode web interface will be available via HTTP on port 50070,
http://master01:50070/. As shown in Figure 3-3, this interface shows information about the
cluster. It also provides links to browse the file system, view the NameNode logs, and to drill
down to specific node information.

NameNode '192.168.1.2:8020"

Started: Thu Apr 23 12:42:29 GMT-08:00 2009
Version: 0.19.1-dev, r

Compiled: Tue Mar 17 04:03:57 PDT 2009 by jason
Upgrades: There are no upgrades in progress.

Browse the filesystem
Namenode Logs

Cluster Summary

10 files and directories, 0 blocks = 10 total. Heap Size is 7.93 MB / 992.31 MB (0%)

Configured Capacity : 191.58 GB
DFS Used : 76 KB
Non DFS Used : 176.93 GB
DFS Remaining : 14.65 GB
DFS Used% : 0%
DFS Remaining% : 7.65%
Live Nodes : 2
Dead Nodes : 0

Live Datanodes : 2

Last . Configured Used | Non DFS | Remaining | Used Used Remaining
Hode Contact | Admin State | oo ity (GB) | (GB) | Used (GB) | (GB)))) | Blocks
192.168.1.119 1] Insenice 165.6 0 151.92 13.67 0 8.26 0
192.168.1.2 0| InSenice 25.08 0 25 0.98 0 3.77 0

Dead Datanodes : 0

Figure 3-3. NameNode web interface

Starting MapReduce

The MapReduce portion of the cluster will be started by the start-mapred.sh command.

If there are any errors when starting the TaskTrackers, the detailed error message will be
in the logs directory on the specific slave node of the failed TaskTracker. The log file will be
hadoop-slaveXX-tasktracker.log. The common reasons for failure are very similar to those for
HDFS node startup failure.

www.it-ebooks.info

http://master01:50070/
http://www.it-ebooks.info/

CHAPTER 3 THE BASICS OF MULTIMACHINE CLUSTERS

For example, when I ran the example, on slave01, there was a process using the
standard TaskTracker port that I was unaware of, and when the cluster was started, the
TaskTracker did not start on slave01. I received the log message shown in Listing 3-1. This
is a clear indication that some process is holding open a required port. The log file was in
${HADOOP_HOME }/1ogs/HT-tasktracker-slaveo1.log.

Listing 3-1. Tasktracker Error Log Message Due to TCP Port Unavailability

2009-04-03 01:42:00,511 INFO org.apache.hadoop.mapred.TaskTracker: STARTUP_MSG:
/**
STARTUP_MSG: Starting TaskTracker
STARTUP_MSG: host = slave01/192.168.1.121
STARTUP_MSG: args = []
STARTUP_MSG: version = 0.19.0
STARTUP_MSG: build = =
https://svn.apache.org/repos/asf/hadoop/core/branches/branch-0.19 -r 713890; =
compiled by 'ndaley' on Fri Nov 14 03:12:29 UTC 2008
**/
INFO org.mortbay.http.HttpServer: Version Jetty/5.1.4
INFO org.mortbay.util.Credential: Checking Resource aliases
INFO org.mortbay.util.Container: Started w
org.mortbay.jetty.servlet.WebApplicationHandler@dc57db
INFO org.mortbay.util.Container: Started WebApplicationContext[/static,/static]
INFO org.mortbay.util.Container: Started w
org.mortbay.jetty.servlet.WebApplicationHandler@8e32e7
INFO org.mortbay.util.Container: Started WebApplicationContext[/logs,/logs]
INFO org.mortbay.util.Container: Started w
org.mortbay.jetty.servlet.WebApplicationHandler@15253d5
WARN org.mortbay.http.HttpContext: Can't reuse /tmp/Jetty 50060 , using w»
/tmp/Jetty_ 50060 954083005982349324
INFO org.mortbay.util.Container: Started WebApplicationContext[/,/]
WARN org.mortbay.util.ThreadedServer: Failed to start: SocketlListenero@0.0.0.0:50060
ERROR org.apache.hadoop.mapred.TaskTracker: Can not start task tracker because w
java.net.BindException: Address already in use

at java.net.PlainSocketImpl.socketBind(Native Method)

at java.net.PlainSocketImpl.bind(PlainSocketImpl.java:359)

at java.net.ServerSocket.bind(ServerSocket.java:319)

at java.net.ServerSocket.<init>(ServerSocket.java:185)

at org.mortbay.util.ThreadedServer.newServerSocket(ThreadedServer.java:391)

at org.mortbay.util.ThreadedServer.open(ThreadedServer.java:477)

at org.mortbay.util.ThreadedServer.start(ThreadedServer.java:503)

at org.mortbay.http.SocketListener.start(SocketListener.java:203)

at org.mortbay.http.HttpServer.doStart(HttpServer.java:761)

at org.mortbay.util.Container.start(Container.java:72)

at org.apache.hadoop.http.HttpServer.start(HttpServer.java:321)

at org.apache.hadoop.mapred.TaskTracker.<init>(TaskTracker.java:894)

at org.apache.hadoop.mapred.TaskTracker.main(TaskTracker.java:2698)

www.it-ebooks.info

93

https://svn.apache.org/repos/asf/hadoop/core/branches/branch-0.19
mailto:SocketListener0@0.0.0.0:50060
http://www.it-ebooks.info/

CHAPTER 3 THE BASICS OF MULTIMACHINE CLUSTERS

Running a Test Job on the Cluster

To test the cluster configuration, let’s run our old friend the Hadoop Core example pi (intro-
duced in Chapter 1). Recall that this program takes two arguments: the number of maps and
the number of samples. In this case, the cluster has five map slots, so you will set the number
of maps to five. You have a couple of machines, so you can set the number of samples to a
moderately large number—say 10,000. Your results should be similar to the following:

cd $HADOOP_HOME; hadoop jar hadoop-0.18.2-examples.jar 5 10000

Number of Maps = 5 Samples per Map = 10000

Wrote input for Map #0

Wrote input for Map #1

Wrote input for Map #2

Wrote input for Map #3

Wrote input for Map #4

Starting Job

jvm.JvmMetrics: Initializing JVM Metrics with processName=JobTracker, sessionld=
mapred.FileInputFormat: Total input paths to process : 5
mapred.FileInputFormat: Total input paths to process : 5
mapred.JobClient: Running job: job_local 0001
mapred.FileInputFormat: Total input paths to process : 5
mapred.FileInputFormat: Total input paths to process : 5
mapred.LocalJobRunner: Generated 9001 samples.
mapred.JobClient: map 100% reduce 0%
mapred.LocalJobRunner: Generated 9001 samples.
mapred.LocalJobRunner: Generated 9001 samples.
mapred.LocalJobRunner: Generated 9001 samples.
mapred.LocalJobRunner: Generated 9001 samples.
mapred.ReduceTask: Initiating final on-disk merge with 5 files
mapred.Merger: Merging 5 sorted segments

mapred.Merger: Down to the last merge-pass, with 5 w»
segments left of total size: 190 bytes
mapred.LocalJobRunner: reduce > reduce

mapred.JobClient: map 100% reduce 100%
mapred.JobClient: Job complete: job_local 0001
mapred.JobClient: Counters: 11

mapred.JobClient: File Systems

mapred.JobClient: Local bytes read=632904
mapred.JobClient: Local bytes written=731468
mapred.JobClient: Map-Reduce Framework
mapred.JobClient: Reduce input groups=2
mapred.JobClient: Combine output records=0
mapred.JobClient: Map input records=5
mapred.JobClient: Reduce output records=0
mapred.JobClient: Map output bytes=160
mapred.JobClient: Map input bytes=120

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 THE BASICS OF MULTIMACHINE CLUSTERS

mapred.JobClient: Combine input records=0
mapred.JobClient: Map output records=10
mapred.JobClient: Reduce input records=10

Job Finished in 1.807 seconds
Estimated value of PI is 3.14816

Summary

This chapter provided a simple walk-through of configuring a small Hadoop Core cluster.
It did not discuss the tuning parameters required for a larger or a high-performance cluster.
These parameters will be covered in Chapters 4 and 6.

For a multimachine cluster to run, the configuration must include the following:

¢ List of slave machines (conf/slaves)
¢ Network location of the JobTracker server (mapred. job.tracker)
¢ Network location of the NameNode server (fs.default.name)

* Persistent location on the cluster machines to store the data for HDFS (hadoop. tmp.dir)

You now have an understanding of what a master node is, what the NameNode and Job-
Tracker servers do, and what DataNode and TaskTracker servers are. You may have even set
up a multimachine cluster and run jobs over it. Go forth and grid compute.

www.it-ebooks.info

95

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4

HDFS Details for Multimachine
Clusters

As you learned in the previous chapter, the defaults provided for multimachine clusters will
work well for very small clusters, but they are not suitable for large clusters (the clusters will
fail in unexpected and difficult-to-understand ways). This chapter covers HDES installation
for multimachine clusters that are not very small, as well as HDFS tuning factors, recovery pro-
cedures, and troubleshooting tips. But first, let’s look at some of the configuration trade-offs
faced by IT departments.

Configuration Trade-0ffs

There appears to be an ongoing conflict between the optimal machine and network configura-
tions for Hadoop Core and the configurations required by IT departments.

IT departments are generally looking for low-overhead ways of maintaining high avail-
ability for all equipment. The IT department model commonly requires RAID 1 and RAID 5 for
disks to minimize machine downtime from disk failures. IT departments also prefer managed
network switches, as this allows for reporting and virtual local area network (VLAN) configu-
rations. These strategies reduce the risk of machine failure and provide network diagnostics,
flexibility, and simplified administration. Operations staff also prefer high-availability solu-
tions for production applications.

Hadoop Core does not need highly reliable storage on the DataNode or TaskTracker
nodes. Hadoop Core greatly benefits from increased network bandwidth.

The highest performance Hadoop Core installations will have separate and possibly
multiple disks or arrays for each stream of I/0. The DataNode storage will be spread over
multiple disks or arrays to allow interleaved I/0, and the TaskTracker intermediate output
will also go to a separate disk or array. This configuration reduces the contention for I/0
on any given array or device, thus increasing the maximum disk I/O performance of the
machine substantially. If the switch ports are inexpensive, using bonded network interface
cards (NICs) to increase per machine network bandwidth will greatly increase the I/0 per-
formance of the cluster.

Hadoop Core provides high availability of DataNode and TaskTracker services without
requiring special hardware, software, or configuration. However, there is no simple solution
for high availability for the NameNode or JobTracker. High availability for the NameNode is
an active area of development within the Hadoop community. The techniques described in

www.it-ebooks.info

97

http://www.it-ebooks.info/

98

CHAPTER 4 HDFS DETAILS FOR MULTIMACHINE CLUSTERS

this chapter allow for rapid recovery from NameNode failures. All of these techniques require
special configuration and have some performance cost. With Hadoop 0.19.0, there is built-in
recovery for JobTracker failures, and generally, high availability for the JobTracker is not con-
sidered critical.

AFFORDABLE DISK PERFORMANCE VS. NETWORK PERFORMANCE

Hadoop Core is designed to take advantage of commodity hardware, rather than more expensive special-
purpose hardware.

In my experience, the bulk of custom-purchased Hadoop nodes appear to be 2U 8-way machines, with
six internal drive bays, two Gigabit Ethernet (GigE) interfaces, and 8GB of RAM. Most of the disk drives that
are being used for Hadoop are inexpensive SATA drives that generally have a sustained sequential transfer
rate of about 70Mbps.

The RAID setup preferred by my IT department groups six of these drives in a RAID 5 array that provides
roughly 250 Mbps sequential transfers to the application layer. Mixed read/write operations provide about
100 Mbps, as all I/0 operations require seeks on the same set of drives. If the six drives were provided as
individual drives or as three RAID 0 pairs, the mixed read/write 1/0 transfer rate would be higher, as seeks for
each I/0 operation could occur on different drives.

The common network infrastructure is Gige network cards on a GigE switch, providing roughly
100 Mbps /0. I've used bonded pairs of GigE cards to provide 200 Mbps I/0 for high-demand DataNodes to
good effect.

IT departments seem to prefer large managed switches, resulting in a high per-port cost. For Hadoop
nodes, providing dumb, unmanaged crosshar switches for the DataNodes is ideal.

HDFS Installation for Multimachine Clusters

Setting up an HDFS installation for a multimachine cluster involves the following steps:

¢ Build the configuration.

¢ Distribute your installation data to all of the machines that will host HDEFS servers.
¢ Format your HDEFS.

¢ Start your HDFS installation.

¢ Verify HDFS is running.

The following sections detail these steps.

Building the HDFS Configuration

As discussed in the previous chapter, building the HDFS configuration requires generating
the conf/hadoop-site.xml, conf/slaves, and conf/masters files. You also need to custom-
ize the conf/hadoop-env.sh file.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 HDFS DETAILS FOR MULTIMACHINE CLUSTERS

Generating the conf/hadoop-site.xml File

In the conf/hadoop-site.xml file, you tell Hadoop where the data files reside on the file system.
At the simplest level, this requires setting a value for hadoop.tmp.dir, and providing a value for
fs.default.name to indicate the master node of the HDFS cluster, as shown in Listing 4-1.

Listing 4-1. A Minimal hadoop-site.xml for an HFS Cluster (conf/hadoop-site.xml)

<property>
<name>fs.default.name</name>
<value>hdfs://master:54310/</value>
<description>The name of the default file system. A URI whose
scheme and authority determine the FileSystem implementation. The
uri's scheme determines the config property (fs.SCHEME.impl) naming
the FileSystem implementation class. The uri's authority is used to
determine the host, port, etc. for a filesystem.</description>
</property>

<property>
<name>hadoop.tmp.dir</name>
<value>/hdfs</value>
<description>A base for other all storage directories,
temporary and persistent.</description>
</property>

This will configure a cluster with a NameNode on the host master, and all HDFS storage
under the directory /hdfs.

Generating the conf/slaves and conf/masters Files

On the machine master, create the conf/slaves file, and populate it with the names of the
hosts that will be DataNodes, one per line.

In the file conf/masters, add a single host to be the secondary NameNode. For safety,
make it a separate machine, rather than localhost.

Customizing the conf/hadoop-env.sh File

The conf/hadoop-env. sh file provides system environment configuration information for all
processes started by Hadoop, as well as all processes run by the user through the scripts in the
bin directory of the installation. At a very minimum, this script must ensure that the correct
JAVA _HOME environment variable is set. Table 4-1 provides a list of the required, commonly set,
and optional environment variables.

www.it-ebooks.info

99

hdfs://master:54310/</value
http://www.it-ebooks.info/

100

CHAPTER 4

HDFS DETAILS FOR MULTIMACHINE CLUSTERS

Table 4-1. Environment Variables for Hadoop Processes

Variable

Description

Default

JAVA_HOME

HADOOP_NAMENODE_OPTS

HADOOP _SECONDARY
NAMENODE_OPTS

HADOOP_DATANODE_OPTS
HADOOP_BALANCER OPTS
HADOOP_JOBTRACKER _

OPTS

HADOOP_TASKTRACKER _
OPTS

HADOOP_CLIENT OPTS

HADOOP_SSH_OPTS

HADOOP_LOG DIR

HADOOP_SLAVES

HADOOP_SLAVE SLEEP

HADOOP_PID DIR

This is required. It must be the root of the
JDK installation, such that ${JAVA_HOME}/
bin/java is the program to start a JVM.

Additional command-line arguments for the
NameNode server. The default enables local
JMX access.

Additional command-line arguments for the
secondary NameNode server. The default
enables local JMX access.

Additional command-line arguments for the
DataNode servers. The default enables local
JMX access.

Additional command-line arguments for the
Balancer service. The default enables local
JMX access.

Additional command-line arguments for the
JobTracker server. The default enables local
JMX access.

Additional command-line arguments for the
TaskTracker servers.

Additional command-line arguments for all
nonserver processes started by bin/hadoop.
This is not applied to the server processes,
such as the NameNode, JobTracker,
TaskTracker, and DataNode.

Additional command-line arguments for any
ssh process run by scripts in bin. This
commented-out option in the stock hadoop-
env.sh file sets the ssh connection timeout
to 1 second and instructs ssh to forward the
HADOOP_CONF_DIR environment variable to
the remote shell.

The root directory path that Hadoop logging
files will be created under.

The path of the file containing the list of
hostnames to be used as DataNode and or
TaskTracker servers.

The amount of time to sleep between ssh
commands when operating on all of the
slave nodes.

The directory that server process ID (PID)
files are written to. Used by the service start
and stop scripts to determine if a prior
instance of a server is running. The default,
/tmp, is not a good location, as the server PID
files will be periodically removed by the
system temp file cleaning service.

www.it-ebooks.info

System JDK

"-Dcom.sun.management.
jmxremote $HADOOP
NAMENODE_OPTS"

"-Dcom.sun.management.
jmxremote $HADOOP_
SECONDARYNAMENODE
OPTS"

"-Dcom.sun.management.
jmxremote $HADOOP_
DATANODE_OPTS"

"-Dcom.sun.management.
jmxremote $HADOOP
BALANCER_OPTS"

"-Dcom.sun.management.
jmxremote $HADOOP
JOBTRACKER OPTS"

"-0 ConnectTimeout=
1-0 SendEnv=HADOOP
CONF_DIR"

${HADOOP_HOME}/logs

${HADOOP_HOME}/conF/
slaves

0.1

/tmp

http://www.it-ebooks.info/

CHAPTER 4 HDFS DETAILS FOR MULTIMACHINE CLUSTERS

Variable Description Default

HADOOP_IDENT_STRING Used in constructing path names for cluster $USER
instance-specific file names, such as the file
names of the log files for the server processes
and the PID files for the server processes.

HADOOP_NICENESS CPU scheduling nice factor to apply to server
processes. 5 is recommended for DataNode
servers and 10 for TaskTrackers. The sug-
gested settings prioritize the DataNode over
the TaskTracker to ensure that DataNode
requests are more rapidly serviced. They also
help ensure that the NameNode or JobTracker
servers have priority if a DataNode or
TaskTracker is colocated on the same
machine. These suggested settings facilitate
smooth cluster operation and enable
easier monitoring.

HADOOP_CLASSPATH Extra entries for the classpath for all Hadoop
Java processes. If your jobs always use spe-
cific JARs, and these JARs are available on all
systems in the same location, adding the
JARs here ensures that they are available to
all tasks and reduces the overhead in setting
up a job on the cluster.

HADOOP_HEAPSIZE The maximum process heap size for run-
ning tasks. 2000, indicating 2GB, is suggested.
See this book’s appendix for details on the
JobConf object.

HADOOP_OPTS Additional command-line options for all -server
processes started by bin/hadoop. This
setting is normally present but com-
mented out.

Distributing Your Installation Data

Distribute your Hadoop installation to all the machines in conf/masters and conf/slaves, as
well as the machine master. Ensure that the user that will own the servers can write to /hdfs
and the directory set for HADOOP_PID DIR in conf/hadoop-env.sh, on all of the machines in
conf/masters, conf/slaves, and master.

Finally, ensure that passwordless SSH from master to all of the machines in conf/masters
and conf/slaves works.

www.it-ebooks.info

101

http://www.it-ebooks.info/

102 CHAPTER 4 HDFS DETAILS FOR MULTIMACHINE CLUSTERS

SETTING JAVA_HOME AND PERMISSIONS

The user is responsible for ensuring that the JAVA_HOME environment variable is configured. The framework
will issue an ssh call to each slave machine:

execute ${HADOOP_HOME}/bin/hadoop-daemon.sh start SERVER

This sources ${HADOOP_HOME }/conf/hadoop-env. sh.

The administrator is also responsible for ensuring that the JAVA_HOME environment variable is set cor-
rectly in the login scripts or in the hadoop-env. sh script.

Additionally, the administrator must ensure that the storage directories are writable by the
Hadoop user. In general, this simply means constructing the hadoop . tmp . dir directory set in the
conf/hadoop-site.xml file, and chowning the directory to the user that the Hadoop servers will run as.

Formatting Your HDFS

At this point, you are ready to actually format your HDFS installation. Run the following to for-
mat a NameNode for the first time:

hadoop namenode -format

namenode.NameNode: STARTUP_MSG:
/**
STARTUP_MSG: Starting NameNode

STARTUP_MSG: host = master/127.0.0.1

STARTUP_MSG: args = [-format]

STARTUP_MSG: version = 0.19.0

STARTUP_MSG: build = ..
**/
namenode.FSNamesystem: fsOwner=jason,jason,lp,wheel,matching
namenode.FSNamesystem: supergroup=supergroup
namenode.FSNamesystem: isPermissionEnabled=true
common.Storage: Image file of size 95 saved in 0 seconds.
common.Storage: Storage directory /hdfs/dfs/name has been successfully formatted.
namenode.NameNode: SHUTDOWN_MSG:
/**

SHUTDOWN_MSG: Shutting down NameNode at master/127.0.0.1
**/

Note The exact stack traces and line numbers will vary with your version of Hadoop Core.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 HDFS DETAILS FOR MULTIMACHINE CLUSTERS

If you have already formatted a NameNode with this data directory, you will see that the
command will try to reformat the NameNode:

hadoop namenode -format

09/01/24 12:03:57 INFO namenode.NameNode: STARTUP MSG:
/**
STARTUP_MSG: Starting NameNode

STARTUP_MSG: host = master/127.0.0.1

STARTUP_MSG: args = [-format]

STARTUP_MSG: version = 0.19.0

STARTUP_MSG: build = ..
**/
Re-format filesystem in /hdfs/dfs/name ? (Y or N) y

Format aborted in /hdfs/dfs/name

09/01/24 12:04:01 INFO namenode.NameNode: SHUTDOWN MSG:
/**

SHUTDOWN_MSG: Shutting down NameNode at master/127.0.0.1
**/

If the user doing the formatting does not have write permissions, the output will be as
follows:

bin/hadoop namenode -format

INFO namenode.NameNode: STARTUP_MSG:

J i R e e
STARTUP_MSG: Starting NameNode

STARTUP_MSG: host = master/127.0.0.1

STARTUP_MSG: args = [-format]

STARTUP_MSG: version = 0.19.0

STARTUP_MSG: build = ..

**/

INFO namenode.FSNamesystem: fsOwner=jason,jason,lp,wheel,matching

INFO namenode.FSNamesystem: supergroup=supergroup

INFO namenode.FSNamesystem: isPermissionEnabled=true

ERROR namenode.NameNode: java.io.IOException:
Cannot create directory /tmp/testi/dir/dfs/name/current
at org.apache.hadoop.hdfs.server.common.Storage$StorageDirectory. w
clearDirectory(Storage.java:295)
at org.apache.hadoop.hdfs.server.namenode.FSImage.format(FSImage.java:1067)
at org.apache.hadoop.hdfs.server.namenode.FSImage.format(FSImage.java:1091)
at org.apache.hadoop.hdfs.server.namenode.NameNode.format(NameNode.java:767)

www.it-ebooks.info

103

http://www.it-ebooks.info/

104 CHAPTER 4 HDFS DETAILS FOR MULTIMACHINE CLUSTERS

at org.apache.hadoop.hdfs.server.namenode.NameNode. =
createNameNode (NameNode. java:851)
at org.apache.hadoop.hdfs.server.namenode.NameNode .main(NameNode. java:868)

09/01/25 19:14:37 INFO namenode.NameNode: SHUTDOWN MSG:
/**

SHUTDOWN_MSG: Shutting down NameNode at master/127.0.0.1

If you are reformatting an HDFS installation, it is recommended that you wipe the
hadoop.tmp.dir directories on all of the DataNode machines.

Starting Your HDFS Installation

After you've configured and formatted HDFS, it is time to actually start your multimachine
HDFS cluster. You can use the bin/start-dfs.sh command for this, as follows:

bin/start-dfs.sh

starting namenode, logging to
/home/jsn/src/hadoop-0.19.0/bin/../logs/hadoop-jsn-namenode-master.out

slavel: starting datanode, logging to
/home/jsn/src/hadoop-0.19.0/bin/../logs/hadoop-jsn-datanode-at.out

slave1l: starting secondarynamenode, logging to
/home/jsn/src/hadoop-0.19.0/bin/../logs/hadoop-jsn-secondarynamenode-slavel.out

slave2: starting datanode, logging to
/home/jsn/src/hadoop-0.19.0/bin/../logs/hadoop-jsn-datanode-at.out

slave2: starting secondarynamenode, logging to
/home/jsn/src/hadoop-0.19.0/bin/../logs/hadoop-jsn-secondarynamenode-slave2.out

slave3: starting datanode, logging to
/home/jsn/src/hadoop-0.19.0/bin/../logs/hadoop-jsn-datanode-at.out

slave3: starting secondarynamenode, logging to
/home/jsn/src/hadoop-0.19.0/bin/../logs/hadoop-jsn-secondarynamenode-slave3.out

slave4: starting datanode, logging to
/home/jsn/src/hadoop-0.19.0/bin/../logs/hadoop-jsn-datanode-at.out

slave4: starting secondarynamenode, logging to
/home/jsn/src/hadoop-0.19.0/bin/../logs/hadoop-jsn-secondarynamenode-slave4.out

slave5: starting datanode, logging to
/home/jsn/src/hadoop-0.19.0/bin/../logs/hadoop-jsn-datanode-at.out

slave5: starting secondarynamenode, logging to
/home/jsn/src/hadoop-0.19.0/bin/../logs/hadoop-jsn-secondarynamenode-slave5.out

If you have any lines like the following in your output, then the script was unable to ssh to
the slave node:

slave1l: ssh: connect to host slavel port 22: No route to host

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 HDFS DETAILS FOR MULTIMACHINE CLUSTERS

If you have a block like the following, you have not distributed your Hadoop installation
correctly to all of the slave nodes:

slavel: bash: line 0: cd: /home/jason/src/hadoop-0.19.0/bin/..: ‘=
No such file or directory

slavel: bash: /home/jason/src/hadoop-0.19.0/bin/hadoop-daemon.sh: w»
No such file or directory

slavel: bash: line 0: cd: /home/jason/src/hadoop-0.19.0/bin/..: =
No such file or directory

slavel: bash: /home/jason/src/hadoop-0.19.0/bin/hadoop-daemon.sh: w»
No such file or directory

The following output indicates that the directory specified in hadoop-env. sh for the server
PID files was not writable:

slavel: mkdir: cannot create directory "/var/bad-hadoop': Permission denied
slave1l: starting datanode, logging to
/home/jason/src/hadoop-0.19.0/bin/../logs/hadoop-jason-datanode-slavel.out
slavel: /home/jason/src/hadoop-0.19.0/bin/hadoop-daemon.sh: line 118:
/var/bad-hadoop/pids/hadoop-jason-datanode.pid: No such file or directory
slavel: mkdir: cannot create directory "/var/bad-hadoop': Permission denied
slave1l: starting secondarynamenode, logging to
/home/jason/src/hadoop-0.19.0/bin/../ =
logs/hadoop-jason-secondarynamenode-slavel.out
slavel: /home/jason/src/hadoop-0.19.0/bin/hadoop-daemon.sh: line 118: w»
/var/bad-hadoop/pids/hadoop-jason-secondarynamenode.pid: w»
No such file or directory

When Hadoop Core is starting services on the cluster, the required directories for the
server operation are created if needed. These include the PID directory and the working and
temporary storage directories for the server. If the framework is unable to create a directory,
there will be error messages to that effect logged to the error stream of the script being used
to start the services. Any messages in the startup output about files or directories that are not
writable, or directories that could not be created, must be addressed. In some cases, the server
will start, and the cluster may appear to run, but there will be stability and reliability issues.

At this point, the next step is to verify that the DataNode servers started and that they were
able to establish service with the NameNode.

Verifying HDFS Is Running

To verify that the server processes are in fact running, wait roughly 1 minute after the finish of
start-dfs.sh, and then check that the NameNode and DataNode exist.

www.it-ebooks.info

105

http://www.it-ebooks.info/

106

CHAPTER 4 HDFS DETAILS FOR MULTIMACHINE CLUSTERS

Checking the NameNodes

On the master machine, run the jps command as follows:

${JAVA_HOME}/bin/jps

1887 Jps
19379 NameNode

The first value in the output is the PID of the java process, and it will be different in your
output.

If there is no NameNode, the initialization failed, and you will need to examine the log file
to determine the problem. The log data will be in the file logs/hadoop-${USER}-namenode. log.

Note The NameNode actually performs the formatting operation, and the formatting results end up in the
NameNode log.

The examples in Listings 4-2 and 4-3 are excerpts from a NameNode log, demonstrating
different failure cases.

Listing 4-2. Did the NameNode Format Fail Due to Insufficient Permissions?

bin/hadoop namenode -format

INFO namenode.NameNode: STARTUP_MSG:
/**
STARTUP_MSG: Starting NameNode
STARTUP_MSG: host = master/127.0.0.1
STARTUP_MSG: args = [-format]
STARTUP_MSG: version = 0.19.0
STARTUP_MSG: build = ..
>l<***/
INFO namenode.FSNamesystem: fsOwner=jason,jason,lp,wheel,matching
INFO namenode.FSNamesystem: supergroup=supergroup
INFO namenode.FSNamesystem: isPermissionEnabled=true
ERROR namenode.NameNode: java.io.IOException: ws
Cannot create directory /tmp/testi/dir/dfs/name/current
at org.apache.hadoop.hdfs.server.common.Storage$StorageDirectory.=
clearDirectory(Storage.java:295)
at org.apache.hadoop.hdfs.server.namenode.FSImage.format(FSImage.java:1067)
at org.apache.hadoop.hdfs.server.namenode.FSImage.format(FSImage.java:1091)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 HDFS DETAILS FOR MULTIMACHINE CLUSTERS

at org.apache.hadoop.hdfs.server.namenode.NameNode. format(NameNode. java:767)
at org.apache.hadoop.hdfs.server.namenode.NameNode. =

createNameNode (NameNode. java:851)

at org.apache.hadoop.hdfs.server.namenode.NameNode .main(NameNode. java:868)

09/01/25 19:14:37 INFO namenode.NameNode: SHUTDOWN MSG:
/**

SHUTDOWN_MSG: Shutting down NameNode at master/127.0.0.1

Listing 4-2 indicates that the NameNode process was unable to find a valid directory
for HDFS metadata. When this occurs, the command hadoop namenode -format must be
run, to determine the actual failure. If the format command completes successfully, the next
start-dfs.sh run should complete successfully. The example in Listing 4-3 demonstrates the
failed format command output. The actual directory listed will be different in actual usage, the
directory path /tmp/test1/dir/dfs/name/current was constructed just for this test.

Listing 4-3. A Failed Format Due to Directory Permissions

bin/hadoop namenode -format

09/04/04 13:13:37 INFO namenode.NameNode: STARTUP_MSG:
JRRssRRoksskokokskkokokskokolokskokolokskokolokskofolokstoolokstotolokstoolokstofolokstoolokskokolokskokokokskok
STARTUP_MSG: Starting NameNode
STARTUP_MSG: host = at/192.168.1.119
STARTUP_MSG: args = [-format]
STARTUP_MSG: version = 0.19.1-dev
STARTUP_MSG: build = -r ; compiled by 'jason' on Tue Mar 17 04:03:57 PDT 2009
ktokokskotokokskotokokskotokokskotokokskotookakotokokskotookskotookskotookokotokokokotokolokotokokoketokokokekok /
INFO namenode.FSNamesystem: fsOwner=jason,jason,lp
INFO namenode.FSNamesystem: supergroup=supergroup
INFO namenode.FSNamesystem: isPermissionEnabled=true
ERROR namenode.NameNode: java.io.IOException: ws
Cannot create directory /tmp/testi/dir/dfs/name/current
at org.apache.hadoop.hdfs.server.common.Storage$StorageDirectory. =
clearDirectory(Storage.java:295)
at org.apache.hadoop.hdfs.server.namenode.FSImage.format(FSImage.java:1067)
at org.apache.hadoop.hdfs.server.namenode.FSImage.format(FSImage.java:1091)
at org.apache.hadoop.hdfs.server.namenode.NameNode.format(NameNode. java:767)
at org.apache.hadoop.hdfs.server.namenode.NameNode. =
createNameNode (NameNode. java:851)
at org.apache.hadoop.hdfs.server.namenode.NameNode.main(NameNode. java:868)

INFO namenode.NameNode: SHUTDOWN_MSG:
J i R R R R

SHUTDOWN_MSG: Shutting down NameNode at at/192.168.1.119
R R e

www.it-ebooks.info

107

http://www.it-ebooks.info/

108

CHAPTER 4 HDFS DETAILS FOR MULTIMACHINE CLUSTERS

The web interface provided by the NameNode will show information about the status of
the NameNode. By default, it will provide a service on http://master:50070/.

Checking the DataNodes

You also need to verify that there are DataNodes on each of the slave nodes. Use jps via the
bin/slaves.sh command to look for DataNode processes:

bin/slaves.sh jps | grep Datanode | sort

slavel: 2564 DataNode
slave2: 2637 DataNode
slave3: 1532 DataNode
slave4: 7810 DataNode
slave5: 8730 DataNode

This example shows five DataNodes, one for each slave. If you do not have a DataNode on
each of the slaves, something has failed. Each machine may have a different reason for failure,
so you'll need to examine the log files on each machine.

The common reason for DataNode failure is that the dfs.data.dir was not writable, as
shown in Listing 4-4.

Listing 4-4. Excerpt from a DataNode Log File on Failure to Start Due to Permissions Problems

2009-01-28 07:50:05,441 INFO org.apache.hadoop.hdfs.server.datanode. =
DataNode: STARTUP_MSG:
/**
STARTUP_MSG: Starting DataNode

STARTUP_MSG: host = slave1/127.0.0.1

STARTUP_MSG: args = []

STARTUP_MSG: version = 0.19.1-dev

STARTUP_MSG: build = -r ; compiled by 'jason' on Wed Jan 21 18:10:58 PST 2009
kkstokokokstokokokstokokskotokokokstokokokstokokokotokokokstokokokstokokokstokokokstokokokostokokokstokokokstokokokslok /

2009-01-28 07:50:05,653 WARN org.apache.hadoop.hdfs.server.datanode. =
DataNode: Invalid directory in dfs.data.dir: can not create directory: =
/tmp/test1/dir/dfs/data

2009-01-28 07:50:05,653 ERROR org.apache.hadoop.hdfs.server.datanode. =
DataNode: All directories in dfs.data.dir are invalid.

2009-01-28 07:50:05,654 INFO org.apache.hadoop.hdfs.server.datanode. =
DataNode: SHUTDOWN MSG:
/**

SHUTDOWN_MSG: Shutting down DataNode at at/127.0.0.1
FHAA AR R

The DataNode may also be unable to contact the NameNode due to network connectiv-
ity or firewall issues. In fact, I had half of a new cluster fail to start, and it took some time to

www.it-ebooks.info

http://master:50070/
http://www.it-ebooks.info/

CHAPTER 4 HDFS DETAILS FOR MULTIMACHINE CLUSTERS 109

realize that the newly installed machines had a default firewall that blocked the HDFS port.
Listing 4-5 shows an excerpt from a DataNode log for a DataNode that failed to start due to

network connectivity problems.

Listing 4-5. DataNode Log Excerpt, Failure to Connect to the NameNode

INFO org.apache.hadoop.hdfs.server.datanode.DataNode: STARTUP MSG:
/**

STARTUP_MSG:

Starting DataNode

STARTUP_MSG: host = slave1/127.0.0.1
STARTUP_MSG: args = []

STARTUP_MSG: version = 0.19.1-dev
STARTUP_MSG: build =.

okokokskskstotostofokokokokokokoskokskokstofookokolokokokokskkokofokokokolokokokokokskokofookofololokokokokskokolokok /

INFO org.apache.hadoop.
master/192.168.1.2:
INFO org.apache.hadoop.
master/192.168.1.2:
INFO org.apache.hadoop.
master/192.168.1.2:
INFO org.apache.hadoop.
master/192.168.1.2:
INFO org.apache.hadoop.
master/192.168.1.2
INFO org.apache.hadoop.
master/192.168.1.2
INFO org.apache.hadoop.
master/192.168.1.2
INFO org.apache.hadoop.
master/192.168.1.2
INFO org.apache.hadoop.
master/192.168.1.2:
INFO org.apache.hadoop.
master/192.168.1.2:

ipc.Client: Retrying connect to
8020. Already tried O time(s).
ipc.Client: Retrying connect to
8020. Already tried 1 time(s).
ipc.Client: Retrying connect to
8020. Already tried 2 time(s).
ipc.Client: Retrying connect to
8020. Already tried 3 time(s).
ipc.Client: Retrying connect to

:8020. Already tried 4 time(s).

ipc.Client: Retrying connect to

:8020. Already tried 5 time(s).

ipc.Client: Retrying connect to

:8020. Already tried 6 time(s).

ipc.Client: Retrying connect to

:8020. Already tried 7 time(s).

ipc.Client: Retrying connect to
8020. Already tried 8 time(s).
ipc.Client: Retrying connect to
8020. Already tried 9 time(s).

ERROR org.apache.hadoop.hdfs.server.datanode.DataNode:

Jjava.
No
at
at
at

io.IOException:
route to host

Call to master/192.168.1.2:8020

Server:
Server:
Server:
SEerver:
SEerver:
SEerver:
SEerver:
SEerver:
SErver:

SErver:

failed on local exception:

org.apache.hadoop.ipc.Client.call(Client.java:699)
org.apache.hadoop.ipc.RPC$Invoker. invoke(RPC.java:216)
$Proxy4.getProtocolVersion(Unknown Source)

at
at
at

org.
org.
org.

apache.hadoop.
apache.hadoop.
apache.hadoop.

ipc.RPC.getProxy(RPC.java:319)
ipc.RPC.getProxy(RPC.java:306)
ipc.RPC.getProxy(RPC.java:343)

at org.apache.hadoop.ipc.RPC.waitForProxy(RPC.java:288)
at org.apache.hadoop.hdfs.server.datanode.DataNode. =
startDataNode(DataNode. java:258)

www.it-ebooks.info

http://www.it-ebooks.info/

110 CHAPTER 4 HDFS DETAILS FOR MULTIMACHINE CLUSTERS

at org.apache.hadoop.hdfs.server.datanode.DataNode.<init>(DataNode.java:205)

at org.apache.hadoop.hdfs.server.datanode.DataNode. =

makeInstance(DataNode.java:1199)

at org.apache.hadoop.hdfs.server.datanode.DataNode. =

instantiateDataNode(DataNode.java:1154)

at org.apache.hadoop.hdfs.server.datanode.DataNode. =

createDataNode(DataNode. java:1162)

at org.apache.hadoop.hdfs.server.datanode.DataNode.main(DataNode.java:1284)
Caused by: java.net.NoRouteToHostException: No route to host

at sun.nio.ch.SocketChannelImpl.checkConnect(Native Method)

at sun.nio.ch.SocketChannelImpl.finishConnect(SocketChannelImpl.java:574)

at sun.nio.ch.SocketAdaptor.connect(SocketAdaptor.java:100)

at org.apache.hadoop.ipc.Client$Connection.setupIOstreams(Client.java:299)

at org.apache.hadoop.ipc.Client$Connection.access$1700(Client.java:176)

at org.apache.hadoop.ipc.Client.getConnection(Client.java:772)

at org.apache.hadoop.ipc.Client.call(Client.java:685)

. 12 more

INFO org.apache.hadoop.hdfs.server.datanode.DataNode: SHUTDOWN MSG:
/**

SHUTDOWN_MSG: Shutting down DataNode at at/127.0.0.1
**/

Note Itis important to note the IP address to which the DataNode is trying to connect. If the IP address is
correct, verify that the NameNode is accepting connections on that port.

Hadoop also provides the dfsadmin -report command-line tool, which will provide a
somewhat verbose listing of the DataNodes in a service. You can run this useful script from
your system monitoring tools, so that alerts can be generated if DataNodes go offline. The fol-
lowing is an example run of this tool:

bin/hadoop dfsadmin -report

Configured Capacity: 190277042176 (177.21 GB)
Present Capacity: 128317767680 (119.51 GB)
DFS Remaining: 128317718528 (119.51 GB)

DFS Used: 49152 (48 KB)

DFS Used%: 0%

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 HDFS DETAILS FOR MULTIMACHINE CLUSTERS

Datanodes available: 5 (5 total, 0 dead)

Name: 192.168.1.3:50010

Decommission Status : Normal

Configured Capacity: 177809035264 (165.6 GB)

DFS Used: 24576 (24 KB)

Non DFS Used: 50479497216 (47.01 GB)

DFS Remaining: 127329513472(118.58 GB)

DFS Used%: 0%

DFS Remaining%: 71.61%

Last contact: Wed Jan 28 08:27:20 GMT-08:00 2009

Tuning Factors

Here, we will look at tuning the cluster system and the HDFS parameters for performance and
reliability.

Commonly, the two most important factors are network bandwidth and disk throughput.
Memory use and CPU overhead for thread handling may also be issues.

HDEFS uses a basic file system block size of 64MB, and the JobTracker also chunks task
input into 64MB segments. Using large blocks helps reduce the cost of a disk seek compared
with the read/write time, thereby increasing the aggregate I/0 rate when multiple requests are
active. The large input-split size reduces the ratio of task setup time to task run time, as there
is work to be done to set up a task before the TaskTracker can start the mapper or reducer on
the input split.

The various tuning factors available control the maximum number of requests in prog-
ress. In general, the more requests in progress, the more contention there is for storage
operations and network bandwidth, with a corresponding increase in memory requirements
and CPU overhead for handling all of the outstanding requests. If the number of requests
allowed is too low, the cluster may not fully utilize the disk or network bandwidth, or cause
requests to timeout.

Most of the tuning parameters for HDFS do not yet have exact science behind the set-
tings. Currently, tuning is ad hoc and per cluster. In general, the selections are a compromise
between various factors. Finding the sweet spot requires knowledge of the local system and
experience.

Let’s examine each of the tuning factors in turn.

File Descriptors

Hadoop Core uses large numbers of file descriptors for MapReduce, and the DFSClient uses a
large number of file descriptors for communicating with the HDFS NameNode and DataNode
server processes. The DFSClient code also presents a misleading error message when there has
been a failure to allocate a file descriptor: No live nodes contain current block.

www.it-ebooks.info

111

http://www.it-ebooks.info/

112

CHAPTER 4 HDFS DETAILS FOR MULTIMACHINE CLUSTERS

Note The class org.apache.hadoop.hdfs.DFSClient provides the actual file services for applications
interacting with the HDFS file system. All file system operations and file operations performed by the applica-
tion will be translated into method calls on the DFSClient object, which will in turn issue the appropriate
Remote Procedure Call (RPC) calls to the NameNode and the DataNodes relevant for the operations. As of
Hadoop 0.18, these RPC calls use the Java NIO services. Prior to Hadoop 0.18, blocking operations and fixed
timeouts were used for the RPC calls.

Most sites immediately bump up the number of file descriptors to 64,000, and large sites,
or sites that have MapReduce jobs that open many files, might go higher.

For a Linux machine, the simple change is to add a line to the /etc/security/limits.conf
file of the following form:

* hard nofile 64000

This changes the per-user file descriptor limit to 64,000 file descriptors. If you will run
a much larger number of file descriptors, you may need to alter the per-system limits via
changes to fs.file-max in /etc/sysctl.conf. Aline of the following form would set the system
limit to 640,000 file descriptors:

fs.file-max = 640000
At this point, you may alter the 1imits.conf file line to this:
* hard nofile 640000

Changes to 1imits.conf take effect on the next login, and changes to sysctl.conf take
place on the next reboot. You may run sysctl by hand (sysctl -p) to cause the sysctl.conf
file to be reread and applied.

The web page at http://support.zeus.com/zws/faqs/2005/09/19/filedescriptors pro-
vides some instructions for several Unix operating systems. For Windows XP instructions, see
http://weblogs.asp.net/mikedopp/archive/2008/05/16/increasing-user-handle-and-gdi-
handle-limits.aspx.

Any user that runs processes that access HDFS should have a large limit on file descrip-
tor access, and all applications that open files need careful checking to make sure that the
files are explicitly closed. Trusting the JVM garbage collection to close your open files is a
critical mistake.

Block Service Threads

Each DataNode maintains a pool of threads that handle block requests. The parameter
dfs.datanode.handler.count controls the number of threads the DataNode will use for han-
dling IPC requests. These are the threads that accept connections on dfs.datanode. ipc.
address, the configuration value described in Chapter 3.

Currently, there does not appear to be significant research or tools on the tuning of this
parameter. The overall concept is to balance JVM overhead due to the number of threads with
disk and network I/0. The more requests active at a time, the more overlap for disk and network
1/0 there is. At some point, the overlap results in contention rather than increased performance.

www.it-ebooks.info

http://support.zeus.com/zws/faqs/2005/09/19/filedescriptors
http://weblogs.asp.net/mikedopp/archive/2008/05/16/increasing-user-handle-and-gdi-handle-limits.aspx
http://weblogs.asp.net/mikedopp/archive/2008/05/16/increasing-user-handle-and-gdi-handle-limits.aspx
http://weblogs.asp.net/mikedopp/archive/2008/05/16/increasing-user-handle-and-gdi-handle-limits.aspx
http://www.it-ebooks.info/

CHAPTER 4 HDFS DETAILS FOR MULTIMACHINE CLUSTERS

The default value for the dfs.datanode.handler.count parameter is 3, which seems to be
fine for small clusters. Medium-size clusters may use a value of 30, set as follows:

<property>

<name>dfs.datanode.handler.count</name>

<value>30</value>

<description>The number of server threads for the datanode.</description>
</property>

NameNode Threads

Each HDFS file operation—create, open, close, read, write, stat, and unlink—requires a
NameNode transaction. The NameNode maintains the metadata of the file system in mem-
ory. Any operation that changes the metadata, such as open, write, or unlink, results in the
NameNode writing a transaction to the disks, and an asynchronous operation to the second-
ary NameNodes.

Note Some installations add an NFS directory to the list of local locations to which the file system is
written. This adds a substantial latency to any metadata altering transaction. Through Hadoop 0.19.0, the
NameNode edit logs are forcibly flushed to disk storage, but space for the updates is preallocated before the
update to reduce the overall latency.

The parameter dfs.namenode.handler.count controls the number of threads that will
service NameNode requests. The default value is 10. Increasing this value will substantially
increase the memory utilization of the NameNode and may result in reduced performance
due to I/0 contention for the metadata updates. However, if your map and reduce tasks create
or remove large numbers of files, or execute many sync operations after writes, this number
will need to be higher, or you will experience file system timeouts in your tasks.

In my setup, I have a cluster of 20 DataNodes that are very active. For this cluster, the
dfs.namenode.handler.count parameter is set to 512:

<property>

<name>dfs.namenode.handler.count</name>

<value>512</value>

<description>The number of server threads for the namenode.</description>
</property>

Note The NameNode serializes the entire directory metadata and then sends it when a request for the
status of files in a directory is made. For large directories, this can be a considerable amount of data. With
many threads servicing requests, the amount of memory used by in transit serialized requests may be very
large. | have worked with a cluster where this transitory memory requirement exceeded 1GB.

www.it-ebooks.info

113

http://www.it-ebooks.info/

114

CHAPTER 4 HDFS DETAILS FOR MULTIMACHINE CLUSTERS

Server Pending Connections

Hadoop Core’s ipc.server.listen.queue.size parameter sets the listen depth for accepting
connections. This value is the number of outstanding, unserviced connection requests allowed
by the operating system, before connections are refused. Its default value is 128.

Many operating systems have hard and small limits for this value. If your thread
counts are lower, this value will need to be higher, to prevent refused connections. If you
find connection-refused errors in your log files, you may want to increase the value of this
parameter.

Reserved Disk Space

Hadoop Core historically has not handled out-of-disk-space exceptions gracefully. As a
method for preventing out-of-disk conditions, Hadoop Core provides four parameters: two
for HDFS and two for MapReduce.

It is common, especially in smaller clusters, for a DataNode and a TaskTracker to reside
on each computer node in the cluster. It is also common for the TaskTracker’s temporary stor-
age to be stored in the same file system as the HDFS data blocks. With HDFS, blocks written
by an application that is running on the same machine as a DataNode will have one replica
placed on that DataNode. It is very easy for a task to fill up the disk space on a partition and
cause HDFS failures, or for HDFS to fill up a partition and result in task failures. Tuning the
disk space reservation parameters will minimize these failures.

You can adjust the following parameters:

mapred.local.dir.minspacestart: This parameter controls how much space must be
available in the temporary area used for map and reduce task output, before a task may
be assigned to a TaskTracker. This is checked only before task assignment. If you have
more than one TaskTracker on the node, you may need to multiply this minimum by the
TaskTracker count to ensure sufficient space. This parameter has a default value of 0,
disabling the check.

mapred.local.dir.minspacekill: This parameter will cause the tasks in progress to be
killed if the available MapReduce local space falls below this threshold. This parameter
has a default value of 0, disabling the check.

dfs.datanode.du.reserved: This parameter specifies how much of the available

disk space to exclude from use for HDFS. If your file system has 10GB available and
dfs.datanode.du.reserved is set to 10GB (10737418240), HDFS will not store new blocks on
this DataNode. This parameter has a default value of 0, disabling the check.

dfs.datanode.du.pct: This value controls what percentage of the physically available
space is available for use by HDFS for new data blocks. For example, if there are 10GB
available in the host file system partition, and the default value of 0.98 is in effect, only
10GB * 0.98 bytes (10,522,669,875 bytes) will actually be considered available. This param-
eter has been dropped from Hadoop 0.19.

Caution The dfs.datanode.du.pct parameter is undocumented and may not have the meaning
described here in your version of Hadoop.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 HDFS DETAILS FOR MULTIMACHINE CLUSTERS

Storage Allocations

The Balancer service will slowly move data blocks between DataNodes to even out the storage
allocations. This is very helpful when DataNodes have different storage capacities. The Bal-
ancer will also slowly re-replicate underreplicated blocks

The parameter dfs.balance.bandwidthPerSec controls the amount of bandwidth that may
be used for balancing between DataNodes. The default value is 1MB (1048576).

The Balancer is run by the command start-balancer.sh [-threshold VALUE]. The argu-
ment -threshold VALUE, is optional, and the default threshold is 10%. The Balancer task will
run until the free space percentage for block storage of each DataNode is approximately equal,
with variances in free space percentages of up to the defined threshold allowed.

The start-balancer. sh script prints the name of a file to the standard output that will
contain the progress reports for the Balancer. It is common for the Balancer task to be run
automatically and periodically. The start-balancer. sh script will not allow multiple instances
to be run, and it is safe to run this script repeatedly.

In general, the Balancer should be used if some DataNodes are close to their free space
limits while other DataNodes have plenty of available space. This usually becomes an issue
only when the DataNode storage capacity varies significantly or large datasets are written into
HDEFS from a machine that is also a DataNode.

The Balancer may not be able to complete successfully if the cluster is under heavy load,
the threshold percentage is very small, or there is insufficient free space available. If you need
to stop the Balancer at any time, you can use the command stop-balancer. sh.

Disk I/0

Hadoop Core is designed for jobs that have large input datasets and large output datasets. This
I/0 will be spread across multiple machines and will have different patterns depending on the
purpose of the I/0, as follows:

e The NameNode handles storing the metadata for the file system. This includes the
file paths, the blocks that make up the files, and the DataNodes that hold the blocks.
The NameNode writes a journal entry to the edit log when a change is made. The
NameNode keeps the entire dataset in memory to enable faster response time for
requests that don’t involve modification.

¢ The DataNodes store, retrieve, and delete data blocks. The basic block size is 64MB per
block. Unless an archive (such as a .zip, .tar, tgz, .tar.gz, or .har file) is used, blocks
will not be shared among multiple files.

e The TaskTracker will hold a copy of all of the unpacked elements of the distributed
cache for a job, as well as store the partitioned and sorted map output, potentially the
merge sort output, and the reduce input. There are also temporary data files and buff-
ered HDFS data blocks.

The default for Hadoop is to place all of these storage areas under the directory defined by
the parameter hadoop.tmp.dir. In installations where multiple partitions, each on a separate
physical drive or RAID assembly, are available, you may specify directories and directory sets
that are stored on different physical devices to minimize seek or transfer contention.

www.it-ebooks.info

115

http://www.it-ebooks.info/

116

CHAPTER 4 HDFS DETAILS FOR MULTIMACHINE CLUSTERS

All of the HDFS data stores are hosted on native operating system file systems. These file
systems have many tuning parameters. For the NameNode data stores, RAID 1 with hot spares
is preferred for the low-level storage. For the DataNodes, no RAID is preferred, but RAID 5 is
acceptable.

The file systems should be constructed with awareness of the stripe and stride of any RAID
arrays and, where possible, should be mounted in such a way that access time information is
not updated. Linux supports disabling the access time updates for several file systems with the
noatime and nodiratime file system mount time options. I have found that this change alone
has provided a 5% improvement in performance on DataNodes.

Journaled file systems are not needed for the NameNode, as the critical data is writ-
ten synchronously. Journaled file systems are not recommended for DataNodes due to the
increase in write loading. The downside of not having a journal is that crash recovery time
becomes much larger.

Secondary NameNode Disk 1/0 Tuning

The secondary NameNode provides a replica of the file system metadata that is used to
recover a failed NameNode. It is critically important that its storage directories be on separate
physical devices from the NameNode.

There is some debate about locating the secondary NameNode itself on a separate physi-
cal machine. The merging of the edit logs into the file system image may be faster and have
lower overhead when the retrieval of the edit logs and writing of the file system image are
local. However, having the secondary NameNode on a separate machine provides rapid recov-
ery to the previous checkpoint time in the event of a catastrophic failure of the NameNode
server machine.

Note For maximum safety, the secondary NameNode and NameNode should run on separate physical
machines, with physically separate storage.

The secondary NameNode uses the parameter fs.checkpoint.dir to determine which
directory to use to maintain the file system image. The default value is ${hadoop.tmp.dir}/
dfs/namesecondary. This parameter may be given a comma-separated list of directories. The
image is replicated across the set of comma-separated values.

The secondary NameNode uses the parameter fs.checkpoint.edits.dir to hold the edit
log, essentially the journal for the file system. It, like fs.checkpoint.dir, may be a comma-
separated list of items, and the data will be replicated across the set of values. The default
value is the value of fs.checkpoint.dir. The data written to the fs.checkpoint.edits.dir
tends to be many synchronous small writes. The update operations are allowed to run behind
the NameNode’s updates.

The secondary NameNode server will take a snapshot from the NameNode at defined
time intervals. The interval is defined by the parameter fs.checkpoint.period, which is a
time in seconds, with a default value of 3600. If the NameNode edit log grows by more than
fs.checkpoint.size bytes (the default value is 67108864), a checkpoint is also triggered.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 HDFS DETAILS FOR MULTIMACHINE CLUSTERS

The secondary NameNode periodically (fs.checkpoint.period) requests a checkpoint
from the NameNode. At that point, the NameNode will close the current edit log and start a
new edit log. The file system image and the just closed edit log will be copied to the second-
ary NameNode. The secondary NameNode will apply the edit log to the file system image,
and then transfer the up-to-date file system image back to the NameNode, which replaces the
prior file system image with the merged copy.

The secondary NameNode configuration is not commonly altered, except in very high
utilization situations. In these cases, multiple file systems on separate physical disks are used
for the set of locations configured in the fs.checkpoint.edits.dir and fs.checkpoint.dir
parameters.

NameNode Disk I/0 Tuning

The NameNode is the most critical piece of equipment in your Hadoop Core cluster. The
NameNode, like the secondary NameNode, maintains a journal and a file system image.

The parameter dfs.name.dir provides the directories in which the NameNode will store
the file system image and is a comma-separated list (again, the image will be replicated across
the set of values). The file system image is read and updated only at NameNode start time, as
of Hadoop version 0.19. The default value for this parameter is ${hadoop.tmp.dir}/dfs/name.

The parameter dfs.name.edits.dir contains the comma-separated list of directories to
which the edit log or journal will be written. This is updated for every file system metadata-
altering operation, synchronously. Your entire HDFS cluster will back up waiting for these
updates to flush to the disk. If your cluster is experiencing a high rate of file create, rename,
delete, or high-volume writes, there will be a high volume of writes to this set of directories.
Any other I/0 operations to file system partitions holding these directories will perform badly.
The default value of this parameter is ${dfs.name.dir}.

Some installations will place directories on remote mounted file systems in this list, to
ensure that an exact copy of the data is available in the event of a NameNode disk failure.

RAID 1 or RAID 10 is recommended for the dfs.name.edits.dir set, rather than RAID 5,
due to the increased write latency for small block writes.

Any data loss in the directories specified by dfs.name.dir and dfs.name.edits.dir will
result in the loss of data in your HDFS. Caution, redundancy, and reliability are critical.

Caution The NameNode is a critical single point of failure. Any loss of data can wipe out your entire
HDFS datastore.

DataNode Disk 1/0 Tuning

The DataNode provides two services: block storage, and retrieval of HDFS data and storage
accounting information for the NameNode.

Through at least Hadoop 0.19.0, the storage accounting has significant problems if there
are more than a few hundred thousand blocks per DataNode. This is because a linear scan of
the blocks is performed on a frequent basis to provide accounting information.

www.it-ebooks.info

117

http://www.it-ebooks.info/

118 CHAPTER 4 HDFS DETAILS FOR MULTIMACHINE CLUSTERS

The parameter dfs.datanode.handler.count (covered earlier in the “Block Service
Threads” section) is the number of worker threads for storage requests. The following are
some other DataNode parameters that may be adjusted:

dfs.data.dir: This parameter sets the location(s) for block storage. It is a comma-
separated list of directories that will be used for block storage by the DataNode. Blocks
will be distributed in a round-robin manner among the directories. If multiple directories
are to be used, it is best if each directory resides on an independent storage device. This
will allow concurrent I/0 operations to be active on all of the devices. The default value
for this parameter is ${hadoop.tmp.dir}/dfs/data.

dfs.replication: This parameter controls the number of copies of each data block the
cluster attempts to maintain. HDFS is resilient in the face of individual DataNode failures,
because individual blocks are replicated to more than one machine. The HDFS cluster
can withstand the failure of one less than the value of dfs.replication before there will be
service degradation, in that some files may not be served as all of the blocks are not avail-
able. In small to medium-sized clusters, 3 is a good value. For large clusters, it should be a
number that is at least two larger than the expected number of machine failures per day.
If you have a 1,000-machine cluster and expect to have no more than 5 machines fail at a
time, setting the replication factor to 7 is reasonable. The disk storage requirements and
the write network bandwidth used are multiplied by this number.

Note Wnen a client writes data to HDFS, each block is written to dfs.replication count DataNodes.
Each node writes to the next node, to mitigate the network load on the individual machines. The nodes are
selected more or less on a random basis, with some simple rules. If the origination machine is a DataNode
for the HDFS cluster being written, one replica will go to that DataNode. HDFS has some concept of network
topology, but this does not appear to be generally used as yet.

dfs.block.size: This parameter controls the basic file system block size for HDFS. HDFS
is highly optimized for a medium number of very large files. The default value for an HDFS
block is 64MB (67,108,864 bytes). Each file data block in the file system will be in a single
file in the dfs.data.dir directory. A file in HDFS is composed of one or more data blocks.
The last data block of a file may have less than the dfs.block.size bytes of data present.
Any prior blocks will have dfs.block.size bytes of data. The block size may be specified
on a per-file basis when the file is created. The individual blocks of the file are replicated
onto dfs.replication DataNodes. The default input split size for a file being used as input
in a MapReduce job is the dfs.block.size for the file. HDFS currently does not deal with
very large numbers of files or very large numbers of blocks per DataNode.

Note Application developers are encouraged to use archives for storing multiple small files instead of cre-
ating them directly in HDFS. In one of my applications, there was a three-order-of-magnitude speed increase
in an application when a set of zip files were constructed once per reduce task, instead of large numbers of
small files in the reduce task.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 HDFS DETAILS FOR MULTIMACHINE CLUSTERS

Network I/0 Tuning

Very little can be done to tune network I/0 at the Hadoop Core level. The performance tuning
must take place at the application layer and the hardware layer.

Hadoop Core does provide the ability to select the network to bind to for data services and
the ability to specify an IP address to use for hostname resolution. This is ideal for clusters that
have an internal network for data traffic and an external network for client communications.
The following are the two relevant parameters:

dfs.datanode.dns.interface: This parameter may be set to an interface name, such as
etho or en1, and that interface will be used by the DataNode for HDFS communications.

dfs.datanode.dns.nameserver: This parameter may be set to provide an IP address to use
for DNS-based hostname resolution, instead of the system default hostname resolution
strategy.

If your installation has switch ports to spare and the switches support it, bonding your
individual network connections can greatly increase the network bandwidth available to indi-
vidual machines.

Caution The large-block HDFS traffic will dominate a network. It is best to isolate this traffic from your
other traffic.

At the application layer, if your applications are data-intensive and your data is readily
compressible, using block- or record-level compression may drastically reduce the I/0 that
the job requires. You can set this compression as follows:

FileOutput.setCompressOutput(jobConf, "true");
jobConf.setBoolean("mapred.output.compress",true);

The default compression codec will be used. Compressed input files that are not
SequenceFiles, a Hadoop Core binary file format, will not be split, and a single task will handle
a single file.

Recovery from Failure

Once you have configured your cluster and started running jobs, life will happen, and you may
need to recover from a failure. Here, we will look at how HDFS protects from many individual
failures and how to recover from other failures.

HDEFS has two types of data, with different reliability requirements and recovery patterns.

¢ The NameNode stores the file system metadata and provides direct replication of the
data and run-behind remote copies of the data.

* The DataNodes provide redundant storage by replicating data blocks to multiple
DataNodes.

www.it-ebooks.info

119

http://www.it-ebooks.info/

120

CHAPTER 4 HDFS DETAILS FOR MULTIMACHINE CLUSTERS

NameNode Recovery

The default Hadoop installation provides no protection from catastrophic NameNode server
failures. The only default protection is that provided by a RAID 1 or RAID 5 storage device
for the file system image and edit logs. You can avoid data loss and unrecoverable machine
failures by running the secondary NameNode on an alternate machine. Storing the file sys-
tem image and file system edit logs on multiple physical devices, or even multiple physical
machines, also provides protection.

When a NameNode server fails, best practices require that all the JobTracker and Task-
Trackers be restarted after the NameNode is restarted. All incomplete HDFS blocks will be lost,
but there should be no file or data loss for existing files or for completed blocks in actively writ-
ten files.

Note Hadoop 0.19.0 has initial support for a sync operator that allows the flushing of HDFS blocks that
are not a full dfs.block.size value, but support for this is early and known to be unreliable. This feature
has been disabled in Hadoop 0.19.1, but it may return in Hadoop 0.20.0.

The NameNode may be configured to write the metadata log to multiple locations on the
host server’s file system. In the event of data loss or corruption to one of these locations, the
NameNode may be recovered by repairing or removing the failed location from the configura-
tion, removing the data from that location, and restarting the NameNode. For rapid recovery,
you may simply remove the failed location from the configuration and restart the NameNode.

If the NameNode needs to be recovered from a secondary NameNode, the procedure is
somewhat more complex. Here are the steps:

1. Shut down the secondary NameNode.
2. Copy the contents of the Secondary:fs.checkpoint.dir to the Namenode:dfs.name.dir.

3. Copy the contents of the Secondary: fs.checkpoint.edits.dir to the
Namenode:dfs.name.edits.dir.

4, When the copy completes, you may start the NameNode and restart the secondary
NameNode.

All data written to HDFS after the last secondary NameNode checkpoint was taken will be
removed and lost. The default frequency of the checkpoints is specified by the fs.checkpoint.
period parameter

At present, there are no public forensic tools that will recover data from blocks on the
DataNodes.

DataNode Recovery and Addition

The procedure for adding a new DataNode to a cluster and restarting a failed DataNode are
identical and simple. The server process just needs to be started, assuming the configuration is
correct, and the NameNode will integrate the new server or reintegrate a restarted server into
the cluster.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 HDFS DETAILS FOR MULTIMACHINE CLUSTERS

Tip As long as your cluster does not have underreplicated files and no file’s replication count is less than
3, it is generally safe to forcibly remove a DataNode from the cluster by Killing the DataNode server process.
The next section covers how to decommission a DataNode gracefully.

The command hadoop-daemon.sh start datanode will start a DataNode server on a
machine, if one is not already running. The configuration in the conf directory associated
with the script will be used to determine the NameNode address and other configuration
parameters.

If more DataNodes than the dfs.replication value fail, some file blocks will be unavail-
able. Your cluster will still be able to write files and access the blocks of the files that remain
available. It is advisable to stop your MapReduce jobs by invoking the stop-mapred. sh
script, as most applications do not deal well with partial dataset availability. When sufficient
DataNodes have been returned to service, you may resume MapReduce job processing by
invoking the start-mapred. sh script.

When you add new nodes, or return a node to service after substantial data has been
written to HDFS, the added node may start up with substantially less utilization than the rest
of the DataNodes in the cluster. Running the Balancer via start-balancer.sh will rebalance
the blocks.

DataNode Decommissioning

A running DataNode sometimes needs to be decommissioned. While you may just shut
down the DataNode, and the cluster will recover, there is a procedure for gracefully
decommissioning a running DataNode. This procedure becomes particularly important if
your cluster has underreplicated blocks or you need to decommission more nodes than your
dfs.replication value.

Caution You must not stop the NameNode during this process, or start this process while the NameNode
is not running. The file specified by dfs.hosts.exclude has two purposes. One is to exclude the hosts
from connecting to the NameNode, which takes effect if the parameter is set when the NameNode starts.
The other starts the decommission process for the hosts, which takes place if the value is first seen after a
Hadoop dfsadmin -refreshNodes.

The procedure is as follows:

1. Create a file on the NameNode machine with the hostnames or IP addresses of the
DataNodes you wish to decommission, say /tmp/nodes _to decommission. This file
should contain one hostname or IP address per line, with standard Unix line endings.

2. Modify the hadoop-site.xml file by adding, or updating the following block:

www.it-ebooks.info

121

http://www.it-ebooks.info/

122 CHAPTER 4 HDFS DETAILS FOR MULTIMACHINE CLUSTERS

<property>
<name>dfs.hosts.exclude</name>
<value>/tmp/nodes_to_decommission</value>
<description>Names a file that contains a list of hosts that are
not permitted to connect to the namenode. The full pathname of the
file must be specified. If the value is empty, no hosts are
excluded. </description>

</property>

3. Run the following command to start the decommissioning process:
hadoop dfsadmin -refreshNodes

4. When the process is complete, you will see a line in the NameNode log file like the fol-
lowing for each entry in the file:

tmp/nodes_to decommission.

Decommission complete for node IP:PORT

Deleted File Recovery

It is not uncommon for a user to accidentally delete large portions of the HDFS file system due
to a program error or a command-line error. Unless your configuration has the delete-to-trash
function enabled, via setting the parameter fs.trash.interval to a nonzero value, deletes are
essentially immediate and forever.

If an erroneous large delete is in progress, your best bet is to terminate the NameNode
and secondary NameNodes immediately, and then shut down the DataNodes. This will pre-
serve as much data as possible. Use the procedures described earlier to recover from the
secondary NameNode that has the edit log modification time closest to the time the deletion
was started.

The fs.trash.interval determines how often the currently deleted files are moved to a
date-stamped subdirectory of the deleting user’s . Trash directory. The value is a time in min-
utes. Files that have not had a trash checkpoint will be under the . Trash/current directory in
a path that is identical to their original path. Only one prior checkpoint is kept.

Troubleshooting HDFS Failures

The previous section dealt with the common and highly visible failure cases of a server pro-
cess crashing or the machine hosting a server process failing. This section will cover how you
can determine what has happened when the failure is less visible or why a server process is
crashing.

There are a number of failures that can trip up an HDFS administrator or a MapReduce
programmer. In the current state of development, it is not always clear from Hadoop’s behav-
ior or log messages what the failure or solution is. The usual first indication that something

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 HDFS DETAILS FOR MULTIMACHINE CLUSTERS

is in need of maintenance is a complaint from users that their jobs are performing poorly or
failing, or a page from your installation monitoring tool such as Nagios.

NameNode Failures

The NameNode is the weak point in the highly available HDFES cluster. As noted earlier, cur-
rently there are no high-availability solutions for the NameNode. The NameNode has been
designed to keep multiple copies of critical data on the local machine and close in time repli-
cas on auxiliary machines. Let’s examine how it can fail.

Out of Memory

The NameNode keeps all of the metadata for the file system in memory to speed request ser-
vices. The NameNode also serializes directory listings before sending the result to requesting
applications. The memory requirements grow with the number of files and the total number of
blocks in the file system. If your file system has directories with many entries and applications
are scanning the directory, this can cause a large transient increase in the memory require-
ments for the name server.

I once had a cluster that was using the Filesystem in Userspace (FUSE) contrib package
to export HDFS as a read-only file system on a machine, which re-exported that file system via
the Common Internet File System (CIFS) to a Windows server machine. The access patterns
triggered repeated out-of-memory exceptions on the NameNode. (Using FUSE is discussed in
Chapter 8.)

If the DataNodes are unreliable, and they are dropping out of service and then returning
to service after a gap, the NameNode will build a large queue of blocks with invalid states. This
may consume very large amounts of memory if large numbers of blocks become transitorily
unavailable. For this problem, addressing the DataNode reliability is the only real solution, but
increasing the memory size on the NameNode can help.

There are three solutions for NameNode out-of-memory problems:

¢ Increase the memory available to the NameNode, and ensure the machine has suffi-
cient real memory to support this increase.

¢ Ensure that no directory has a large number of entries.

¢ Alter application access patterns so that there are not large numbers of directory
listings.

For a 32-bit JVM, the maximum memory size is about 2.5GB, which will support a small
HDEFS cluster with a under a million files and blocks.

As a general rule, pin the full memory allocation by setting the starting heap size for the
JVM to the maximum heap size.

Data Loss or Corruption

Ideally, the underlying disk storage used for the NameNode’s file system image (dfs.name.dir)
and edit log (dfs.name.edits.dir) should be a highly reliable storage system such as a RAID 1
or RAID 5 disk array with hot spares. Even so, catastrophic failures or user errors can result in
data loss.

www.it-ebooks.info

123

http://www.it-ebooks.info/

124

CHAPTER 4 HDFS DETAILS FOR MULTIMACHINE CLUSTERS

The NameNode configuration will accept a comma-separated list of directories and will
maintain copies of the data in the full set of directories. This additional level of redundancy
provides a current time backup of the file system metadata. The secondary NameNode pro-
vides a few-minutes-behind replica of the NameNode data.

If your configuration has multiple directories that contain the file system image or the edit
log, and one of them is damaged, delete that directory’s content and restart the NameNode.

If the directory is unavailable, remove it from the list in the configuration and restart the
NameNode.
If all of the dfs.name.dir directories are unavailable or suspect, do the following:

1. Archive the data if required.
2. Wipe all of the directories listed in dfs.name.dir.

3. Copy the contents of the fs.checkpoint.dir from the secondary NameNode to the
fs.checkpoint.dir on the primary NameNode machine.

4, Run the following NameNode command:
hadoop namenode -importCheckpoint

If there is no good copy of the NameNode data, the secondary NameNode image may be
imported. The secondary NameNode takes periodic snapshots, at fs.checkpoint.period inter-
vals, so it is not as current as the NameNode data.

You may simply copy the file system image from the secondary NameNode to a file system
image directory on the NameNode, and then restart.

As the imported data is older than the current state of the HDEFS file system, the
NameNode may spend significant time in safe mode as it brings the HDFS block store into
consistency with restored snapshot.

No Live Node Contains Block Errors

Usually, if you see the no 1ive node contains block error, it will be in the log files for your
applications. It means that the client code in your application that interfaces with HDFS was
unable to find a block of a requested file. For this error to occur, the client code received a list
of DataNode and block ID pairs from the NameNode, and was unable to retrieve the block
from any of the DataNodes.

This error commonly occurs when the application is unable to open a connection to any
of the DataNodes. This may be because there are no more file descriptors available, there is
a DNS resolution failure, there is a network problem, or all of the DataNodes in question are
actually unavailable. The most common case is the out-of-file-descriptor situation. This may
be corrected by increasing the number of file descriptors available, as described earlier in this
chapter. An alternative is to minimize unclosed file descriptors in the applications.

I've seen DNS resolution failures transiently appear, and as a general rule, I now use IP
addresses instead of hostnames in the configuration files. It is very helpful if the DNS reverse
lookup returns the same name as the hostname of the machine.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 HDFS DETAILS FOR MULTIMACHINE CLUSTERS

Write Failed

If there are insufficient DataNodes available to allow full replication of a newly written block,
the write will not be allowed to complete. This may result in a zero-length or incomplete file,
which will need to be manually removed.

DataNode or NameNode Pauses

Through at least Hadoop 0.19.0, the DataNode has two periodic tasks that do a linear scan of
all of the data blocks stored by the DataNode. If this process starts taking longer than a small
number of minutes, the DataNode will be marked as disconnected by the NameNode.

When a DataNode is marked as disconnected, the NameNode queues all of the blocks that
had a replica on that DataNode for replication. If the number of blocks is large, the NameNode
may pause for a noticeable period while queuing the blocks.

The only solutions for this at present are to add enough DataNodes, so that no DataNode
has more than a few hundred thousand data blocks, or to alter your application’s I/O patterns
to use Hadoop archives or zip files to pack many small HDFS subblock-size files into single
HDES files. The latter approach results in a reduction in the number of blocks stored in HDFS
and the number of blocks per DataNode.

A simple way to work out how many blocks is too many is to run the following on a
DataNode:

time find dfs.data.dir -1s > /dev/null

If it takes longer than a few hundred seconds, you are in the danger zone. If it takes longer
than a few minutes, you are in the pain zone. Replace dfs.data.dir with an expanded value
from your Hadoop configuration. The timeout interval is 600 seconds, and hard-coded. If your
1s takes anywhere close to that, your cluster will be unstable.

Note The NameNode may pause if the one of the directories used for the dfs.name.edits.dir or
dfs.name.dir is taking time to complete writes.

Summary

HDEFS is a wonderful global file system for a medium number of very large files. With reason-
able care and an understanding of HDFS’s limitations it will serve you well.

HDEFS is not a general-purpose file system to be used for large numbers of small files or for
rapid creation and deletion of files.

Through HDFS 0.19.0, the HDFS NameNode is a single point of failure and needs care-
ful handling to minimize the risk of data loss. Using a separate machine for your secondary
NameNode, and having multiple devices for the file system image and edit logs, will go a long
way toward providing a fail-safe, rapid recovery solution.

www.it-ebooks.info

125

http://www.it-ebooks.info/

126

CHAPTER 4 HDFS DETAILS FOR MULTIMACHINE CLUSTERS

Monitoring your DataNode’s block totals will go a long way toward avoiding congestion
collapse issues in your HDFS. You can do this by simply running a find on the dfs.data.dir
and making sure that it takes less than a couple of minutes.

Ensuring that your HDFS data traffic is segregated from your normal application traffic
and crosses as few interswitch backhauls as possible will help to avoid network congestion and
application misbehavior.

Ultimately, remember that HDFS is designed for a small to medium number of very large
files, and not for transitory storage of large numbers of small files.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5

MapReduce Details for
Multimachine Clusters

Organizations run Hadoop Core to provide MapReduce services for their processing needs.
They may have datasets that can’t fit on a single machine, have time constraints that are
impossible to satisfy with a small number of machines, or need to rapidly scale the computing
power applied to a problem due to varying input set sizes. You will have your own unique rea-
sons for running MapReduce applications.

To do your job effectively, you need to understand all of the moving parts of a MapReduce
cluster and of the Hadoop Core MapReduce framework. This chapter will raise the hood and
show you some schematics of the engine. This chapter will also provide examples that you can
use as the basis for your own MapReduce applications.

Requirements for Successful MapReduce Jobs

For your MapReduce jobs to be successful, the mapper must be able to ingest the input and
process the input record, sending forward the records that can be passed to the reduce task or
to the final output directly, if no reduce step is required. The reducer must be able to accept
the key and value groups that passed through the mapper, and generate the final output of this
MapReduce step.

The job must be configured with the location and type of the input data, the mapper class
to use, the number of reduce tasks required, and the reducer class and I/0O types.

The TaskTracker service will actually run your map and reduce tasks, and the JobTracker
service will distribute the tasks and their input split to the various trackers.

The cluster must be configured with the nodes that will run the TaskTrackers, and with
the number of TaskTrackers to run per node. The TaskTrackers need to be configured with
the JVM parameters, including the classpath for both the TaskTracker and the JVMs that will
execute the individual tasks.

There are three levels of configuration to address to configure MapReduce on your cluster.
From the bottom up, you need to configure the machines, the Hadoop MapReduce frame-
work, and the jobs themselves.

We'll get started with these requirements by exploring how to launch your MapReduce jobs.

www.it-ebooks.info

127

http://www.it-ebooks.info/

128

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

Tip A Hadoop job is usually part of a production application, which may have many steps, some of
which are MapReduce jobs. Hadoop Core, as of version 0.19.0, provides a way of optimizing the data
flows between a set of sequential MapReduce jobs. This framework for descriptively and efficiently
running sequential MapReduce jobs together is called chaining, and uses the ChainMapper and the
ChainReducer, as discussed in Chapter 8. An alternative is the cascading package, available from
http://www.cascading.org/.

Launching MapReduce Jobs

Jobs within a MapReduce cluster can be launched by constructing a JobConf object (details on
the JobConf object are provided in this book’s appendix) and passing it to a JobClient object:

JobConf conf = new JobConf(MyClass.class);

/** Configuration setup deleted for clarity*/

/** Launch the Job by submitting it to the Framework. */
RunningJob job = JobClient.runJob(conf);

You can launch the preceding example from the command line as follows:
> bin/hadoop [-libjars jari.jar,jar2.jar,jar3.jar] jar myjar.jar MyClass

The optional -1ibjars jari.jar... specifications add JARs for your job. The assumption
is that MyClass is in the myjar. jar.

For this to be successful requires a considerable amount of runtime environment setup.
Hadoop Core provides a shell script, bin/hadoop, which manages the setup for a job. Using this
script is the standard and recommended way to start a MapReduce job. This script sets up the
process environment correctly for the installation, including inserting the Hadoop JARs and
Hadoop configuration directory into the classpath, and launches your application. This behav-
ior is triggered by providing the initial command-line argument jar to the bin/hadoop script.

Hadoop Core provides several mechanisms for setting the classpath for your application:

* You can set up a fixed base classpath by altering hadoop-env.sh, via the
HADOOP_CLASSPATH environment variable (on all of your machines) or by setting that
environment variable in the runtime environment for the user that starts the Hadoop
servers.

* You may run your jobs via the bin/hadoop jar command and supply a -1ibjars argu-
ment with a list of JARs.

e The DistributedCache object provides a way to add files or archives to your runtime
classpath.

www.it-ebooks.info

http://www.cascading.org/
http://www.it-ebooks.info/

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

Tip The mapred.child.java.opts variable may also be used to specify non-classpath parameters to
the child JVMs. In particular, the java.library.path variable specifies the path for shared libraries if your
application uses the Java Native Interface (JNI). If your application alters the job configuration parameter
mapred.child. java.opts, it is important to ensure that the JYM memory settings are reset or still present,
or your tasks may fail with out-of-memory exceptions.

The advantage of using the DistributedCache and -1ibjars is that resources, such as JAR
files, do not have to already exist on the TaskTracker nodes. The disadvantages are that the
resources must be unpacked on each machine and it is harder to verify which versions of the
resources are used.

When launching an application, a number of command-line parameters may be provided.
Table 5-1 lists some common command-line arguments. The class org.apache.hadoop.util.
GenericOptionsParser actually handles the processing of Table 5-1 arguments.

Table 5-1. Hadoop Standard Command-Line Arguments

Flag Description

-libjars A comma-separated list of JAR files to add to the classpath to the job being launched
and to the map and reduce tasks run by the TaskTrackers. These JAR files will be
staged into HDFS if needed and made available as local files in a temporary job area
on each of the TaskTracker nodes.

-archives A comma-separated list of archive files to make available to the running tasks via the
distributed cache. These archives will be staged into HDFS if needed.

-files A comma-separated list of files to make available to the running tasks via the distrib-
uted cache. These files will be staged into HDFS if needed.

-fs Override the configuration default file system with the supplied URL, the parameter
fs.default.name.

-jt Override the configuration default JobTracker with the supplied host port, the
parameter mapred. job.tracker.

-conf Use this configuration in place of the conf/hadoop-default.xml and
conf/hadoop-site.xml files.

-D Supply an additional job configuration property in key=value format. This argument
may be provided multiple times. There must be whitespace between the -D and the
key=value.

You can use hadoop jar to launch an application, as follows:

hadoop jar [-fs hdfs://host:port] [-jt host:port] [-conf hadoop-config.xml] w»
[-D propi=value] [-D prop2=value..] [-libjars jari[,jar2,jar3]] =

[-files file1[,file2,file3]] [-archives archivel[,archive2,archive3]] =
applicationjar [main class if not supplied in jar] [arguments to main..]

When hadoop jar is used, the main method of org.apache.hadoop.mapred.JobShell is
invoked by the JVM, with all of the remaining command-line arguments. The JobShell in turn

www.it-ebooks.info

129

hdfs://host:port
http://www.it-ebooks.info/

130

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

uses the class org.apache.hadoop.util.GenericOptionsParser to process the arguments, as
described in Table 5-1.

There are two distinct steps in the argument processing of jobs submitted by the bin/
hadoop script. The first step is provided by the framework via the JobShell. The arguments
after jar are processed by the JobShell, per Table 5-1. The first argument not in the set rec-
ognized by the JobShell must be the path to a JAR file, which is the job JAR file. If the job JAR
file contains a main class specification in the manifest, that class will be the main class called
after the first step of argument processing is complete. If the JAR file does not have a main
class in the manifest, the next argument becomes required, and is used as main class name.
Any remaining unprocessed arguments are passed to the main method of the main class as the
arguments. The second step is the processing of the remaining command-line arguments by
the user-specified main class.

Using Shared Libraries

Jobs sometime require specific shared libraries. For example, one of my jobs required a shared
library that handled job-specific image processing. You can handle this in two ways:

e Pass the shared library via the DistributedCache object. For example, using the
command-line options -file 1ibMyStuff.so would make 1ibMyStuff.so available in
the current working directory of each task. (The DistributedCache object is discussed
shortly, in the “Using the Distributed Cache” section.)

e Install the shared library on every TaskTracker machine, and have the JVM library
loader path java.library.path include the installation directory. The task JVM working
directory is part of the java.library.path for a task, and any file that is symbolic-linked
may be loaded by the JVM.

Caution If you are manually loading shared libraries, the library name passed to System.
loadLibrary() must not have the trailing .so. System.loadLibrary() first calls System.
mapLibraryName() and attempts to load the results. This can result in library load failures that are
hard to diagnose.

MapReduce-Specific Configuration for
Each Machine in a Cluster

For simplicity and ease of ongoing maintenance, this section assumes identical Hadoop Core
installations will be placed on each of the machines, in the same location. The cluster-level
configuration is covered in Chapter 3.

The following are the MapReduce-specific configuration requirements for each machine
in the cluster:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

¢ You need to install any standard JARs that your application uses, such as Spring, Hiber-
nate, HttpClient, Commons Lang, and so on.

e Itis probable that your applications will have a runtime environment that is deployed
from a configuration management application, which you will also need to deploy to
each machine.

e The machines will need to have enough RAM for the Hadoop Core services plus the
RAM required to run your tasks.

e The conf/slaves file should have the set of machines to serve as TaskTracker nodes.
You may manually start individual TaskTrackers by running the command bin/
hadoop-daemon.sh start tasktracker, but this is not a recommended practice for
starting a cluster.

The hadoop-env. sh script has a section for providing custom JVM parameters for the dif-
ferent Hadoop Core servers, including the JobTracker and TaskTrackers. As of Hadoop 0.19.0,
the classpath settings are global for all servers. The hadoop-env. sh file may be modified and
distributed to the machines in the cluster, or the environment variable HADOOP_JOBTRACKER_OPTS
may be set with JVM options before starting the cluster via the bin/start-all.sh command or
bin/start-mapred.sh command. The environment variable HADOOP_TASKTRACKER OPTS may be set
to provide per TaskTracker JVM options. It is much better to modify the file, as the changes are
persistent and stored in a single Hadoop-specific location.

When starting the TaskTrackers via the start-*. sh scripts, the environment variable
HADOOP_TASKTRACKER _OPTS may be set in the hadoop-env. sh file in the MapReduce conf direc-
tory on the TaskTracker nodes, or the value may be set in the login shell environment so that
the value is present in the environment of commands started via ssh. The start-*.sh scripts
will ssh to each target machine, and then run the bin/hadoop-daemon.sh start tasktracker
command.

Using the Distributed Cache

The DistributedCache object provides a programmatic mechanism for specifying the
resources needed by the mapper and reducer. The job is actually already using the
DistributedCache object to a limited degree, if the job creates the JobConf object with a class as
an argument: new JobConf(MyMapper.class). You may also invoke your MapReduce program
using the bin/hadoop script and provide arguments for -1ibjars, -files, or -archives.

The downloadable code for this book (available from this book’s details page on the
Apress web site, http://www.apress.com) includes several source files for the DistributedCache
examples: Utils. java, DistributedCacheExample. java, and DistributedCacheMapper. java.

Caution The paths and URIs for DistributedCache items are stored as comma-separated lists of
strings in the configuration. Any comma characters in the paths will result in unpredictable and incorrect
behavior.

www.it-ebooks.info

131

http://www.apress.com
http://www.it-ebooks.info/

132

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

Adding Resources to the Task Classpath

Four methods add elements to the Java classpath for the map and reduce tasks. The first three
in the following list add archives to the classpath. The archives are unpacked in the job local
directory of the task. You can use the following methods to add resources to the task classpath:

JobConf.setJar(String jar): Sets the user JAR for the MapReduce job. It is on the JobConf
object, but it manipulates the same configuration keys as the DistributedCache. The file
jar will be found, and if necessary, copied into the shared file system, and the full path
name on the shared file system stored under the configuration key mapred. jar.

JobConf.setJarByClass(Class cls): Determines the JAR that contains the class c1s and
calls JobConf.setJar(jar) with that JAR.

DistributedCache.addArchiveToClassPath(Path archive, Configuration conf): Adds

an archive path to the current set of classpath entries. This is a static method, and the
archive (a zip or JAR file) will be made available to the running tasks via the classpath

of the JVM. The archive is also added to the list of cached archives. The contents will

be unpacked in the local job directory on each TaskTracker node. The archive path

is stored in the configuration under the key mapred. job.classpath.archives, and the

URI constructed from archive.makeQualified(conf).toUri() is stored under the key
mapred.job.classpath.archives. If the path component of the URI does not exactly equal
archive, archive will not be placed in the classpath of the task correctly.

Caution The archive path must be on the JobTracker shared file system, and must be an absolute
path. Only the path /user/hadoop/myjar. jar is correct; hdfs://host:8020/user/hadoop/myjar.jar
will fail, as will hadoop/myjar.jar or myjar. jar.

DistributedCache.addFileToClassPath(Path file, Configuration conf):Adds a file
path to the current set of classpath entries. It adds the file to the cache as well. This is a
static method that makes the file available to the running tasks via the classpath of the
JVM. The file path is stored under the configuration key mapred. job.classpath.files,
and the URI constructed from file.makeQualified(conf).toUri() is stored under the key
mapred.cache.files. If file is not exactly equal to the path portion of the constructed
UR], file will not be added to the classpath of the task correctly.

Caution The file path added must be an absolute path on the JobTracker shared file system, and be
only a path. /user/hadoop/myfile is correct; hdfs://host:8020/user/hadoop/myfile will fail, as will
hadoop/myfile or myfile.

www.it-ebooks.info

hdfs://host:8020/user/hadoop/myjar.jar
hdfs://host:8020/user/hadoop/myfile
http://www.it-ebooks.info/

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

Distributing Archives and Files to Tasks

In addition to items that become available via the classpath, two methods distribute archives
and individual files: DistributedCache.addCacheArchive(URT uri, Configuration conf) and
DistributedCache.addCacheFile(URT uri, Configuration conf).Local file system copies of
these items are made on all of the TaskTracker machines, in the work area set aside for this job.

Distributing Archives

The DistributedCache.addCacheArchive(URI uri, Configuration conf) method will add an
archive to the list of archives to be distributed to the jobs. The URI must have an absolute path
and be on the JobTracker shared file system.

If the URI has a fragment, a symbolic link to the archive will be placed in the task working
directory as the fragment. The URI hdfs://host:8020/user/hadoop/myfile#fmylink will result in
a symbolic link mylink in the task working directory that points to the local file system location
that myfile was unpacked into at task start. The archive will be unpacked into the local work-
ing directory of the task.

The URI will be stored in the configuration under the key mapred.cache.archives.

Distributing Files

This DistributedCache.addCacheFile(URI uri, Configuration conf) method will make a copy
of the file uri available to all of the tasks, as a local file system file. The URI must be on the
JobTracker shared file system.

If the URI has a fragment, a symbolic link to the URI fragment will be created in the
JVM working directory that points to the location on the local file system where the uri was
unpacked into at task start. The directory where DistributedCache stores the local copies of
the passed items is not the current working directory of the task JVM. This allows the items
to be referenced by names that do not have any path components. In particular, executable
items may be referenced as . /name.

To pass a script via the distributed cache, use DistributedCache.addCacheFile(new URI
("hdfs://host:8020/usexr/hadoop/myscript.pl"), conf);.To pass a script so that it may be
invoked via ./script, use DistributedCache.addCacheFile(new URI("hdfs://host:8020/
user/hadoop/myscript.pl#script"), conf);.

The URI is stored in the configuration key mapred. cache.files.

Accessing the DistributedCache Data

Three methods find the locations of the items that were passed to the task via the DistributedCache
object: URT JobConf.getResource(name), public static Path[]getLocalCacheArchives
(Configuration conf),and public static Path[] getlLocalCacheFiles(Configuration conf).

Looking Up Names

The URT JobConf.getResource(name) method will look up name in the classpath. If name has a
leading slash, this method will search for it in each location in the classpath, and return the URI.

If the job passed a file into DistributedCache via the -files command or the
DistributedCache.addFileToClassPath(Path file, conf) method, a getResource() call of the
file name component, with a leading slash, will return the URIL.

www.it-ebooks.info

133

hdfs://host:8020/user/hadoop/myfile#mylink
hdfs://host:8020/user/hadoop/myscript.pl
hdfs://host:8020/user/hadoop/myscript.pl#script
hdfs://host:8020/user/hadoop/myscript.pl#script
http://www.it-ebooks.info/

134

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

Note The standard search rules for resources apply. The cache items will be the last items in the class-
path. This does not appear to work for files that are added via DistributedCache.addFileToClassPath.
The full path is available via the set of paths returned by DistributedCache.getFileClassPaths().

The DistributedCache.addArchiveToClassPath(jarFileForClassPath, job) method
actually stores the JAR information into the configuration. In the following example, Utils.
setupArchiveFile builds a JAR file with ten files in it, in the default file system (HDFS in this
case). Utils.makeAbsolute returns the absolute path.

Path jarFileForClassPath = Utils.makeAbsolute(Utils.setupArchiveFile(job, w»
10, true),job);
DistributedCache.addArchiveToClassPath(jarFileForClassPath, job);

Any file that is in the JAR may be accessed via the getResource() method of the configura-
tion object. If there were a file myfile in the JAR, the call conf.getResource("/myfile"); would
return the URL of the resource. The call conf. getConfResourceAsInputStream("/myfile");
would return an InputStream that, when read, would provide the contents of myfile from
the JAR.

Looking Up Archives and Files

The public static Path[]getLocalCacheArchives (Configuration conf) method returnsa
list of the archives that were passed via DistributedCache. The paths will be in the task local
area of the local file system. Any archive passed via the command-line -1ibjars and -archives
options, or the methods DistributedCache.addCacheArchive() and DistributedCache.
addArchiveToClassPath() and the JobConf.setJar line, will have its path returned by this call.

It is possible that the file name portion of your archive will be changed slightly.
DistributedCache provides the following method to help with this situation:

public static String makeRelative(URI cache, Configuration conf)

This takes an original archive path and returns the possibly altered file name component.

The public static Path[] getlLocalCacheFiles(Configuration conf) method returns
the set of localized paths for files that are passed via DistributedCache.addCacheFile and
DistributedCache.addFileToClassPath and the command-line option -files. The file name
portions of the paths may be different from the original file name.

Finding a File or Archive in the Localized Cache

The DistributedCache object may change the file name portion of the files and archives it
distributes. This is usually not a problem for classpath items, but it may be a problem for non-
classpath items. The Utils.makeRelativeName() method, described in Table 5-2 provides a
way to determine what the file name portion of the passed item was changed to. In addition to
the file name portion, the items will be stored in a location relative to the working area for the
task on each TaskTracker. Table 5-2 lists the methods provided in the downloadable code that

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

make working with the DistributedCache object simpler. These methods are designed to be
used in the mapper and reducer methods.

Table 5-2. Utility Methods Provided in the Examples for Working with the DistributedCache
Object

Method Description

Utils.makeRelativeName(name, conf) Returns the actual name DistributedCache
will use for the passed-in name.

Utils.findClassPathArchive(name, conf) Returns the actual path on the current ma-
chine of the archive name that was passed via
DistributedCache.addArchiveToClassPath.

Utils.findClassPathFile(name, conf) Returns the actual path on the current ma-
chine of the file name that was passed via Dist
ributeCacheAddFileToClasspath.

Utils.findNonClassPathArchive(name, conf) Returns the actual path on the current ma-
chine of the archive name that was passed via
DistributedCache.addCacheArchive.

Utils.findNonClassPathFile(name, conf) Returns the actual path on the current
machine of the file name that was passed via
DistributedCache.addCacheFile.

Configuring the Hadoop Core Cluster Information

The JobConf object provides two basic and critical ways for specifying the default file system:
the URI to use for all shared file system paths, and the connection information for the Job-
Tracker server. These two items are normally specified in the conf/hadoop-site.xml file, but
they may be specified on the command line or by setting the values on the JobConf object.

Setting the Default File System URI

The default file system URI is normally specified with the fs.default.name setting in the
hadoop-site.xml file, as it is cluster-specific. The value will be hdfs: //NamenodeHostname : PORT.
The PORT portion is optional and defaults to 8020, as of Hadoop 0.18

Note The default value for the file system URI is file:///, which stores all files on the local file system.
The file system that is used must be a file system that is shared among all of the nodes in the cluster.

<property>
<name>fs.default.name</name>
<value>hdfs://NamenodeHostname:PORT</value>
</property>

www.it-ebooks.info

135

hdfs://NamenodeHostname:PORT
hdfs://NamenodeHostname:PORT</value
http://www.it-ebooks.info/

136

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

The Hadoop tools, examples, and any application that uses the GenericOptionParser
class to handle command-line arguments will accept a -fs hdfs://NamenodeHostname: PORT
command-line argument pair to explicitly set the fs.default.name value in the configuration.
This will override the value specified in the hadoop-site.xml file.

Here’s a sample command line for listing files on an explicitly specified HDEFS file system:

bin/hadoop dfs -fs hdfs://AlternateClusterNamenodeHostname:8020 -1s /
You can also use the JobConf object to set the default file system:

conf.set("fs.default.name", "hdfs://NamenodeHostname:PORT");

Setting the JobTracker Location

The JobTracker location is normally specified with the mapred. job.tracker setting in the
hadoop-site.xml file, as it is cluster-specific. The value will be JobTrackerHostname: PORT.
Through Hadoop 0.19, there is not a standard for the PORT. Many installations use a port one
higher that the HDFS port.

Note The default value for the JobTracker location is Local, which will result in the job being executed
by the JVM that submits it. The value local is ideal for testing and debugging new MapReduce jobs. It is
important to ensure that any required Hadoop configuration files are in the classpath of the test jobs.

<property>
<name>mapred. job.tracker</name>
<value>JobtrackerHostname:PORT</value>
</property>

Here’s a sample command line explicitly setting the JobTracker for job control for listing
jobs:

bin/hadoop job -jt AlternateClusterJobtrackerHostname:8021 -list
And here’s how to use the JobConf object to set the JobTracker information:

conf.set("mapred.job.tracker", "JobtrackerHostname:PORT");

The Mapper Dissected

All Hadoop jobs start with a mapper. The reducer is optional. The class providing the map
function must implement the org.apache.hadoop.mapred.Mapper interface, which in turn
requires the interfaces org.apache.hadoop.mapred.JobConfigurable and org.apache.hadoop.
io.Closeable. The Hadoop framework provides org.apache.hadoop.mapred.MapReduceBase
from which to derive mapper and reducer classes. The JobConfigurable and Closable

www.it-ebooks.info

hdfs://NamenodeHostname:PORT
hdfs://AlternateClusterNamenodeHostname:8020
hdfs://NamenodeHostname:PORT
http://www.it-ebooks.info/

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

implementations are empty methods. In the utilities supplied with this book’s download-
able code is com.apress.hadoopbook.utils.MapReduceBase, which provides more useful
implementations.

Note The interface org.apache.hadoop.io.Closeable will be replaced with java.io.Closeable in
a later release.

This section examines the sample mapper class SampleMapperRunner. java, which is avail-
able with the rest of the downloadable code for this book. When run as a Java application, this
example accepts all of the standard Hadoop arguments and may be run with custom bean
context and definitions:

bin/hadoop jar hadoopprobook.jar w=
com.apress.hadoopbook.examples.chs.SampleMapperRunner -D w»
mapper.bean.context=mycontext.xml -D mapper.bean.name=mybean -files w»
mycontext.xml -deleteOutput

where:

* bin/hadoop jar is the standard Hadoop program invocation.

* hadoopprobook.jar com.apress.hadoopbook.examples.chs5.SampleMapperRunner speci-
fies the JAR file to use and the main class to run.

e -D mapper.bean.context=mycontext.xml and -D mapper.bean.name=mybean spec-
ify that the string mycontext.xml is stored in the configuration under the key
mapper.bean.context, and that the string mybean is stored in the configuration under
the key mapper .bean.name.

e -files mycontext.xml causes the file mycontext.xml to be copied into HDFS, and then
unpacked and made available in the working directory of each task run by the job. The
working directory is in the task classpath. mycontext.xml may have a directory path
component, and not be just a stand-alone file name. The path and file name provided
must be a path that can be opened from the current working directory.

Note If you are using the value local as the value of the mapred.task.tracker configuration key,
using the DistributedCache object is less effective, as the task cannot change working directories.

e --deleteOutput, which must be the last argument, causes the output directory to be
deleted before the job is started. This is convenient when running the job multiple
times.

www.it-ebooks.info

137

http://www.it-ebooks.info/

138 CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

Mapper Methods

For the mapper, the framework will call three methods:

e configure() method, defined in the Configurable interface
¢ map() method, defined in the Mapper interface

¢ close() method, defined in the Closable interface

The following sections discuss these methods in detail.

Note The framework uses the static method org.apache.hadoop.util.ReflectionUtils.<T>newIn
stance(Class<T> theClass, Configuration conf) to create instances of objects that need a copy of
the configuration. This will create the instance using the no-argument constructor. If the class is an instance
of Configurable, newInstance will call the setConf method with the supplied configuration. If the class is
an instance of JobConfiguration, newInstance will call the configure method. Any exceptions that are
thrown during the construction or initialization of the instance are rethrown as RuntimeExceptions.

The configure() Method

The void JobConfigurable.configure(JobConf job) method, defined in org.apache.hadoop.
conf.Configurable, is called exactly one time per map task as part of the initialization of the
Mapper instance. If an exception is thrown, this task will fail. The framework may attempt to
retry this task on another host if the allowable number of failures for the task has not been
exceeded. The methods JobConf.getMaxMapAttempts() and JobConf.setMaxMapAttempts(int n)
control the number of times a map task will be retried if the task fails. The default is four times.

It is considered good practice for any Mapper implementation to declare a member vari-
able that the configure() method uses to store a reference to the passed-in JobConf object.
The configure() method is also used for loading any Spring application context or initializing
resources that are passed via DistributedCache.

Listing 5-1 shows the configure() method used in SampleMapperRunner. java (the example
available with the downloadable code for this chapter).

Listing 5-1. configure Method from SampleMapperRunner.java

/** Sample Configure method for a map/reduce class.

* This method assumes the class derives from {@link MapReduceBase}
and saves a copy of the JobConf object, the taskName

and the taskId into member variables.

and makes an instance of the output key and output value

objects as member variables for the

map or reduce to use.

* X X X X ¥

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

* If this method fails the Tasktracker will abort this task.
* @param job The Localized JobConf object for this task
*/
public void configure(JobConf job) {
super.configure(job);
LOG.1info("Map Task Configure");
this.conf = job;
try {
taskName = conf.getJobName();
taskId = TaskAttemptID.forName(conf.get("mapred.task.id"));
if (taskName == null || taskName.length() == 0) {
/** if the job name is essentially unset make something up. */
taskName = taskId.isMap() ? "map." : "reduce."
+ this.getClass().getName();

}

/**
* These casts are safe as they are checked by the framework
* earlier in the process.
*/
outputKey = (K2) conf.getMapOutputKeyClass().newInstance();
outputValue = (V2) conf.getMapOutputValueClass().newInstance();
} catch (RuntimeException e) {
LOG.error("Map Task Failed to initialize", e);
throw e;
} catch (InstantiationException e) {
LOG.error(
"Failed to instantiate the key or output value class",
e);
throw new RuntimeException(e);
} catch (IllegalAccessException e) {
LOG
.error(
"Failed to run no argument constructor for key or output value objects",
e);
throw new RuntimeException(e);

}

LOG.info(taskId.isMap() ? "Map" : "Reduce" + " Task Configure complete");

In this example, K2 is the map output key type, which defaults to the reduce output key
type, which defaults to Longhritable. V2 is the map output value key type, which defaults to
the reduce output value type, which defaults to Text.

This configure() method saves a copy of the JobConf object taskId and taskName into
member variables. This method also instantiates a local instance of the key and value classes,

www.it-ebooks.info

139

http://www.it-ebooks.info/

140

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

to be used during the map () method calls. By using the isMap method on the taskId, you can
take different actions for map and reduce tasks in the configure() and close() methods. This
becomes very useful when a single class provides both a map method and a reduce method.

The map() Method

A call to the void map(K1 key, Vi value, OutputCollector<K2,V2> output, Reporter
reporter) throws IOException method, defined in org.apache.hadoop.mapred.Mapper, will
be made for every record in the job input. No calls will be made to the map() method in an
instance before the configure() method completes.

If the job is configured for running multithreaded map tasks, as follows, there may be
multiple simultaneous calls to the map() method.

jobConf.setMapRunnerClass(MultithreadedMapRunner.class);
jobConf.setInt("mapred.map.multithreadedrunner.threads", 10);

When running multithreaded, each map() call will have a different key and value object.
The output and reporter objects are shared. The default number of threads for a multithreaded
map task is ten.

The contents of the key object and the contents of the value object are valid only during
the map() method call. The framework will reset the object contents with the next key/value
pair prior to the next call to map().

The class converting the input into records is responsible for defining the types of K1 and
V1. The standard textual input format, KeyValueTextInput, defines K1 and V1 to be of type Text.

K2 and V2 are defined by the JobConf.setMapOutputKeyClass(clazz) and JobConf.
setMapOutputValueClass(clazz) methods. The types of K2 and V2 default to the classes set for
the reduce key and value output classes. The reduce key and value output classes are set by
JobConf. setOutputKeyClass(clazz) and JobConf.setOutputValueClass(clazz). The defaults
for K2 and V2 are LongWritable and Text, respectively. You can explicitly configure the map
output key and value classes, as follows:

jobConf.setMapOutputKeyClass(MyMapOutputKey.class);
jobConf.setMapOutputValueClass(MyMapOutputValue.class)

If a map output class is set, the corresponding reduce input class is also set to the class. If
the map output key class is changed to BytesWritable, the Reducer.reduce’s key type will be
ByteshWritable.

The close() Method

The void close() method, defined in java.io.Closable, is called one time after the last call
to the map () method is made by the framework. This method is the place to close any open
files or perform any status checking. Unless your configure() method has saved a copy

of the JobCont object, there is little interaction that can be done with the framework. The
close() method example in Listing 5-2 checks the task status based on the ratio of excep-
tions to input keys.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

Listing 5-2. close Method from SampleMapperRunner.java

/** Sample close method that sets the task status based on how
* many map exceptions there were.
* This assumes that the reporter object passed into the map method was saved and
* that the JobConf object passed into the configure method was saved.
*/
public void close() throws IOException {
super.close();
LOG.info("Map task close");
if (reporter != null) {
Vioio
* If we have a reporter we can perform simple checks on the
* completion status and set a status message for this task.
*/
Counter mapExceptionCounter = reporter.getCounter(taskName,
"Total Map Failures");
Counter mapTotalKeys = reporter.getCounter(taskName,
"Total Map Keys");
if (mapExceptionCounter.getCounter() == mapTotalKeys
.getCounter()) {
reporter.setStatus("Total Failure");
} else if (mapExceptionCounter.getCounter() != 0) {
reporter.setStatus("Partial Success");
} else {
/** Use the Spring set bean to show we did get the values. */
reporter.incrCounter(taskName, getSpringSetString(), getSpringSetInt());
reporter.setStatus("Complete Success");
}
}
/**
* Ensure any HDFS files are closed here, to force them to be
* committed to HDFS.
*/

The close() method in Listing 5-2 will report success or failure status back to the frame-
work, based on an examination of the job counters. It assumes that the map() method reported
an exception under the counter, Total Map Failure, in the counter group taskName, and the
number of keys received is in the counter, Total Map Keys, in the counter group taskName.

If there are no exceptions, the method will report the task status as “Complete Success.”
If there are some exceptions, the status is set to “Partial Success,” If the exception count
equals the key count, the status is set to “Total Failure.”

This example also logs to counters with the values received from the Spring initialization.
I found the Spring value-based counters useful while working out how to initialize map class
member variables via the Spring Framework, as described after the discussion of the mapper
class declaration and member fields.

www.it-ebooks.info

141

http://www.it-ebooks.info/

142

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

Mapper Class Declaration and Member Fields

It is a best practice to capture the JobConf object passed in the configure() method into a
member variable. It is also a good practice to instantiate member variables, or thread local
variables, for any key or value that would otherwise be created in the body of the map()
method. Having the TaskAttemptId available is also useful, as it is easy to determine if this is
the map phase or the reduce phase of a job.

It is convenient to capture the output collector and the reporter into member fields so that
they may be used in the close() method. This has a downside in that they can be captured
only in the map() method, requiring extra code in that inner loop.

Listing 5-3 shows an example that declares a number of local variables, which are initial-
ized by the configure() method for use by the map() and close() methods.

Listing 5-3. Class and Member Variable Declarations from SampleMapperRunner.java
/**

* Sample Mapper shell showing various practices

*

* K1 and V1 will be defined by the InputFormat. K2 and V2 will be the

* {@link JobConf#getOutputKeyClass()} and

* {@link JobConf#getOutputValueClass()}, which by default are LongWritable
* and Text. K1 and V1 may be explicitly set via

* {@link JobConf#setMapOutputKeyClass(Class)} and

* {@link JobConf#setMapOutputValueClass(Class)}. If K1 and Vi are

* explicitly set, they become the K1 and V1 for the Reducer.

*

* @author Jason

*

*/

public static class SampleMapper<Ki, Vi, K2, V2> extends MapReduceBase
implements Mapper<Ki, Vi, K2, V2> {

/¥

* Create a logging object or you will never know what happened in your
* task.

*/

/** Used in metrics reporting. */

String taskName = null;

Vioko

* Always save one of these away. They are so handy for almost any
* interaction with the framework.

*/

JobConf conf = null;

/x*

* These are nice to save, but require a test or a set each pass through
* the map method.

*/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

Reporter reporter = null;
/** Take this early, it is handy to have. */
TaskAttemptID taskId = null;

/**

If we are constructing new keys or values for the output, it is a
best practice to generate the key and value object once, and reset
them each time. Remember that the map method is an inner loop that
may be called millions of times. These really can't be used without
knowing an actual type

EE G S

*/
K2 outputKey = null;
V2 outputValue = null;

Initializing the Mapper with Spring
Many installations use the Spring Framework to manage the services employed by their appli-
cations. One of the more interesting issues is how to use Spring in environments where Spring
does not have full control over the creation of class instances. Spring likes to be in full control
of the application and manage the creation of all of the Spring bean objects. In the Hadoop
case, the Hadoop framework is in charge and will create the object instances. The examples in
this section demonstrate how to use Spring to initialize member variables in the mapper class.
The same techniques apply to the reducer class.

Listing 5-4 shows the bean file used in the Spring example. The file mapper.bean.context.
xml in the downloadable examples src/config directory is the actual file used.

Listing 5-4. Simple Bean Resource File for the Spring-Initialized Task

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemalocation="http://www.springframework.org/schema/beans =
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context w»
http://www.springframework.org/schema/context/spring-context.xsd">

<bean id="SampleMapperJob.mapper.bean.name"
class="com.apress.hadoopbook.examples.ch5.SampleMapperRunner.SampleMapper"
lazy-init="true"
scope="singleton">
<description> Simple bean definition to provide an example for
using Spring to initialize context in a Mapper class.</description>
<property name="springSetString"><value>SetFromDefaultFile</value></property>
<property name="springSetInt"><value>37</value></property>
</bean>
</beans>

www.it-ebooks.info

143

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/context
http://www.springframework.org/schema/beans%E2%9E%A5
http://www.springframework.org/schema/beans%E2%9E%A5
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context%E2%9E%A5
http://www.springframework.org/schema/context%E2%9E%A5
http://www.springframework.org/schema/context/spring-context.xsd
http://www.it-ebooks.info/

144

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

Creating the Spring Application Context

To create an application context, you need to provide Spring with a resource set from
which to load bean definitions. Being very JobConf-oriented, I prefer to pass the names of
these resources, and possibly the resources themselves, to my tasks via the JobConf and
DistributedCache objects.

The example in Listing 5-5 extracts the set of resource names from the JobConf object,
and if not found, will supply a default set of resource names. This follows the Hadoop style of
using comma-separated elements to store multiple elements in the configuration. The set of
resources names are unpacked and passed to the Spring Framework. Each of these resources
must be in the classpath, which includes the task working directory.

At the very simplest, the user may specify the specific Spring configuration files on the
command line via the -files argument, when the GenericOptionsParser is in use. The map-
per class will need to determine the name of the file passed in via the command line. For the
example, set up the Spring initialization parameters on the application command line as
follows:

hadoop jar appJar main-class -files springl.xml,spring2,xml,spring3.xml w»
-D mapper.bean.context=springl.xml

Note In the command-line specification, the -D mapper.bean. context=value argument must come
after the main class reference to be stored in the job configuration. If it comes before the jar argument, it
will become a Java system property.

The example in Listing 5-5 copies spring1.xml, spring2.xml, and spring3.xml from
the local file system into HDFS, and then copies them to the task local directory and cre-
ates symbolic links from the local copy to the task working directory. The configuration
parameter mapper.bean.context tells the map task which bean file to load. In the example,
SampleMapperRunner looks up the configuration entry mapper.bean.context to determine which
bean files to use when creating the application context.

Listing 5-5. Extracting the Resource File Names from the JobConf Object and Initializing the
Spring Application Context (from utils. Utils.java)

/**

* Initialize the Spring environment. This is of course completely

* optional.

*

* This method picks up the application context from a file, that is in
* the classpath. If the file items are passed through the

* {@link DistributedCache} and symlinked

* they will be in the classpath.

ES

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

* @param conf The JobConf object to look for the Spring config file names.
* If this is null, the default value is used.
* @param contextConfigName The token to look under in the config for the names
* @param defaultConfigString A default value
* @return TODO
ES
*/
public static ApplicationContext initSpring(JobConf conf, String contextConfigName,
String defaultConfigString) {
/**
* If you are a Spring user, you would initialize your application
* context here.
*/
/** Look up the context config files in the JobConf, provide a default value. */
String applicationContextFileNameSet =
conf == null ? defaultConfigString :
conf.get(contextConfigName, defaultConfigString);
LOG.info("Map Application Context File "
+ applicationContextFileNameSet);

/** If no config information was found, bail out. */
if (applicationContextFileNameSet==null) {
LOG.error("Unable to initialize Spring configuration using "
+ applicationContextFileNameSet);
return null;
}
/** Attempt to split it into components using the config
* standard method of comma separators. */
String[] components = StringUtils.split(applicationContextFileNameSet, ",");

/** Load the configuration. */
ApplicationContext applicationContext =
new ClassPathXmlApplicationContext(components);

return applicationContext;

Using Spring to Autowire the Mapper Class

Once the Spring application context has been created, the task may instantiate beans. The
confusing issue is that the mapper class has already been instantiated, so how can Spring be
forced to initialize/autowire that class?

Accomplishing this autowiring requires two things. The first is that the bean definition
to be used must specify lazy initialization, to prevent Spring from creating an instance of the
bean when the application context is created. The second is to know the bean name/ID of the
mapper class.

www.it-ebooks.info

145

http://www.it-ebooks.info/

146 CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

The example in Listing 5-6 makes some assumptions about how application contexts and
task beans are named, and can be easily modified for your application.

Listing 5-6. Example of a Spring Task Initialization Method

/** Handle Spring configuration for the mapper.

* The bean definition has to be <code>lazy-init="true"</code>

as this object must be initialized.

This will fail if Spring weaves a wrapper class for AOP around
the configure bean.

The bean name is extracted from the configuration as
mapper.bean.name or reducer.bean.name
or defaults to taskName.XXXX.bean.name

The application context is loaded from mapper.bean.context
or reducer.bean.context and may be a set of files
The default is jobName.XXX.bean.context

* X K X X X X X X X X X ¥

@param job The JobConf object to look up application context =
files and bean names in
* @param RuntimeException if the application context can not be =
loaded or the initializtion requires delegation of the task object.
*/
void springAutoWire(JobConf job) {
String springBaseName = taskId.isMap()? "mapper.bean": "reducer.bean";

/** Construct a bean name for this class using the configuration
* or a default name. */
String beanName = conf.get(springBaseName +
taskName + "." + springBaseName +
LOG.info("Bean name is " + beanName);
applicationContext = Utils.initSpring(job, springBaseName
+ ".context", springBaseName + ".context.xml");
if (applicationContext==null) {
throw new RuntimeException(
"Unable to initialize spring configuration for
}
AutowireCapableBeanFactory autowire =
applicationContext.getAutowireCapableBeanFactory();
Object mayBeWrapped = autowire.configureBean(this, beanName);
if (mayBeWrapped != this) {
throw new RuntimeException("Spring wrapped our class for

'.name",
".name");

n

+ springBaseName);

+ beanName);

}

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

In Listing 5-6, a base name is constructed for looking up information in the configuration
via the following:

String springBaseName = taskId.isMap()? "mapper.bean": "reducer.bean";

The example builds a context file name key, which will be mapper.bean.context in the
case of a map, to look up the application context information in the configuration. If a value
is found, it is treated as a comma-separated list of bean resource files to load. The application
context is loaded and saved in the member variable applicationContext:

applicationContext = SpringUtils.initSpring(job, springBaseName
+ ".context", springBaseName + ".context.xml");

A default bean file is used if no value is found. In this example, the file is
mapper.bean.context.xml.

A bean name key mapper.bean.name, with a default value of mapper.bean.name, is looked up
in the configuration. This is the bean that will be used to configure the task. The following line
constructs the bean name to use:

[l non

String beanName = conf.get(springBaseName +
+ springBaseName + ".name");

".name", taskName +

An autowire-capable bean factory is extracted from the application context via the
following:

AutowireCapableBeanFactory autowire =
applicationContext.getAutowireCapableBeanFactory();

The following line actually causes Spring to initialize the task:
Object mayBeWrapped = autowire.configureBean(this, beanName);

The code must ensure that Spring did not return a delegator object when it was initializing
the task from the bean definition:

if (mayBeWrapped != this) {
throw new RuntimeException("Spring wrapped our class for " + beanName);

}

Note This example does not handle the case where Spring returns a delegator object for the task. To
handle this case, the map() method would need to be redirected through the delegated object.

Partitioners Dissected

A core part of the MapReduce concept requires that map outputs be split into multiple
streams called partitions, and that each of these partitions is fed to a single reduce task. The
reduce contract specifies that each reduce task will be given as input the fully sorted set of keys

www.it-ebooks.info

147

http://www.it-ebooks.info/

148

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

and their values in a particular partition. The entire partition is the input of the reduce task.
For the framework to satisfy this contract, a number of things have to happen first. The out-
puts of each map task are partitioned and sorted. The partitioner is run in the context of the
map task.

The Hadoop framework provides several partitioning classes and a mechanism to specify
a class to use for partitioning. The actual class to be used must implement the org.apache.
hadoop.mapred.Partitioner interface, as shown in Listing 5-7. The piece that provides a parti-
tion number is the getPartition() method:

int getPartition(K2 key, V2 value, int numPartitions)

Note that both the key and the value are available in making the partition choice.

Listing 5-7. The Partitioner Interface in Hadoop 0.19.0

/**

* Partitions the key space.

ES

* <p><code>Partitioner</code> controls the partitioning of the keys of the

* intermediate map-outputs. The key (or a subset of the key) is used to derive
* the partition, typically by a hash function. The total number of partitions

* is the same as the number of reduce tasks for the job. Hence this controls

* which of the <code>m</code> reduce tasks the intermediate key (and hence the
* record) is sent for reduction.</p>

ES

ES

@see Reducer
*/
public interface Partitioner<K2, V2> extends JobConfigurable {

/**

* Get the partition number for a given key (hence record) given the total
* number of partitions i.e. number of reduce tasks for the job.

*

* <p>Typically a hash function on a all or a subset of the key.</p>

*

* @param key the key to be paritioned.

* @param value the entry value.

* @param numPartitions the total number of partitions.
* @return the partition number for the <code>key</code>.
*/

int getPartition(K2 key, V2 value, int numPartitions);

}

The key and value will be streamed into the partition number that this function returns.
Each key/value pair output by the map() method has the partition number determined and is
then written to that map local partition. Each of these map local partition files is sorted in key
order by the class returned by the JobConf.getOutputKeyComparator () method.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

For each reduce task, the framework will collect all the reduce task’s partition pieces
from each of the map tasks and merge-sort those pieces. The results of the merge-sort are
then fed to the reduce() method. The merge-sort is also done by the class returned by the
JobConf.getOutputKeyComparator () method.

The output of a reduce task will be written to the part-XXXXX file, where the XXXXX corre-
sponds to the partition number.

The Hadoop framework provides the following partitioner classes:

e HashPartitioner, which is the default
e TotalOrderPartitioner, which provides a way to partition by range

e KeyFieldBasedPartitioner, which provides a way to partition by parts of the key

The following sections describe each of these partitioners.

The HashPartitioner Class

The default partitioner, org.apache.hadoop.mapred.lib.HashPartitioner, simply uses the hash
code value of the key as the determining factor for partitioning. Listing 5-8 shows the actual
code from the default partitioner used by Hadoop. The partition number is simply the hash
value of the key modulus the number of partitions.

Listing 5-8. The HashCode Partitioner from Hadoop 0.19.0

/** Partition keys by their {@link ObjectthashCode()}. */
public class HashPartitioner<K2, V2> implements Partitioner<kK2, V2> {

public void configure(JobConf job) {}

/** Use {@link Object#hashCode()} to partition. */
public int getPartition(K2 key, V2 value,
int numReduceTasks) {
return (key.hashCode() & Integer.MAX VALUE) % numReduceTasks;

}

The hash value is converted to a positive value, (key.hashCode() & Integer.MAX VALUE),
to ensure that the partition will be a positive integer. The resulting number has modulus the
number of reduce tasks applied, % numReduceTasks, and the result returned. This produces a
positive number between 0 and one less than the number of partitions.

The TotalOrderPartitioner Class

The TotalOrderPartitioner, org.apache.hadoop.mapred.lib.TotalOrderPartitioner, relies
on a file that provides the class with range information. With this information, the partitioner
is able to determine which range a key/value pair belongs in and route it to the relevant
partition.

www.it-ebooks.info

149

http://www.it-ebooks.info/

150

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

Note The TotalOrderParitioner grew out of the TetraSort example package. Jim Gray introduced
a contest called the TeraByteSort, which was a benchmark to sort one terabyte of data and write the results
to disk. In 2008, Yahoo! produced a Hadoop version of the test that completed in 209 seconds (http://
developer.yahoo.net/blogs/hadoop/2008/07/apache_hadoop wins_terabyte sort benchmark.
html). The code is included with the Hadoop examples as bin/hadoop jar hadoop-*-examples.jar
terasort in-dir out-dir. The class file is org.apache.hadoop.examples.terasort.TeraSort.

Building a Range Table

The org.apache.hadoop.mapred.1lib.InputSampler class is used to generate a range partition-
ing file for arbitrary input sets. This class will sample the input to build an approximate range
table.

This sampling strategy will take no more than the specified number of samples total from
the input. The user may specify a maximum number of input splits to look in as well. The
actual number of records read from each input split varies based on the number of splits and
the number of records in the input split.

The Hadoop framework controls how the input is split based on the number of input files,
the input format, the input file size, and the minimum split size and the HDFS block size. Let’s
look at a few examples of running InputSampler from the command line.

In the following example, the argument set -splitSample 1000 10 will sample a total of
1,000 input records out of no more than 10 input splits.

bin/hadoop jar hadoop-0.19.0-core.jar org.apache.hadoop.mapred.lib.InputSampler
-inFormat org.apache.hadoop.mapred.KeyValueTextInputFormat w»
-keyClass org.apache.hadoop.io.Text -r 15 -splitSample 1000 10 csvin csvout

If there are 10 or more input splits, each of which has more than 100 records, the first 100
records from each input split will be used for samples. The input is loaded from the directory
csvin, and is parsed by the KeyValueTextInputFormat class. The range file is written to csvout,
and the argument set -1 15 sets up the output for a job with 15 output partitions. The input
splits are examined in the order in which they are returned by InputFormat.

The next example takes 1,000 samples from roughly 10 input splits. The input splits are
sampled in a random order, and the records from each split read are sequentially.

bin/hadoop jar hadoop-0.19.0-core.jar org.apache.hadoop.mapred.lib.InputSampler w»
-inFormat org.apache.hadoop.mapred.KeyValueTextInputFormat w»
-keyClass org.apache.hadoop.io.Text -r 15 -splitRandom .1 1000 10 csvin csvout

Each record has a 0.1% chance of being selected. The -splitRandom .1 1000 10 argument
set specifies the percentage, the total samples, and the maximum splits to sample. If the 1,000
samples are not selected after processing the recommended number of splits, more splits will
be sampled. The index is set up for 15 reduce tasks, and the input comes from csvin. The index
is written to csvout. The splits to examine are selected randomly.

In the final example, the argument set -splitInterval .01 10 will examine no more than
10 input splits and take one record in 100 from each split.

www.it-ebooks.info

http://developer.yahoo.net/blogs/hadoop/2008/07/apache_hadoop_wins_terabyte_sort_benchmark.html
http://developer.yahoo.net/blogs/hadoop/2008/07/apache_hadoop_wins_terabyte_sort_benchmark.html
http://developer.yahoo.net/blogs/hadoop/2008/07/apache_hadoop_wins_terabyte_sort_benchmark.html
http://www.it-ebooks.info/

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

bin/hadoop jar hadoop-0.19.0-core.jar org.apache.hadoop.mapred.lib.InputSampler w=»
-inFormat org.apache.hadoop.mapred.KeyValueTextInputFormat
-keyClass org.apache.hadoop.io.Text -r 15 -splitInterval .01 10 csvin csvout

The frequency parameter defines how many records will be sampled. For a frequency of
0.1, as in this example, one record in 10 will be used. For a frequency of 0.01, one record in
100 will be used. The index is set up for 15 reduce tasks. The input comes from csvin, and the
index is written to csvout.

Using the TotalOrderPartitioner

Once an index is generated, a job may be set up to use the TotalOrderPartitioner and the
index. Three configuration settings are required for this to work:

¢ The partitioner must be set to TotalOrderPartitioner in the JobConf object via conf.se
tPartitionerClass(TotalOrderPartitioner).

* The partitioning index must be specified via the configuration key
total.order.partitioner.path:

conf.set("total.order.partitioner.path", "csvout");

¢ The sort type for the keys must also be specified. If the binary representation of the
keys is the correct sorting, the Boolean field total.order.partitioner.natural.order
should be set to true in the configuration. If the binary representation of the keys is not
the correct sort, the Boolean field total.order.partitioner.natural.order must be set
to false. This Boolean field is set as follows:

conf.setBoolean("total.order.partitioner.natural.order");

If the binary representation of the key is the correct sort order, a binary trie (an
ordered tree structure; see http://en.wikipedia.org/wiki/Trie) will be constructed
and used for searching; otherwise, a binary search based on the output key compara-
tor will be used.

Here’s an example of how to put all this together:

TotalOrderPartitioner.setPartitionFile(conf,"csvout");
conf.setPartitionerClass(TotalOrderPartitioner.class);
conf.set("total.order.partitioner.natural.order",false);
conf.setNumReduceTasks (15);

In this example, csvin is the input file, and csvout is the index file. The csvout file was set
up for 15 reduce tasks, and requires the comparator rather than binary comparison.

The KeyFieldBasedPartitioner Class

The KeyFieldBasedPartitioner, org.apache.hadoop.mapred.lib.KeyFieldBasedPartitioner,
provides the job with a way of using only parts of the key for comparison purposes. The pri-
mary concept is that the keys may be split into pieces based on a piece separator string. Each
piece is then numbered from 1 to N, and each character of each piece numbered from 1 to M.

www.it-ebooks.info

151

http://en.wikipedia.org/wiki/Trie
http://www.it-ebooks.info/

152

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

The separator string is defined by the configuration key map.output.key.field.separator
and defaults to the tab character. It may be set to another string, stz, as follows:

conf.set(map.output.key.field.separator, str);

This is functionally equivalent to using the String.split(Pattern.quote(str)) call on
each key and treating the resulting array as if indexes were one-based instead of zero-based.

If the separator is X and the key is oneXtwoXthree, the pieces will be 1) one, 2) two, 3) three.

Referencing individual characters within the pieces is also one-based rather than zero-
based, with the index 0 being the index of the last character of the key part. For the first key
piece in the preceding example, the string one, the characters will be 1) o, 2) n, 3) e, 0) e. Note
that both 3 and 0 refer to e, which is the last character of the key piece.

Note In addition to the one-based ordinal position within the key piece, the last character of the key piece
may also be referenced by o.

The key pieces to compare are specified by setting the key field partition option, via the
following:

conf. setKeyFieldPartitionerOptions(str).

The str format is very similar to the key field-based comparator.
The Javadoc from Hadoop 0.19.0 for KeyFieldBasedPartitioner provides the following
definition:

Defines a way to partition keys based on certain key fields (also see KeyFieldBasedCom-
parator). The key specification supported is of the form -k posl[,pos2], where, pos is of
the form fl.c][opts], where fis the number of the key field to use, and c is the number of the
first character from the beginning of the field. Fields and character posns are numbered
starting with 1; a character position of zero in pos2 indicates the field’s last character. If
‘¢’ is omitted from posl, it defaults to 1 (the beginning of the field); if omitted from pos2,
it defaults to 0 (the end of the field).

In plain English, -ki# selects piece # for the comparison, and -k#1, #2 selects the pieces
from #1 through #2. In the preceding example, -k1 selects oneX as the portion of the key to use
for comparison, and -k1,1 selects one as the portion of the key to use for comparison.

There is also the facility to select a start and stop point within an individual key. The
option -k1.2,1is equivalent to -k1.2,1.0, and selects ne from the one for comparison.

You may also span key pieces. -k1.2,3.2 selects eXtwoXth as the comparison region from
the sample key. It means to start with key piece 1, character 2 and end with key piece 3 charac-
ter 2.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

Note If your key specification may touch the last key piece, it is important to terminate with
the last character of the key. Otherwise, the current code (as of Hadoop 0.19.0) will generate an
ArrayIndexOutOfBoundsException as it tries to use the missing separator string. In this section’s exam-
ple, -k3,3 would work, but -k3 would throw the exception.

The Reducer Dissected

The reducer has a very similar shape to the mapper. The class may provide configure() and
close() methods. All of the mapper good practices of saving the JobConf object and making
instances of the output key and output value objects apply to the reducer as well.

The key difference is in the reduce() method. Unlike the map() method, which is given a
single key/value pair on each invocation, each reduce() method invocation is given a key and
all of the values that share that key.

The reducer is an operator on groups. The default is to define a group as all values that
share a key. Common uses for reduce tasks are to suppress duplicates in datasets or to segre-
gate ranges and order output of large datasets.

In the example shown in Listing 5-9, notice that the signature of the reduce() method
contains an Iterator<V>, an iterator over the values that share key. The identity reducer simply
outputs each value in the iterator.

Listing 5-9. The Identity Reducer from Hadoop Core 0.19.0

/** Performs no reduction, writing all input values directly to the output. */
public class IdentityReducer<K, V>
extends MapReduceBase implements Reducer<K, V, K, V> {

/** Writes all keys and values directly to output. */
public void reduce(K1 key, Iterator<Vi> values,
OutputCollector<K2, V2> output, Reporter reporter)
throws IOException {
while (values.hasNext()) {
output.collect(key, values.next());

}

}

The configure() and close() methods have the same requirements and suggested usage
as the corresponding mapper methods.

It is generally recommended that you do not make a copy of all of the value objects, as
there may be very many of these objects.

www.it-ebooks.info

153

http://www.it-ebooks.info/

154

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

Note In one of my early applications, | assumed that there would never be more than a small number of
values per key. The reduce tasks started experiencing out-of-memory exceptions. It turned out that there
were often more than 150,000 values per key!

It is possible to simulate a secondary sort/grouping of the values by setting the
output value grouping. To do this requires the cooperation of the OutputComparator,
OutputPartitioner, and OutputValueGroupingComparator. See this book’s appendix for more
information.

By default, the input key and value types are the same as the output key and value types,
and are set by the conf.setOutputKeyClass(class) and conf.setOutputValueClass(class)
methods. The defaults are Longhritable and Text, respectively.

If the map output keys must be different, using conf. setMapOutputKeyClass(class) and
conf.setMapOutputValueClass(class) will also change the expected input key and value for the
reduce task.

A Simple Transforming Reducer

Listing 5-10 shows the simple transformational reducer, SimpleReduceTransformingReducer.
java, used in this chapter’s SimpleReduce.java example.

Listing 5-10. Transformational Reducer in SimpleReduceTransformingReducer.java

/** Demonstrate some aggregation in the reducer

ES

* Produce output records that are the key, the average, the count,
* the min, max and diff

ES

* @author Jason

ES

*/

public class SimpleReduceTransformingReducer extends MapReduceBase implements
Reducer<LonglWritable, LongWritable, Text, Text> {

/** Save object churn. */
Text outputKey = new Text();
Text outputValue = new Text();

/** Used in building the textual representation of the output key and values. */

StringBuilder sb = new StringBuilder();
Formatter fmt = new Formatter(sb);

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS 155

@verride
public void reduce(LongWritable key, Iterator<LongWritable> values,
OutputCollector<Text, Text> output,
Reporter reporter) throws IOException {
/** This is a bad practice, the transformation of
* the key should be done in the map. */
reporter.incrCounter("Reduce Input Keys", "Total", 1);
try {
long total = 0;
long count = 0;
long min = Long.MAX VALUE;
long max = 0;

/** Examine each of the values that grouped with this key. */
while (values.hasNext()) {
final long value = values.next().get();
if (value>max) {
max = value;
}
if (value<min) {
min = value;
}
total += value;
count++;

}

sb.setLength(0);

fmt.format("%12d %3d %12d %12d %12d", total/count,
count, min, max, max-min);

fmt.flush();

outputValue.set(sb.toString());

sb.setLength(0);
fmt. format("%4d", key.get());
outputKey.set(sb.toString());

reporter.incrCounter("Reduce Output Keys", "Total", 1);
output.collect(outputKey, outputValue);

} catch(Throwable e) {
reporter.incrCounter("Reduce Input Keys", "Exception", 1);
if (e instanceof IOException) {
throw (IOException) e;

}

www.it-ebooks.info

http://www.it-ebooks.info/

156 CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

if (e instanceof RuntimeException) {
throw (RuntimeException) e;

}

throw new IOException(e);

It begins by establishing several member variables that will be used in the reduce()
method to save object generation:

/** Save object churn. */
Text outputKey = new Text();
Text outputValue = new Text();

/** Used in building the textual representation of the output key and values. */
StringBuilder sb = new StringBuilder();
Formatter fmt = new Formatter(sb);

The working body of the reduce() method is within a try block that catches Throwables,
and the input count, output count, and failure count are reported to the framework:

reporter.incrCounter("Reduce Input Keys", "Total", 1);
try {

reporter.incrCounter("Reduce Output Keys", "Total", 1);
output.collect(outputKey, outputValue);

} catch(Throwable e) {
reporter.incrCounter("Reduce Input Keys", "Exception", 1);

In the body of the example in Listing 5-10, each value that is passed in is examined and
aggregated:

/** Examine each of the values that grouped with this key. */
while (values.hasNext()) {
final long value = values.next().get();
if (valuesmax) {
max = value;
}
if (value<min) {
min = value;
}
total += value;
count++;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

Finally, the output key and value are constructed with the aggregated data:

sb.setLength(0);

fmt. format("%12d %3d %12d %12d %12d", total/count, count, min, max, max-min);
fmt.flush();

outputValue.set(sb.toString());

sb.setLength(0);
fmt.format("%4d", key.get());
outputKey.set(sb.toString());

The example that runs this reducer also uses an output grouping comparator that groups
the records in sets of ten. The comparator Utils.GroupBylLongGroupingComparator.java (sup-
plied with the downloadable code for this chapter) handles grouping LongWritable values in
sets of 10, 0-9, 10-19, and so on.

The following is the core code in SimpleReduce that sets up the job that runs
SimpleReduceTransformingReducer:

job.setInputFormat(KeyValueTextInputFormat.class);
FileInputFormat.setInputPaths(job, inputDir);

job.setMapperClass(SimpleReduceTransformingMapper.class);
job.setMapOutputValueClass(LongWritable.class);
job.setMapOutputKeyClass(Longhritable.class);

/** Force the reduce to take text as the output value class,
* instead of the default. */
job.setOutputValueClass(Text.class);
job.setOutputKeyClass(Text.class);
job.setReducerClass(SimpleReduceTransformingReducer.class);

/** Cause the keys to be grouped by 10s. */
job.setOutputValueGroupingComparator (GroupBylLongGroupingComparator.class);
job.setNumReduceTasks(1); /** Ensure that all keys go to 1 reduce so

* the group by is stable. */

The following command will run the SimpleReduce job (your output will vary slightly):

% HADOOP_CLASSPATH=/misc/HadoopSource/commons-lang-2.4.jar =
bin/hadoop jar /misc/HadoopSource/hadoop-0.19.0/hadoopprobook.jar =
com.apress.hadoopbook.examples.ch5.SimpleReduce -libjars =
/misc/HadoopSource/commons-lang-2.4.jar

www.it-ebooks.info

157

http://www.it-ebooks.info/

158

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

Total input paths to process : 5
Running job: job 200902221346 0079
map 0% reduce 0%
map 20% reduce 0%
map 60% reduce 0%
map 80% reduce 0%
map 100% reduce 0%
map 100% reduce 100%
Job complete: job 200902221346 0079
Counters: 20
File Systems
HDFS bytes read=7103
HDFS bytes written=2135
Local bytes read=9006
Local bytes written=18176
Job Counters
Launched reduce tasks=1
Launched map tasks=5
Data-local map tasks=5
Map Input Keys
Total=500
Reduce Output Keys
Total=35
Map Output Keys
Total=500
Reduce Input Keys
Total=35
Map-Reduce Framework
Reduce input groups=35
Combine output records=0
Map input records=500
Reduce output records=35
Map output bytes=8000
Map input bytes=7103
Combine input records=0
Map output records=500
Reduce input records=500
The Job is complete and successfull

Note how the output keys are multiples of tens. This is the result of the output value
grouping. The actual output is the key, the average value, the number of values averaged,
the minimum value, the maximum value, and the difference between the minimum and the
maximum.

www.it-ebooks.info

http://www.it-ebooks.info/

Now you can print the job output (key, average, count, min, max, difference), as follows:

CHAPTER 5

MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

% hadoop dfs -cat SampleReduce.ouput/part-00000

0
10
20
30
40
50
60
70
80
90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

1032312560
909677971
1264310186
984307588
925589754
923048786
908071213
1068729097
1216389986
1119730476
638218214
1208679389
958900520
871313033
1328295033
1038185198
980833493
912381685
1247773207
875941698
1051606085
1207066231
1327655145
1148152274
735579301
1115493614
1026999134
1109366173
954780820
778472644
1032042843
822060835
857131707
1153129237
851254291

10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
10
10
10
10
10

8929475
40027932
109435752
112010776
38065333
374030611
255471236
63376590
40846046
289044657
10905001
351936606
116429037
52844729
111275382
47621146
72608499
54099516
30716232
6692770
18948588
160161337
75910389
273711624
43456136
190919486
59805730
198612696
44018855
22502766
292411084
90530214
138285402
231919805
135630114

2037836662
2084424645
2002508155
1912518297
1782409589
1725384504
2115349080
1954205116
2120059182
2002422718
1679731545
1701974468
1686303707
2019468622
2059113431
1976756537
2029753820
1961970644
2116148228
1663091528
2123342351
1952936377
2078268756
2074598677
2094659831
1988623879
2072846822
2077682368
2107358734
2063051919
2097164456
2135412572
1675393365
1799184626
1965837214

2028907187
2044396713
1893072403
1800507521
1744344256
1351353893
1859877844
1890828526
2079213136
1713378061
1668826544
1350037862
1569874670
1966623893
1947838049
1929135391
1957145321
1907871128
2085431996
1656398758
2104393763
1792775040
2002358367
1800887053
2051203695
1797704393
2013041092
1879069672
2063339879
2040549153
1804753372
2044882358
1537107963
1567264821
1830207100

A Reducer That Uses Three Partitions

Avariant of the SimpleReduce. java example, called TotalOrderSimpleReduce. java (available
with the rest of this chapter’s downloadable code), uses three partitions, rather than just one.
This example demonstrates how to use the InputSampler class and the TotalOrderPartitioner

www.it-ebooks.info

159

http://www.it-ebooks.info/

160

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

class, as well as some of the interesting errors that will occur if the partitioner and the
OutputValueGroupingComparator do not coordinate fully.

In this example, the grouping operator groups by multiples of ten in the key space. The
TotalOrderParititioner selects a random sample of the keys and creates three groups that are
roughly even in size given the sample of keys. There is no guarantee that an entire group of
keys will not be split into multiple partitions.

This application also requires a custom InputFormat, LonglongTextInputFormat, as the
input key and the reduce key must be of the same type for the InputSampler. In the previous
version, the map input keys are Text and the reduce input keys are Longhritable. Listing 5-11
shows the core of the LongLongTextInputFormat, the RecordReader.next method.

Listing 5-11. The RecordReader.next Method of the LongLongTextInputFormat

/** Delegated next, read the textual values from the the data source
* and convert them into LongWritables.
* @param key The key object to fill with the next record's key
* @param value The value object to fill with the next record's value
* @return true if a record was read or false if at EOF
* @throws IOException
* @see org.apache.hadoop.mapred.RecordReader#next(java.lang.Object, =
java.lang.Object)
*/
public boolean next(LongWritable key, LongWritable value) throws IOException {
/** Perform the real read. */
final boolean res = realReader.next(this.key, this.value);
if (lres) { /** If at eof, we are done. */
return false;
}
/** Attempt to convert the two text values read into LongWritables.
* If there is an error, throw an IOException.
*/
try {
key.set(Long.valueOf(this.key.toString()));
value.set(Long.valueOf(this.value.toString()));
return true;
} catch(NumberFormatException e) {
throw new IOException("Invalid key, value

n n

+ key + ", " + value);

}

The code in Listing 5-12 sets up the JobConf object for the TotalOrderParitioner. Note
that natural ordering is set to true. As the keys are long values, they are binary compa-
rable. The call to runInputSampler computes the partitioning index and stores it in the file
TotalOrderSimpleReduce.index.

www.it-ebooks.info

http://www.it-ebooks.info/

List

job
Fil

job
Jjob
Vak
Jjob
Jjob
Vak
Jjob
Jjob
Jjob
Yok
Jjob
Vak
job
Tun

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

ing 5-12. TotalOrderPartition Setup, from TotalOrderSimpleReduce.java

.setInputFormat(LonglongTextInputFormat.class);
eInputFormat.setInputPaths(job, inputDir);

.setMapOutputValueClass(LongWritable.class);
.setMapOutputKeyClass(LongWritable.class);

Setup for a total order partitioning. */
.setPartitionerClass(TotalOrderPartitioner.class);
.setBoolean("total.order.partitioner.natural.order", true);

Force reduce to take text as the output value class, instead of the default.

.setOutputValueClass(Text.class);
.setOutputKeyClass(Text.class);
.setReducerClass(SimpleReduceTransformingReducer.class);

Cause the keys to be grouped by 10s. */
.setOutputValueGroupingComparator(GroupByLongGroupingComparator.class);

Ensure that all keys go to 3 reduce to demonstrate order based partitioning.

.setNumReduceTasks(3);
InputSampler(job, inputDir.suffix(".index"));

The code in Listing 5-13 runs the InputSampler to compute and store the index in

*/

*/

indexFile. The assumption here is that the JobConf object conf is already correctly set up with
the InputPaths and InputReader. The sampling strategy is to randomly sample the records with
a 0.1% chance that any record is chosen. No more than 100 samples and a suggested 10 input
splits are to be read.

List

/**
ES

*
*
*
*

*
*

*/

ing 5-13. Running the InputSampler

Generate the TotalOrderPartitioner index file for our key space

This will sample the input paths set in conf, using the input format reader.
The index file location is written to conf.

@param conf The Configuration object to use
@param indexFile The index file to generate
@throws IOException

public void runInputSampler(final JobConf conf, Path indexFile) throws IOException {

TotalOrderPartitioner.setPartitionFile(conf, indexFile);
RandomSampler<Longhritable, LongWritable> sampler = new
InputSampler.RandomSampler<Longhiritable,LongWritable> (0.1, 100, 10);
InputSampler.<Longhritable,LongWritable>writePartitionFile(conf, sampler);

www.it-ebooks.info

161

http://www.it-ebooks.info/

162

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

The following results show that the input for group 150 is split between partition 0 and
partition 1, and that the group 220 is split between partition 2 and partition 3. Your results will

differ, as random data generation and selection are occurring.

HADOOP_CLASSPATH=/misc/HadoopSource/commons-lang-2.4.jar hadoop jar /misc =

/HadoopSource/hadoop-0.19.0/hadoopprobook.jar com.apress.hadoopbook.examples.chs w»

.TotalOrderSimpleReduce -libjars /misc/HadoopSource/commons-lang-2.4.jar

The Job is complete and successfull
Counter Group: File Systems
HDFS bytes read 8060
HDFS bytes written 2257
Local bytes read 9018
Local bytes written 18488
Counter Group: Job Counters
Launched reduce tasks 3
Launched map tasks 5
Data-local map tasks 5
Counter Group: Reduce Output Keys
Total 37
Counter Group: Reduce Input Keys
Total 37
Counter Group: Map-Reduce Framework
Reduce input groups 37
Combine output records 0
Map input records 500
Reduce output records 37
Map output bytes 8000
Map input bytes 7135
Combine input records 0
Map output records 500
Reduce input records 500

Let’s examine the reduce output data:

for a in 0 1 2; do echo part-0000$a; hadoop dfs -cat

.ouput/part-0000%$a; done

TotalOrderSimpleReduce w

part-00000

0 1120696448 10 114767562
10 1262245737 10 147134609
20 1355678543 10 221719466
30 1011945955 10 32549345
40 1141622277 10 14444296
50 1033598416 10 128237459
60 1110802460 10 259693362

www.it-ebooks.info

2024812642
2118565837
2058534489
1964050949
2091872332
1923443602
1904661969

1910045080
1971431228
1836815023
1931501604
2077428036
1795206143
1644968607

http://www.it-ebooks.info/

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

70 1241399906 10 41832977 2059443669 2017610692

80 1230683390 10 103825808 2063631220 1959805412

90 1128499980 10 107614131 2028701766 1921087635
100 1088361665 10 376207299 1832969382 1456762083
110 1332495922 10 332169914 2049937661 1717767747
120 991086606 10 18158041 1954291526 1936133485
130 1020804065 10 117011726 2094067623 1977055897
140 967879564 10 78769539 2041673853 1962904314
150 1236638804 8 401939855 2012038507 1610098652
part-00001

154 1139330738 12 51795064 1954863887 1903068823
160 993478558 20 54628468 2078982662 2024354194
170 1036438744 20 156951559 1983508735 1826557176
180 1101282242 20 42570729 2097760736 2055190007
190 1193146388 20 113670430 2111312959 1997642529
200 1015890669 20 130204162 2104346838 1974142676
210 1234536770 20 105147150 2045372284 1940225134
220 1464315969 8 479100103 2046550989 1567450886
part-00002

224 954658466 12 96604844 1853232282 1756627438
230 964917299 20 116190161 2115557112 1999366951
240 1207841113 20 352735303 2136588979 1783853676
250 1047422883 20 158450293 2047289337 1888839044
260 884844748 20 54670426 1920120397 1865449971
270 1143486218 20 240046014 2139315373 1899269359
280 1345299024 20 267642220 2099770746 1832128526
290 997769299 20 53033105 2114447296 2061414191
300 566836001 10 3288468 1688928276 1685639808
310 871057357 10 2573252 2059752419 2057179167
320 827237669 10 120300136 2091904736 1971604600
330 1034732041 10 72330772 2053586973 1981256201
340 938330142 10 49826875 2145892833 2096065958
Combiners

A combiner is a mini-reducer. The purpose of a combiner is to reduce the volume of data that
must be passed to the reducer from a map task by summarizing output records that share the
same key. A combiner must implement the Reducer interface, and the reduce() method of the
combiner will be called with each output key and all of the output values that share that key.
The output of the combiner is what will be sent over the network to the actual reduce task

for the job or written to the final output directory, if there is no reduce task configured. The
combiner class reduce () method must have the same input and output key/value types as the

reducer class.

www.it-ebooks.info

For each call to output.collect made by the map() method, the framework will route the
key/value pair to the applicable partition, based on the result of the Partitioner.getPartition

163

http://www.it-ebooks.info/

164

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

call. When all of the map task input has been processed, these partitions are sorted, and each
one is passed as input to the combiner. The combiner’s reduce () method will be called once
for each unique key in the partition, and the values will be the set of values that share that key.
The output of the combiner will replace that set of original map outputs, ideally with fewer
records or smaller records. This is suitable for jobs that are producing summary information
from a large dataset.

Caution The combiner must not change the key values, as the map outputs are not re-sorted after the
combiner runs. The reduce phase requires the map outputs to be sorted by key.

It is common for the same class that is used in the reduce task to be used for the com-
biner. However, this practice often leads to difficult-to-diagnose problems. The combiner
must only aggregate values, in a manner that is suitable for processing by the actual reducer.
The actual reducer has the larger job of producing the final job output. Problems occur when
the reducer is modified to provide some change in the job output, and the person doing the
modification is unaware that the reducer is also used as a combiner. It is very important that
the combiner class not have side effects, and that the actual reducer be able to properly pro-
cess the results of the combiner.

Tip 1t not always simple to build a correct combiner. If a job output has problems, try running the job
without the combiner to see if the problem persists. If your actual reduce () method is nontrivial, do not also
use it as a combiner; instead, write a separate object to combine the map outputs.

The classic example of using a combiner is the org.apache.hadoop.examples.WordCount
example. This MapReduce job reads a set of text input files and counts the frequency of occur-
rence of each word in the input files. The map phase outputs each word in the file as a key,
with the count of 1. There will be one output record for each word in the file. The combiner
will aggregate these into a set that contains one output record per unique word in the input,
and the value is the number of times the word appeared in the input. Unless the writer has
such a large vocabulary that no word is used more than once, the combiner will greatly reduce
the number of records to be processed by the reduce phase.

Listings 5-14, 5-15, and 5-16 show the JobConf setup and the map() and reduce() methods
from the WordCount.java example, The default InputFormat is TextInputFormat, which returns
a Longhritable key, the input line number, and a Text value, which is the full line from the
input file. The map () method tokenizes the line and emits a record for each word of the input
record, a Text and the value 1, an IntWritable. The reduce() method simply sums the values
and outputs the word as Text and the sum of values, an IntWritable. By using the reduce()
method as a combiner, there is a large reduction in the size of each map task output.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

Listing 5-14. The JobConf Setup, from WordCount.java’s run Method

conf.setJobName("wordcount");

// the keys are words (strings)
conf.setOutputKeyClass(Text.class);

// the values are counts (ints)
conf.setOutputValueClass(IntWritable.class);

conf.setMapperClass(MapClass.class);
conf.setCombinerClass(Reduce.class);
conf.setReducerClass(Reduce.class);

Listing 5-15. The Core of the map Method, from WordCount.java

public void map(LongWritable key, Text value,
OutputCollector<Text, IntWritable> output,
Reporter reporter) throws IOException {
String line = value.toString();
StringTokenizer itr = new StringTokenizer(line);
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
output.collect(word, one);

}

Listing 5-16. The Core of the reduce Method, from WordCount.java

public void reduce(Text key, Iterator<IntWritable> values,
OutputCollector<Text, IntWritable> output,
Reporter reporter) throws IOException {
int sum = 0;
while (values.hasNext()) {
sum += values.next().get();

}
output.collect(key, new IntWritable(sum));

When the map task has completed and the partitions are sorted, the combiner may run
over the partitions and aggregate values, reducing the total number of key/value pairs that
must go over the network to the reduce task.

For example, suppose the map partition dataset originally contained the following:

www.it-ebooks.info

165

http://www.it-ebooks.info/

166

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

Key Value
A

A

The

The

The
Xylophone

Y T U

After the combiner has completed, the map partition dataset would contain these keys
and values:

Key Value
A 2
The 3
Xylophone 1

It is fairly simply to shoot yourself in the foot with a combiner. The combiner must not
cause the loss of any information that is needed by the actual reducer. The classic example of
this is a reducer that computes the average of the values for each key. If that reducer is also
used as a combiner, the information on the number of records involved computing the aver-
age will be lost, and the reduce tasks will see only the average values for each key; the final
result will be the average of the averages, instead of the actual average. Combiners also must
be idempotent, as they may be run an arbitrary number of times by the Hadoop framework
over a given map task’s output.

File Types for MapReduce Jobs

The Hadoop framework supports text files, binary (sequence) files, and map files, which are
actually a pair of sequence files. Let’s take a closer look at each of these file types.

Text Files

The Hadoop framework supports a number of textual input files and output files. The input

formats support transparent decompression of input files if an input file name ends in one of

the recognized compression format suffixes (.gz, .deflate, .1zo_deflate, .1zo, and .bz2).
The following formats are available for text files:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

TextInputFormat: This class reads each line of the input split and returns a record
composed of the line number as a LongWritable key, and the line itself as a Text

value. The workhorse class that actually produces the key/value pairs is org.apache.
hadoop.mapred. LineRecordReader. There is only one tunable parameter: the configura-
tion key, mapred.linerecordreader.maxlength, which sets the maximum number of
characters allowed in a line. The default value is Integer.MAX VALUE, essentially unlim-
ited. The parameter may be adjusted using the conf.setInt() method. For example,
conf.setInt("mapred.linerecordreader.maxlength”, 1024) limits the line length to
1,204 characters.

KeyValueTextInputFormat: This class reads each line and splits the line into a key/

value pair on a tab character. The workhorse class is org.apache.hadoop.mapred.
KeyValuelLineRecordReader. The separator may be configured by setting the configuration
key key.value.separator.in.input.line. The key and value are both Text. If there is no
separator found, the value will be an empty string.

NLineInputFormat: This format is ideal for using the input data as control informa-
tion. It guarantees that each input split will be N lines long, with one split being the
remaining lines. The configuration key mapred.line.input.format.linespermap con-
trols the number of lines of input per map task. The default value is 1. This may be
changed using the conf.setInt() method. For example, conf.setInt("mapred.line.
input.format.linespermap”, 10) sets the value to 10. Under the covers, this uses
org.apache.hadoop.mapred.LineRecordReader to read the input data and produce
LongWritable, Text key/value pairs.

MultiFileInputFormat: This is an abstract class that provides a way for a single task to
receive multiple input files as the task’s input split. This is commonly done for perfor-
mance tuning. There is substantial time involved in setting up and starting a task, as well
as collecting the results. If the input split is small, a substantial portion of the job runtime
may be in the setup and teardown of tasks. The developer is responsible for implementing
the getRecordReader () method. The org.apache.hadoop.examples MultiFileWordCount
provides an example of a RecordReader that handles reading from multiple files.

TextOutputFormat: This is the standard textual output format. It basically calls the
toString method on each key and value, producing a single-line key SEPARATOR value
ASCII newline for each output record. The SEPARATOR is specified by the value of the con-
figuration key apred. textoutputformat.separator, which defaults to TAB. If the value is
null, no SEPARATOR and no value will be emitted. If key is null, SEPARATOR value is emitted.
The end-of-record character is hard-coded as an ASCII newline character. Compression is
supported if configured.

MultipleTextOutputFormat: This format allows you to write output records to dif-
ferent files based on the key and value. The test case org.apache.hadoop.mapred.
TestMultipleTextOutputFormat provides a sample implementation. The Java source
to this class is located in src/test/org/apache/hadoop/mapred/
TestMultipleTextOutputFormat.java in your Hadoop distribution. Using
MultipleTextOutputFormat, the user has the option of interceding in the selection

of an output file for each output key/value pair in several different ways by overriding
different methods.

www.it-ebooks.info

167

http://www.it-ebooks.info/

168

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

e For map-only jobs, a portion of the input file path may be included in the out-
put path, by setting the value of the configuration key mapred.outputformat.
numOfTrailinglegs, to a positive integer. The default is no components of the input
file path are used. The value +1 worth of components from the right side of the
input file are inserted in the output file path before the file name. This happens
after the call to generateFileNameForKeyValue(). The actual key and value param-
eters may be modified by overriding the getActualKey() and getActualValue()
methods.

* You can change the final file name or leaf name via the String
generateleafFileName(String name) method. The parameter name is the original
leaf name. The leaf name is normally the part-XXXXX, where the XXXXX corresponds
to the reduce ordinal number, or the map ordinal number if this is a map-only job.
(Changing the leaf name is not commonly done.)

* You can change the path to the output file via the String
generateFileNameForKeyValue(K key, V value, String name) method. The name
parameter is the result of generatelLeafFileName. You can construct arbitrary paths
out of the key, value, and name. This is the method commonly overridden by
developers. The example in Listing 5-17 produces an output file name of the first
letter of the key, a dash, and the partition number. If the key were akey, and the
name were part-00000, this key/value pair would go to the file a-part-00000.

Listing 5-17. Simple MultipleTextOutputFormat Output File Name Generator

static class KeyBasedMultipleTextOutputFormat extends
MultipleTextOutputFormat<Text, Text> {
protected String generateFileNameForKeyValue(Text key, Text v, String name) {
return key.toString().substring(o, 1) + "-"
}
}

+ name;

Caution It is critically important to minimize the number of HDFS files that are opened. HDFS, through
at least Hadoop 0.19.0, is designed for small numbers of very large files. Opening many small files will bring
your cluster to its knees, and may result in catastrophic failure of your job, as well as your HDFS. It is very
easy to open hundreds of thousands of files with MultipleOutputFormats.

Sequence Files

Sequence files are a binary format for storing sets of serialized key/value pairs. Sequence files
support compression, encapsulate the key and value types, and provide validity checksums.
They are an ideal format to use for data that is expensive or complex to parse.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

The following formats are available for sequence files:

SequenceFileInputFormat: The basic workhorse, this format supports splitting and pro-
vides the key and value types. If the input file is a map file (described in the next section),
the data file is read.

SequenceFileAsBinaryInputFormat: This format returns the raw key and value bytes. It
returns ByteshWritable keys and values.

SequenceFileAsTextInputFormat: This format returns the key and value as text. It calls the
toString method on the key and value classes and returns the key/value pair as Text, Text.

SequenceFileInputFilter: This format returns only specific records from the sequence
file. It provides the static void setFilterClass(Configuration conf, Class
filterClass) method, which supplies a class that is used to determine which records are
returned by the next (key,value) method on the reader. The FilterClass must imple-
ment the SequenceFileInputFilter.Filter interface and provide a method boolean
accept(Object key). Three filters are provided:

e RegexFilter.setPattern(Configuration conf, String regex) provides the regular
expression to filter keys.

e PercentFilter.setFrequency(Configuration conf, int frequency) provides the
way of accepting one record in frequency records.

e MD5Filter.setFrequency(Configuration conf, int frequency) provides a way
of selecting only those records that have an MD5 hash that is evenly divisible by
frequency.

SequenceFileOutputFormat: This format writes the serialized key/value records as output.
This is the standard sequence file output. The key and value types must be specified via
the conf.setOutputKeyClass() and conf.setOutputValueClass() methods.

SequenceFileAsBinaryOutputFormat: This format writes the raw bytes. The key and value
types must be BytesWritable, and these raw bytes are written as the records.

Map Files

Map files are a pair of sorted sequence files. If a map file named mymap is created, there will

be a directory mymap in HDFS, and two files in mymap: index and data. The data sequence file
contains the key/value pairs as records, where the records are sorted in key order. The index
sequence file is key/location information, where location is the location in data where the first
record containing a key is located.

Map files provide a way to find a particular key, or region of a sorted file, without having to
read the entire file. The HBase project (http://hadoop.apache.org/hbase) provides a persistent
distributed hash table stored in HDFS, using map files as the underlying storage.

When a map file is specified as a job input, the data file is used as the actual input. There is
not aMapFileInputFormat class; the SequenceFileInputFormat class is used. The path specified
is the path to the directory containing the index and data files. SequenceFileInputFormat will
use the data file as the input source.

www.it-ebooks.info

169

http://hadoop.apache.org/hbase
http://www.it-ebooks.info/

170

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

Tip For best performance, it is strongly suggested that all key lookups be performed in the sort order of
the underlying map file. HDFS is highly optimized for streaming files sequentially, and does a very poor job of
providing low-latency access to random locations within a file.

For the MapFileOutputFormat, the value of the configuration key io.map.index. interval
determines how many records are written to the data sequence file between writes to the
index sequence file. The default is one index entry for every 128 records.

Map files provide the following methods for looking up key/value pairs.

e void reset(): Resets the read position to the beginning of the file.
e WritableComparable midKey(): Returns the key roughly in the middle of the file.
e void finalKey(WritableComparable key): Reads the final key.

e boolean seek(WritableComparable key): Seeks to the key, or to the first key after it, if it
does not exist.

¢ boolean next(WritableComparable key, Writable val): Reads the next key/value pair.
e Writable get(WritableComparable key, Writable val): Gets the value for key.

e WritableComparable getClosest(WritableComparable key, Writable val): Gets the
closest match to the key, searching as seek.

e WritableComparable getClosest(WritableComparable key, Writable val, final
boolean before): Works like the previously described getClosest()
method, unless before is true—in which case the key before is returned.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

Compression

The Hadoop framework supports several types of compression and several compression for-
mats. The framework supports the gzip, zip, sometimes LZO, and bzip2 compression codecs.
Native libraries are supplied for Linux i386 and x86_64 for gzip, zip, and LZO for some releases.
The framework will transparently compress and uncompress most input and output files.
Input files are uncompressed when the input file name has a suffix that maps to one of the
known codecs, as shown in Table 5-3.

Note LzO0 s licensed under the GPL. It is incompatible with the Apache license and has been removed
from some distributions. | sincerely wish that this will be resolved and that native LZO becomes a standard
part of the Hadoop distribution.

Table 5-3. Compression Codecs and Mapped File Name Suffixes

Codec Suffix
GzipCodec .8z
DefaultCodec .deflate
LzoCodec .1zo _deflate
LzopCodec .1zo0
Bzip2Codec .bz2

Codec Specification

The Hadoop framework supports a number of codecs, with native implementations for a
smaller number. GzipCodec, LzoCodec, and the DefaultCodec (zip) have native implementa-
tions. Bzip2Codec has a pure Java implementation. LzoCodec may not be available in some
releases due to licensing issues. Bzip2Codec is available as of Hadoop 0.19.0.

The list of codecs is stored in the configuration under the key io.compression.codecs. In
Hadoop 0.19, it has the following value:

org.apache.hadoop.io.compress.DefaultCodec,org.apache.hadoop.io.compress. =
GzipCodec,org.apache.hadoop.io.compress.BZip2Codec

If your environment requires additional codecs, the glue interface is org.apache.hadoop.
io.compress.CompressionCodec. You would then add the class name to the list of codecs in
the io.compression.codecs value. The selection of a compression codec is a choice between
speed and compression rate. LZO is the fastest by far, and produces files about double the size
of gzip. The bzip2 compression is the slowest—substantially slower than gzip—and produces
files about one half the size of gzip.

www.it-ebooks.info

17

http://www.it-ebooks.info/

172

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

Sequence File Compression

Sequence files are binary record-oriented files, where each record has a serialized key and seri-
alized value. The Hadoop framework supports compressing and decompressing sequence files
transparently.

Sequence files may be, and generally should be, compressed. The framework will trans-
parently compress at the record level or the block level. The key io.seqfile.compression.type
controls the record- or block-level compression for sequence files. A value of BLOCK requests
block-level compression. A value of RECORD, the default, specifies record-level compression. A
value of NONE disables compression.

In general, block-level compression is recommended, because it provides greater data
reduction (at the expense of individual key access). The compression overhead is less, and the
compression ratio is much greater. For sequence files that are being used as input to a map or
reduce phase, block-level compression is ideal. Sequence files that were written using trans-
parent compression may be divided into multiple input splits by the framework.

Many sites will set the default to BLOCK in their hadoop-site.xml file, as follows:

<property>
<name> io.seqfile.compression.type</name>
<value>BLOCK</value>
<description>Force the default sequence file compression to
be block compression for efficiency reasons
</value>
</property>

Map Task Output

The intermediate map task outputs are a set of sequence files, one per reduce task. As these
files must be transferred across the network, a low-overhead compression type, such as gzip or
LZO, can provide a substantial reduction in network traffic for little CPU cost. The blog entry
athttp://blog.oskarsson.nu/2009/03/hadoop-feat-1zo-save-disk-space-and.html has some
interesting information about compression CPU and size reductions for different Hadoop
codecs. Table 5-4 summarizes the compression speed results. For pretty decent compression
LzoCodec provides high throughput.

Note | have spent some time running the same job with different compression codecs and RECORD or
BLOCK set for compression, to determine which combination gave the overall performance for the job. At
present, this must be done manually.

www.it-ebooks.info

http://blog.oskarsson.nu/2009/03/hadoop-feat-lzo-save-disk-space-and.html
http://www.it-ebooks.info/

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

Table 5-4. Compression Timings for Hadoop Compression Codecs

Original Compressed Compression Decompression
Compressor Size Size Speed Speed
bzip2 8.3GB 1.1GB 2.4MB/s 9.5MB/s
gzip 8.3GB 1.8GB 17.5MB/s 58MB/s
LZO—best 8.3GB 2GB 4MB/s 60.6MB/s
LZO 8.3GB 2.9GB 49.3MB/s 74.6MB/s

Map output block-level compression may be specified by the job or in the site configu-
ration. If compressed, map output, destined for a reduce task, is always BLOCK compressed.
Listing 5-18 provides an XML block suitable for inclusion in the conf/hadoop-site.xml file to
make LZO compression the default for the map task outputs.

Listing 5-18. A hadoop-site.xml Specification for Map Output Level Compression with LZO

<property>
<name>mapred.compress.map.output</name>
<value>true</value>
<description>Should the outputs of the maps be compressed before being
sent across the network. Uses SequenceFile compression.
</description>
</property>

<property>
<name>mapred.map.output.compression.codec</name>
<value>org.apache.hadoop.io.compress.LzoCodec</value>
<description>If the map outputs are compressed, how should they be
compressed? Use Lzo fast even though not as good compression.
</description>
</property>

Listing 5-19 demonstrates configuring a cluster to always use compression for final output
files, and if the final output file is a sequence file, to use BLOCK compression.

Listing 5-19. A hadoop-site.xml Specification for Final Output Files to be Compressed with LZO,
and If Sequence Files, BLOCK-Compressed

<property>
<name>mapred.output.compress</name>
<value>true</value>
<description>Should the job outputs be compressed?
</description>

</property>

www.it-ebooks.info

173

http://www.it-ebooks.info/

174

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

<property>
<name>mapred.output.compression.type</name>
<value>BLOCK</value>
<description>The type of compression to use for final
output sequence files. May be BLOCK, RECORD or None.
</description>

</property>

<property>
<name>mapred.output.compression.codec</name>
<value>org.apache.hadoop.io.compress.LzoCodec</value>
<description>If the job outputs are compressed, how should they be
compressed? Use Lzo fast even though not as good compression.
</description>
</property>

Listings 5-20 and 5-21 demonstrate specifying the compression codec and type via set-
tings on the JobConf object.

Listing 5-20. Setting Intermediate Map Output Compression via the JobConf

conf. setCompressMapOutput(true);
conf. setMapOutputCompressorClass(LzoCodec.class);

Listing 5-21. Setting Final Output Compression via the JobConf

FileOutputFormat.setOutputCompress (conf, true);
FileOutputFormat.setOutputCompressorClass(LzoCodec.class);
SequenceFileOutputFormat.setOutputCompressionType(conf,CompressionType.BLOCK);

JAR, Zip, and Tar Files

The Hadoop framework knows how to unpack JAR, zip, and tar files, but this is only automati-
cally done for archives passed via the DistributedCache object The class org.apache.hadoop.
fs.FileUtil provides two static methods that may be used to unpack these files: unTar () for
tar files and unzip() for zip files. The archives may be unpacked only onto the native file sys-
tem, not into HDFS.

Summary

The Hadoop Core framework provides a rich set of tools to support a variety of use cases.

As with most powerful tools, using them effectively requires training and experience. This
chapter has provided a solid foundation for configuring jobs to run successfully and building
classes that will actual perform the work for the job.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 MAPREDUCE DETAILS FOR MULTIMACHINE CLUSTERS

The effective use of counters in the map and reduce methods provides both the applica-
tion writer and the organization with metrics for job performance. The DistributedCache
object provides a way of distributing required data to all of the tasks, without need-
ing to have the data already available on the TaskTracker nodes. You can choose from
a variety of input and output formats. The use of compression can greatly reduce the
wall clock runtime of a job, as can the use of a combiner. The KeyFieldBasedComparator
and KeyFieldBasedPartitioner classes allow you to implement a secondary sort via the
OutputValueGroupingComparator. Partitioning is a simple controllable process. You also know
how to use MultipleTextOutputFormat, and the potential problems it can bring. It is now
time to have fun writing MapReduce jobs!

www.it-ebooks.info

175

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6

Tuning Your MapReduce Jobs

Once you have developed your MapReduce job, you need to be able to run it at scale on your
cluster. A number of factors influence how your job scales. This chapter will cover how to rec-
ognize that your job is having a problem and how to tune the scaling parameters so that your
job performs optimally.

First, we’ll look at tunable items. The framework provides several parameters that let you
tune how your job will run on the cluster. Most of these take effect at the job level, but a few
work at the cluster level.

With large clusters of machines, it becomes important to have a simple monitoring frame-
work that provides a visual indication of how the cluster is and has been performing. Having
alerts delivered when a problem is developing or occurs is also essential. This chapter intro-
duces several tools for monitoring Hadoop services.

Finally, you'll get some tips on what to do when your job isn’t performing as it should.
Your jobs may be failing or running slowly.

This chapter is focused on tuning jobs running on the cluster, rather than debugging the
jobs themselves. Debugging is covered in the next chapter.

Tunable Items for Cluster and Jobs

Hadoop Core is designed for running jobs that have large input data sets and medium to large
outputs, running on large sets of dissimilar machines. The framework has been heavily opti-
mized for this use case.

Hadoop Core is optimized for clusters of heterogeneous machines that are not highly reli-
able. The HDFS file system is optimized for small numbers of very large files that are accessed
sequentially. The optimal job is one that uses as input a dataset composed of a number of
large input files, where each input file is at least 64MB in size and transforms this data via a
MapReduce job into a small number of large files, again where each file is at least 64MB. The
data stored in HDFS is generally not considered valuable or irreplaceable. The service level
agreement (SLA) for jobs is long and can sustain recovery from machine failure.

Users commonly get into trouble when their jobs input large numbers of small files, out-
put large numbers of small files, or require random access to files. Another problem is a need
for rapid access to data or for rapid turnover of jobs.

HDFS installations get into trouble when large numbers of files are being created or exist
on the DataNodes.

www.it-ebooks.info

177

http://www.it-ebooks.info/

178

CHAPTER 6 TUNING YOUR MAPREDUCE JOBS

Hadoop Core does not provide high availability for HDFS or for job submission, and spe-
cial care must be taken to ensure that required HDFS data can be recovered in the event of a
critical failure of the NameNode.

Behind the Scenes: What the Framework Does

Each job has a number of steps in its execution: the setup, the map, the shuffle/sort, and the
reduce. The framework sets up, manages, and tears down each step.

Note The following discussion assumes that no other job is running on the cluster and that on submis-
sion, the job is immediately started.

On Job Submission

The framework will first store any resources that must be distributed in HDFS. These are the
resources provided via the -files, -archives, and -1ibjars command-line arguments, as well
as the JAR file indicated as the job JAR file. This step is executed on the local machine sequen-
tially. If there are a large number of resources, this may take some wall clock time. The XML
version of the JobConf data is also stored in HDFS.

The replication factor on these resource items is set to the value stored in the configura-
tion under the key mapred.submit.replication, with a default value of 10. The framework will
then examine the input data set, using the InputFormat class to determine which input files
must be passed whole to a task and which input files may be split across multiple tasks.

The framework will use the parameters listed in Table 6-1 to determine how many map
tasks must be executed. Input formats may override this; for instance, NLineInputFormat forces
the splits to be made by line count.

Table 6-1. Parameters Controlling the Number of Map Tasks for a Job

Getter Parameter Description Default

JobConf.getNumMapTasks() mapred.map.tasks The suggested number of map tasks 1
for the job

No getter mapred.min. The minimum size of a split 1

split.size

FileInputFormat. The minimum size to use for this Sequence

getMinSplitSize() input format (a protected method, FileInput.
currently used only by SYNC
SequenceFileInputFormat) INTERVAL or 1

Path.getBlockSize() dfs.block.size The file system block size, in bytes 67108864
of the input file

InputFormat.isSplitable() Not configurable Whether this file may be split Varies

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 TUNING YOUR MAPREDUCE JOBS

The parameters in Table 6-1 are used to compute the actual split size for each input
file. The input format for the input file is responsible for indicating if the underlying file
may be split. The public method FileInputFormat.getSplits() returns the list of splits for
the input files. For inputs that can be split, three things are computed before the actual
split size is determined: the goal size, which is the total input size divided by JobConf.
getNumMapTask(); the minimum split size, Math.max(JobConf.getInt("mapred.min.split.
size",1), FileInputFormat.getMinSplitSize()); and the block size for the input file, Path.
getBlockSize(). The protected method FileInputFormat.computeSplitSize(goalSize,
minSize,blockSize) is called to produce the actual split size, and the calculation is Math.max
(minSize, Math.min(goalSize, blockSize)).In summary, splits are determined as follows::

e If a file may not be split, InputFormat.isSplitable(), it will be queued as input to one
map task.

A split will be no smaller than the remaining data in the file or minSize.

¢ A split will be no larger than the lesser of the goalSize and the blockSize.

Tip Through at least Hadoop 0.19.1, compressed files may not be split. A number of patches enable split-
ting for various compression formats: bzip2 (http://issues.apache.org/jira/browse/HADOOP-4012),
LZ0 (http://issues.apache.org/jira/browse/HADOOP-4640), and gzip (http://issues.apache.
org/jira/browse/HADOOP-4652).

In general, a cluster will have the mapred.map.tasks parameter set to a value that approxi-
mates the number of map task slots available in the cluster or some multiple of that value. The
ideal split size is one file system block size, as this allows the framework to attempt to provide
data locally for the task that processes the split.

The end result of this process is a set of input splits that are each tagged with information
about which machines have local copies of the split data. The splits are sorted in size order so
that the largest splits are executed first. The split information and the job configuration infor-
mation are passed to the JobTracker for execution via a job information file that is written to
HDES.

Some jobs require that the input files not be split. The simplest way to achieve this is to set
the value of the configuration parameter mapred.min.split.size to Long.MAX_VALUE: JobConf.
setInt("mapred.min.split.size", Long.MAX VALUE);.

Map Task Submission and Execution

The JobTracker has a set of map task execution slots, N per machine. Each input split is sent to
a task execution slot for execution. Sending tasks to a slot that is hosted on the machine that
has a local copy of the input split data minimizes network I/O.

If there are spare execution slots, and map speculative execution is enabled, multiple
instances of a map task may be scheduled. In this case, the results of the first map task to
complete will be used, the other instances killed, and the output, including the counter values,
removed.

www.it-ebooks.info

179

http://issues.apache.org/jira/browse/HADOOP-4012
http://issues.apache.org/jira/browse/HADOOP-4640
http://issues.apache.org/jira/browse/HADOOP-4652
http://issues.apache.org/jira/browse/HADOOP-4652
http://www.it-ebooks.info/

180

CHAPTER 6 TUNING YOUR MAPREDUCE JOBS

When map speculative execution is not enabled, only one instance of a map task will be
run at a time. The TaskTracker on the machine will receive the task information, and if nec-
essary, unpack all of the DistributedCache data into the task local directory and localize the
paths to that data in the JobConf object that is being constructed for the task. With specula-
tive execution for map tasks disabled, the only time more than one instance of a map task will
occur in the job will be if the task is retried after failing.

Caution The framework is able to back out only counter values and output files written to the task output
directory. Any other side effects of killed speculative execution tasks or failed tasks must be handled by the
application.

The TaskTracker picks a map runner class based on the content of the key mapred.
map.runner.class. Its choices are the standard MapRunner, which runs a single thread; the
MultithreadedMapRunner, which runs mapred.map.multithreadedrunner.threads (the default
is ten threads); or the chain mapper.

A child JVM is allocated to run the mapper class, and the map task is started. The output
data of the map task is partitioned and sorted by the output partitioner class and the output
comparator class, and aggregated by the combiner class, if one is present. The result of this
will be N sequence files on disk: one for each reduce task, or one file if there is no reduce task.

Each time the map method is called, an output record is emitted, or the reporter object is
interacted with, a heartbeat timer is reset. The heartbeat timeout is stored in the configuration
under the key mapred.tasktracker.expiry.interval, and has a default value of 600,000 mil-
liseconds (msec), or 10 minutes. If this timeout expires, the map task is considered hung and
terminated.

If a terminated task has not failed more than the allowed number of times, it is resched-
uled to a different task execution slot. A failing task may have a debugging script invoked on
it if the value of the configuration key mapred.map.task.debug.script is the path to an execut-
able program. The script is invoked with the additional arguments of the paths to the stdout,
stderr, and syslog output files for the task. See this book’s appendix, which covers the JobConf
object, for details on how to configure a debugging script for failing tasks.

When a task finishes, the output commit class is launched on the task output directory,
to decide which files are to be discarded and which files are to be committed for the next step.
The class name is stored in the configuration under the key mapred.output.committer.class
and has the default class FileOutputCommitter.

If less than the required number of tasks succeed, the job is failed and the intermediate
output is deleted. The TaskTracker will inform the JobTracker of the task’s success and output
locations.

Merge-Sorting

The JobTracker will queue the number of reduce tasks as specified by the JobConf.
setNumReduceTasks () method and stored in the configuration under the key mapred.reduce.
tasks. The JobTracker will queue these reduce tasks for execution among the available
reduce slots.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 TUNING YOUR MAPREDUCE JOBS

The TaskTracker that receives a reduce task will set up the local task execution environ-
ment if needed, and then fetch each of the map outputs that are destined for this reduce task.
HTTP is the protocol used to transfer the map outputs. These map outputs are merge-sorted.
The number of pieces that are fetched at one time is configurable. The value stored in the con-
figuration under the key mapred.reduce.parallel.copies determines how many fetches are
done in parallel. The default is five fetches.

A number of parameters control how the merge-sorting is done, as shown in Table 6-2.

Table 6-2. Merge-Sort Parameters

Parameter Description Default
io.sort.factor The number of map output partitions to merge at a time. 10
io.sort.mb The amount of buffer space in megabytes to use when 100

sorting streams. This parameter often causes jobs to run
out of memory on small memory machines.

io.sort.record.percent The amount of the sort buffer dedicated for collecting 0.05

records. Actual buffer space is this value * io.sort.mb / 4.
io.sort.spill.percent The amount of the sort buffer or collection buffer that 0.80

may be used before the data is spilled to disk.
io.file.buffer.size The buffer size for I/O operations on the disk files. 4096
io.bytes.per.checksum The amount of data per checksum. 512
io.skip.checksum.errors If true, a block with a checksum failure may be skipped. false
The Reduce Phase

Once the data is sorted, the reduce method may be called with the key/value groups. The
reduce output is written to the local file system. On successful completion, the output commit
class is called to select which output files are staged to the output area in HDFS.

If more than the allowed number of reduce tasks fail, the job is failed. Once the reduce
tasks have finished, the job is done.

Writing to HDFS

There are two cases for an HDFS write: the write originates on a machine that hosts a
DataNode of the HDEFS cluster for which the write is destined, or the write originates on a
machine that does not host a DataNode of the cluster. In both cases, the framework buffers
a file system block-size worth of data in memory, and when the file is closed or the block fills,
an HDFS write is issued.

The write process requests a set of DataNodes that will be used to store the block. If the
local host is a DataNode in the file system, the local host will be the first DataNode in the
returned set. The set will contain as many DataNodes as the replication factor requires, up to
the number of DataNodes in the cluster. The replication factor may be set via the configura-
tion key dfs.replication, which defaults to a factor of three, and should never be less than
three. The replication for a particular file may be set by the following:

FileSystem.setReplication(Path path, int replication);

www.it-ebooks.info

181

http://www.it-ebooks.info/

182 CHAPTER 6 TUNING YOUR MAPREDUCE JOBS

The block is written to the first DataNode in the list, the local host if possible, with the list
of DataNodes that are to be used. On receipt of a block, each DataNode is responsible for initi-
ating the transfer of the block to the next DataNode in the list. This allows writes to HDFS on a
machine that hosts a DataNode to be very fast for the application, as they do not require bulk
network traffic.

Cluster-Level Tunable Parameters

The cluster-level tunable parameters require a cluster restart to take effect. Some of them
may require a restart of the HDFS portion of the cluster; others may require a restart of the
MapReduce portion of the cluster. These parameters take effect only when the relevant
server starts.

Server-Level Parameters

The server-level parameters, shown in Table 6-3, affect basic behavior of the servers. In gen-
eral, these affect the number of worker threads, which may improve general responsiveness
of the servers with an increase in CPU and memory use.

The variables are generally configured by setting the values in the
conf/hadoop-site.xml file. It is possible to set them via command-line options for the serv-
ers, either in the conf/hadoop-env. sh file or by setting environment variables (as is done in
conf/hadoop-env.sh).

The nofile parameter is not a Hadoop configuration parameter. It is an operating sys-
tem parameter. For users of the bash shell, it may be set or examined via the command
ulimit -n [value to set]. Quite often, the operating system-imposed limit is too low, and
the administrator must increase that value. The value 64000 is considered a safe minimum
for medium-size busy clusters.

Caution A number of difficult-to-diagnose failures happen when an application or server is unable to
allocate additional file descriptors. Java application writers are notorious for not closing I/0 channels, result-
ing in massive consumption of file descriptors by the map and reduce tasks..

Table 6-3. Server-Level Tunable Parameters

Parameter Description Default

dfs.datanode.handler.count The number of threads servicing DataNode block 3
requests

dfs.namenode.handler.count The number of threads servicing NameNode requests 10

tasktracker.http.threads The number of threads for servicing map output files 40
to reduce tasks

ipc.server.listen.queue.size The number of network incoming connections that 128
may queue for a server

nofile The limit on the number of file descriptors a process 1024
can open (alter /etc/security/limits.con for
Linux machines)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 TUNING YOUR MAPREDUCE JOBS

Caution Hadoop Core uses large numbers of file descriptors in each server. Rarely is the system default
of 1,024 sufficient for the Hadoop servers or Hadoop jobs. Most installations find that a minimum limit of
64,000 is required. If you see errors in your log files that say Bad connect ack with firstBadLink,
Could not obtain block, orNo live nodes contain current block, you must increase the file
descriptor limit for your Hadoop servers and jobs. How to change the limit is covered in Chapter 4, in the
“File Descriptors” section.

HDFS Tunable Parameters

The most commonly tuned parameter for HDFS is the file system block size. The default block
size is 64MB, specified as 67108864 bytes in dfs.block.size. The larger this value, the fewer
individual blocks will be stored on the DataNodes, and the larger the input splits will be.

The DataNodes through at least Hadoop 0.19.0 have a limit to the number of blocks that
can be stored. This limit appears to be roughly 500,000 blocks. After this size, the DataNode
will start to drop in and out of the cluster. If enough DataNodes are having this problem, the
HDFS performance will tend toward full stop.

When computing the number of tasks for a job, a task is created per input split, and input
splits are created one per block of each input file by default. There is a maximum rate at which
the JobTracker can start tasks, at least through Hadoop 0.19.0. The more tasks to execute, the
longer it will take the JobTracker to schedule them, and the longer it will take the TaskTrackers
to set up and tear down the tasks.

The other reason for increasing the block size is that on modern machines, an I/0-bound
task will read 64MB of data in a small number of seconds, resulting in the ratio of task over-
head to task runtime being very large. A downside to increasing this value is that it sets the
minimum amount of I/0 that must be done to access a single record. If your access patterns
are not linearly reading large chunks of data from the file, having a large block size will greatly
increase the disk and network loading required to service your I/0.

The DataNode and NameNode parameters are presented in Table 6-4.

Table 6-4. HDFS Tunable Parameters

Parameter Description Default

fs.default.name The URI of the shared file system. This should be
hdfs://NameNodeHostName:PORT. file:///

fs.trash.interval The interval between trash checkpoints. If 0, the 0

trash feature is disabled. The trash is used only for
deletions done via the hadoop dfs -rmseries of
commands.

dfs.hosts The full path to a file containing the list of
hostnames that are allowed to connect to the
NameNode. If specified, only the hosts in this file
are permitted to connect to the NameNode.

Continued

www.it-ebooks.info

183

hdfs://NameNodeHostName:PORT
file:///fs.trash.interval
file:///fs.trash.interval
http://www.it-ebooks.info/

184

CHAPTER 6

Table 6-4. Continued

TUNING YOUR MAPREDUCE JOBS

Parameter

Description

Default

dfs.

dfs.

hosts.exclude

namenode.decommission.

interval

dfs.

dfs.

dfs.

dfs.

dfs.

dfs.

dfs.

dfs.

dfs.
dfs.

replication.interval

access.time.precision

max.objects

replication

block.size

datanode.handler.count

replication.considerload
datanode.du.reserved

permissions

df.interval

A path to a file containing a list of hosts to
blacklist from the NameNode. If the file does not
exist, no hosts are blacklisted. If a set of
DataNode hostnames are added to this file while
the NameNode is running, and the command
hadoop dfsadmin -refreshNodes is executed,
the DataNodes listed will be decommissioned.
Any blocks stored on them will be redistrib-
uted to other nodes on the cluster such that the
default replication for the blocks is satisfied. It

is best to have this point to an empty file that
exists, so that DataNodes may be decommis-
sioned as needed.

The interval in seconds that the NameNode
checks to see if a DataNode decommission has
finished.

The period in seconds that the NameNode
computes the list of blocks needing replication.

The precision in msec that access times are main-
tained. If this value is 0, no access times are
maintained. Setting this to 0 may increase per-
formance on busy clusters where the bottleneck
is the NameNode edit log write speed.

The maximum number of files, directories, and
blocks permitted.

The number of replicas of each block stored in
the cluster. Larger values allow more DataNodes
to fail before blocks are unavailable but increase
the amount of network I/0 required to store data
and the disk space requirements. Large values
also increase the likelihood that a map task will
have alocal replica of the input split.

The basic block size for the file system. This may
be too small or too large for your cluster, depend-
ing on your job data access patterns.

The number of threads handling block requests.
Increasing this may increase DataNode through-
put, particularly if the DataNode uses multiple
separate physical devices for block storage.

Consider the DataNode loading when picking
replication locations.

The amount of space that must be kept free in
each location used for block storage.

Permission checking is enabled for file access.

The interval between disk usage statistic collec-
tion in msec.

www.it-ebooks.info

300

3600000

67108864

true

0.0

true
60000

http://www.it-ebooks.info/

CHAPTER 6 TUNING YOUR MAPREDUCE JOBS

Parameter Description Default
dfs.blockreport.intervalMsec The amount of time between block reports. The 3600000
block report does a scan of every block that is
stored on the DataNode and reports this infor-
mation to the NameNode. This report as of
Hadoop 0.19.0 blocks the DataNode from servic-
ing block reports and is the cause of the conges-
tion collapse of HDFS when more than 500,000
blocks are stored on a DataNode.
dfs.heartbeat.interval The heartbeat interval with the NameNode. 3
dfs.namenode.handler.count The number of server threads for the NameNode. 10
This is commonly greatly increased in busy and
large clusters.
dfs.name.dir The location where the NameNode metadata ${hadoop.
storage is kept. This may be a comma-separated tmp.dir}/
list of directories. A copy will be kept in each loca- dfs/name,
tion. Writes to the locations are synchronous. If in /tmp by
this data is lost, your entire HDFS data set is lost. default
Keep multiple copies on multiple machines.
dfs.name.edits.dir The location where metadata edits are synchro- ${dfs.
nously written. This may be a comma-separated name.dir}
list of directories. Ideally, this should hold mul-
tiple locations on separate physical devices. If this
is lost, your last few minutes of changes will be lost.
dfs.data.dir The comma-separated list of directories to use for ~ ${hadoop.
block storage. This list will be used in a round- tmp.dir}/
robin fashion for storing new data blocks. The dfs/data
locations should be on separate physical devices.
Using multiple physical devices yields roughly
50% better performance than RAID 0 striping.
dfs.safemode.threshold.pct The percentage of blocks that must be mini- 0.999f
mally replicated before the HDFS will start
accepting write requests. This condition is
examined only on HDFS startup.
dfs.balance.bandwidthPerSec The amount of bandwidth that may be used 1048576

to rebalance block storage among DataNodes.
This value is in bytes per second.

JobTracker and TaskTracker Tunable Parameters

The JobTracker is the server that handles the management of the queued and executing jobs.
The TaskTrackers are the servers that actually execute the individual map and reduce tasks.
Table 6-5 shows the tunable parameters for the JobTracker, and Table 6-6 shows those for
TaskTrackers. The JobTracker parameters are global to the cluster. The TaskTracker param-
eters are for the individual TaskTrackers.

www.it-ebooks.info

185

http://www.it-ebooks.info/

186

CHAPTER 6

TUNING YOUR MAPREDUCE JOBS

Table 6-5. JobTracker Tunable Parameters

Parameter Description Default
mapred.job.tracker The host and port of the JobTracker server. A local
value of local means to run the job in the
current JVM with no more than 1 reduce. If
the configuration specifies local, no JobTracker
server will be started. Per-job configurable.
mapred.max.tracker.failures The number of task failures allowed on a 4
TaskTracker before the TaskTracker is con-
sidered failed for the job with the failing tasks.
Per-job configurable.
mapred.system.dir An HDFS path used for storing job data. If ${hadoop.
multiple JobTracker servers will share an HDFS tmp.dir}/
cluster, each must have a different mapred. mapred/
system.dir, or the JobTrackers will delete system
each other’s job files.
mapred.temp.dir An HDFS path used for storing shared tem- ${hadoop.
porary data such as DistributedCache data. tmp.dir}/
Per-cluster configurable. mapred/temp
mapred.job.tracker.handler. = The number of server threads for handling 10
count TaskTracker requests. The recommended
value is 4% of the TaskTracker nodes. Per-
cluster configurable.
mapred.jobtracker.restart. If this value is true, a JobTracker will attempt false
recover to restart any queued or running jobs that
were running before a crash/shutdown.
Per-cluster configurable.
mapred.jobtracker.job. The basic block size used for writes to the 3145728
history.block.size history file. Keeping this relatively small
ensures that the most data is persisted in the
event of a crash. Per-cluster configurable.
mapred.jobtracker. The number of jobs to be kept in the 100
completeuserjobs.maximum JobTracker history. Per-cluster configurable.
mapred.jobtracker.maxtasks. The maximum number of tasks allowed for a -1
per.;job single job. A value of -1 means no limit. Per-
cluster configurable.
mapred.jobtracker. The maximum number of tasks a job can Unlimited
taskScheduler. run before it may be preempted. Per-cluster
maxRunningTasksPerJob configurable when the Capacity Scheduler
services (discussed in Chapter 8) are enabled.
mapred.job.tracker.persist. = Determines whether job status results are false
jobstatus.active persisted to HDFS. Per-cluster configurable.
mapred.job.tracker.persist. = The number of hours that job status infor- 0
jobstatus.hours mation is kept. Per cluster.
mapred.job.tracker.persist. The directory where status information is /jobtracker/
jobstatus.dir kept. Per-cluster configurable. jobsInfo

mapred.hosts

mapred.hosts.exclude

The full path to a file of hostnames that are
permitted to talk to the JobTracker. If spe-
cified, only the hosts in this file are permitted.

The full path to a file of hostnames that are
blacklisted from talking to the JobTracker.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 TUNING YOUR MAPREDUCE JOBS

Table 6-6. TaskTracker Tunable Parameters

Parameter Description Default

mapred.local.dir The set of directories to use for task local ${hadoop.
storage. If multiple directories are provided, tmp.dir}/
the usage is spread over the multiple direc- mapred/local

local.cache.size

mapred.local.dir.
minspacestart

mapred.local.dir.minspacekill

mapred.tasktracker.expiry.
interval

mapred.child.ulimit

mapred.tasktracker.
taskmemorymanager.
monitoring-interval

mapred.tasktracker.tasks.
maxmemory

mapred.tasktracker.
procfsbasedprocesstree.
sleeptime-before-sigkill

tories. The directories should be on separate
physical devices. Per-TaskTracker configurable.

The local cache directory limit. If more than 10737418240
this many bytes of data are in the task local (10GB)
DistributedCache directory, there will be

an attempt to remove unreferenced files.

Per-TaskTracker configurable.

If the space available in the directories 0
specified by mapred. local.dir falls below

this value, do not accept more tasks. This

prevents tasks from failing due to lack of

temp space. The 0 value should be changed

to something reasonable for your jobs.
Per-TaskTracker configurable.

If the available space in the mapred.local. 0
dir set of directories is below this, accept

no more tasks (as if mapred.local.dir.

minspace were set to this value) and start

killing tasks, starting with reduce tasks,

until there is this much space free.
Per-TaskTracker configurable.

The number of msec without a heartbeat 600000
that a TaskTracker may go without report-

ing, before being considered hung and

being killed. Per-TaskTracker configurable.

Only valid on Unix machines. This is used Unlimited
for processes started by the org.apache.
util.hadoop.Shell class. The framework

uses this to launch external subprocesses,

such as the pipes jobs and the external

programs of streaming jobs.

Per-TaskTracker configurable.

The rate in msec that virtual memory use 5000
by tasks is monitored.

The maximum amount of virtual memory a -1
task and its children may use before the
TaskTracker will kill the task. A value of t

indicates no limit. Per-TaskTracker

configurable.

A task over its memory limit is sent a 5000
SIGTERM. If the task has not exited within
this time in msec, a SIGKILL is sent.

Continued

www.it-ebooks.info

187

http://www.it-ebooks.info/

188

CHAPTER 6

Table 6-6. Continued

TUNING YOUR MAPREDUCE JOBS

Parameter

Description

Default

mapred.map.tasks.maximum

mapred.reduce.tasks.maximum

mapred.tasktracker.dns.
interface

mapred.tasktracker.dns.
nameserver

tasktracker.http.threads

mapred.userlog.limit.kb

mapred.userlog.retain.hours

The number of map tasks to run simul-
taneously on a TaskTracker. This should
either be 1 (if there is only one CPU) or
roughly one less than the number of CPUs
on the machine. This parameter needs to
be tuned for a particular job mix.
Per-TaskTracker configurable.

The number of simultaneous reduce tasks
to run. This value is really a function of the
CPU and I/0 bandwidth available to the
machine. It needs to be tuned for the
machines and job mix. Per-TaskTracker
configurable.

For multihomed TaskTracker nodes, report
this interface’s IP address to the JobTracker.
If not default, this value is the name of a
network interface, such as etho.
Per-TaskTracker configurable.

For multihomed TaskTracker nodes, use
this address for DNS hostname resolution
when resolving the IP address of the net-
work interface specified by mapred.
tasktracker.dns.interface. The value
default means use the system default.

The number of threads serving HTTP
requests for reduce tasks requesting map
output. If your system has many reduce
execution slots, the default may be too small.

The maximum amount of data that may
be written to a task user log.

The number of hours that user logs are
retained.

2

default

default

40

24

Per-Job Tunable Parameters

The framework provides rich control over the way individual jobs are executed on the cluster.
You can tune file system and task-related parameters. Table 6-7 shows the tunable parameters
for the file system.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 TUNING YOUR MAPREDUCE JOBS

Table 6-7. File System Tunable Parameters

Parameter Description Default

fs.default.name This is the URI for the shared file system. Nor- file:///
mally it will be set to hdfs : //NamenodeHostname:
NameNodePort.

dfs.replication The job may configure this value. 3

dfs.block.size The client may also configure this value. 67108864

dfs.client.block.write.retries The number of write attempts before a write 3

is considered failed. In general, if writes are
being retried, there is a problem with the
HDFS or machine configuration.

The task-tunable parameters directly control the behavior of tasks in the cluster. These
are the heart of the MapReduce framework. A large number of parameters affect the job.
Only those parameters that directly control core functions are listed in Table 6-8. Many of the
parameters are detailed in this book’s appendix, which discusses the JobConf object.

Table 6-8. Core Job-Level Task Parameters

Parameter Description Default
mapred.map.tasks The suggested number of map tasks for a job. 2
mapred.reduce.tasks The number of reduce tasks for the job. 1
mapred.map.max.attempts The maximum number times a map task will 4
be retried after an error, before it is consid-
ered failed.
mapred.reduce.max.attempts The maximum number of times a reduce task 4
will be retried after an error, before it is con-
sidered failed.
mapred.reduce.parallel.copies The number of parallel fetches of map out- 5
put data made via HTTP at a time.
mapred.reduce.copy.backoff The maximum amount of time to try to fetch 300
a map output partition, before abandoning
that partition.
mapred.task.timeout The amount of time in msec that a task may 600000
go without the map or reduce method finish- (10 min)
ing, or making a call on the reporter or out-
put collector.
mapred.child.java.opts The options to use for initializing the task JVM. -Xmx200m
@taskid@ is replaced with the current task ID.
mapred.child.tmp The value passed to the JVM for java. io. /tmp
tmpdir. If it is a relative path, it will be relative
to the task’s local working directory.
Continued

www.it-ebooks.info

189

file:///mally
file:///mally
hdfs://NamenodeHostname:
http://www.it-ebooks.info/

190

CHAPTER 6

Table 6-8. Continued

TUNING YOUR MAPREDUCE JOBS

Parameter

Description

Default

mapred.map.tasks.speculative.
execution

mapred.reduce.tasks.
speculative.execution

mapred.job.reuse.jvm.num.tasks

mapred.submit.replication

keep.failed.task.files

keep.task.files.pattern

mapred.output.compress

mapred.output.compression.type

mapred.output.compression.
codec

mapred.compress.map.output

Whether idle map task slots will be used to
set up execution races for executing identical
map tasks. This will consume more cluster
resources and may offer faster job through-
put. This must be false if your map tasks
have side effects that the framework cannot
undo or have real costs.

Enable the use of unused reduce task execu-
tion slots to try a task in multiple slots, to see
if one slot may complete the task faster. This
will consume more cluster resources and
may offer faster job throughput. This must
be false if your reduce tasks have side
effects the framework cannot undo or have
real costs.

The number of times a task JVM may be
reused for additional tasks of the same type
for the same job. A value of -1 indicates no
limit.

The replication factor for per-job data. This
needs to be tuned on a per-job basis.

Whether the local directories for failed tasks
should be kept. This is for debugging. There
is no automatic mechanism in the frame-
work to clean these directories if this is set
to false.

If set, a java.util.Pattern will be applied
to task names to determine if their local
directories will be kept. This is normally not
present.

Use compression on the final output data
files for the job. This is usually a significant
win for jobs with large output.

The type of compression to do for the job
output files if they are SequenceFiles. BLOCK
is generally considered better if random
access to the output is not desired.

The codec to use for compression.

If true, use compression on the map out-
put that is destined for a reduce task. This
is usually a significant win.

www.it-ebooks.info

true

true

10

false

Unset

false

RECORD

org.
apache.
hadoop.
io.
compress.
Default
Codec

false

http://www.it-ebooks.info/

CHAPTER 6 TUNING YOUR MAPREDUCE JOBS

Parameter Description Default
mapred.map.output. The codec to use for intermediate map out- org.
compression.codec put files. The LzoCodec appears to be the cur- apache.
rent best choice if it is available. hadoop.
io.
compress.
Default
Codec
io.seqfile.compress.blocksize The minimum block size to use for block- 1000000
level compression of SequenceFiles.
io.seqfile.lazydecompress Only decompress SequenceFile data when true
itis needed.
io.seqfile.sorter.recordlimit The maximum number of records to attempt 1000000
to keep in memory when sorting the records
of a SequenceFile.
map.sort.class The sort implementation to use when sorting org.
keys using the OutputComparator. apache.
hadoop.
util.
Quick
Sort
jobclient.output.filter The status of the tasks whose user log data FAILED
is reported to the console of the JobClient
that submitted the job. The values allowed
are NONE, KILLED, FAILED, SUCCEEDED, and
ALL.
mapred.task.profile If true, some tasks may be profiled. false
mapred.task.profile.maps The set of map tasks to profile. See this 0-2
book’s appendix for how this may be set.
mapred.task.profile.reduces The set of reduce tasks to profile. See this 0-2
book’s appendix for how this may be set.
mapred.skip.attempts.to. The number of failures of a task before skip 2
start.skipping mode is engaged. This is covered in Chapter 8.
mapred.skip.map.auto.incr. Automatically increment the counter true
proc.count ReduceProcessedGroups. This must be false
for streaming jobs or jobs that buffer records
before reducing.
mapred.skip.out.dir If unset, skipped records are written to file Unset
_logs/skip in the output directory. If the
value is exactly none, no records will be
written. If set to anything else, it becomes the
directory where skipped records are written.
mapred.skip.map.max.skip.records The number of contiguous records, includ- 0
ing the bad record that may be skipped. The
framework will attempt to narrow down the
region to skip to this size. If the value is 0, no
skipping is allowed. If the value is Long.
MAX_VALUE, the entire split will be skipped.
mapred.skip.reduce.max. The number of key/value set groups sur- 0

skip.groups

rounding a bad record group that may be
skipped by the reduce task. See Chapter 8
for details.

www.it-ebooks.info

191

http://www.it-ebooks.info/

192

CHAPTER 6 TUNING YOUR MAPREDUCE JOBS

Monitoring Hadoop Core Services

To be able to detect incipient failures, or otherwise recognize that a problem is developing or
has occurred, some mechanism must be available to monitor current status, and if possible
provide historical status. The Hadoop framework provides several APIs for allowing external
agents to provide monitoring services to the Hadoop Core services. Here, we will look at Java
Management Extensions JMX), Nagios, Ganglia, Chukwa, and FailMon.

JMX: Hadoop Core Server and Task State Monitor

Hadoop provides local JMX bean services for all services. This allows for the use of J]MX-aware
applications to collect information about the state of the servers. The default configuration
provides for only local access to the managed beans (MBeans). To enable remote access, after
determining a port for JMX use, alter the conf/hadoop-env. sh file (shown in Listing 6-1) and
change the JMX properties being set on the servers.

Listing 6-1. The Default hadoop-env.sh Settings for Hadoop Servers to Enable JMX

export HADOOP_NAMENODE OPTS="-Dcom.sun.management.jmxremote $HADOOP_NAMENODE OPTS"
export HADOOP_SECONDARYNAMENODE OPTS="-Dcom.sun.management.jmxremote w»
$HADOOP_SECONDARYNAMENODE OPTS"

export HADOOP_DATANODE OPTS="-Dcom.sun.management.jmxremote $HADOOP_DATANODE OPTS"
export HADOOP_BALANCER OPTS="-Dcom.sun.management.jmxremote $HADOOP_BALANCER OPTS"
export HADOOP_JOBTRACKER_OPTS="-Dcom.sun.management.jmxremote w»
$HADOOP_JOBTRACKER OPTS"

export HADOOP TASKTRACKER OPTS=

The string -Dcom. sun.management. jmxremote enables the JMX management bean services
in the servers. The string is a JVM argument and passed to the JVM at start time on the com-
mand line.

JMX supports several connection options. See the Sun-supplied documentation for con-
figuring access control and remote access, at http://java.sun.com/javase/6/docs/technotes/
guides/jmx/index.html.

Nagios: A Monitoring and Alert Generation Framework

Nagios (http://www.nagios.org) provides a flexible customizable framework for collecting
data about the state of a complex system and triggering various levels of alerts based on the
collected data. A service of this type is essential for your cluster administration and operations
team.

The University of Nebraska has a web page (http://t2.unl.edu/documentation/hadoop/
monitoring-guide/) that details how to use the Nagios check jmx plug-in to monitor Hadoop
servers. The information is reproduced here. This example assumes that you understand how
to construct the JMX password file and access control file.

www.it-ebooks.info

http://java.sun.com/javase/6/docs/technotes/
http://www.nagios.org
http://t2.unl.edu/documentation/hadoop/monitoring-guide/
http://t2.unl.edu/documentation/hadoop/monitoring-guide/
http://www.it-ebooks.info/

CHAPTER 6 TUNING YOUR MAPREDUCE JOBS

To enable JMX monitoring on Hadoop, add the following lines to hadoop-env.sh:

export HADOOP_NAMENODE_OPTS=" -Dcom.sun.management.jmxremote.authenticate=false =
-Dcom.sun.management.jmxremote.ssl=false =
-Dcom. sun.management. jmxremote.port=8004 =
-Dcom.sun.management.jmxremote.password.file= =
$HADOOP_HOME/conf/jmxremote.password =
-Dcom. sun.management. jmxremote.access.file=$HADOOP_HOME/conf/jmxremote.access"”
export HADOOP_DATANODE_OPTS=" -Dcom.sun.management.jmxremote.authenticate=false =
-Dcom.sun.management.jmxremote.ssl=false =
-Dcom. sun.management. jmxremote.port=8004 =
-Dcom.sun.management.jmxremote.password.file= =
$HADOOP_HOME/conf/jmxremote.password =
-Dcom. sun.management. jmxremote.access.file=$HADOOP_HOME/conf/jmxremote.access"”

The following lines add check_jmx to the Nagios deployment:

./check_jmx -U service:jmx:rmi:///jndi/rmi://node182:8004/jmxrmi =
-0 hadoop.dfs:service=DataNode,name=DataNodeStatistics w»
-A BlockReportsMaxTime -w 10 -c 150

./check_jmx -U service:jmx:rmi:///jndi/rmi://node182:8004/jmxrmi >
-0 java.lang:type=Memory -A HeapMemoryUsage -K used -C 10000000

Ganglia: A Visual Monitoring Tool with History

Hadoop has built-in support for Ganglia version 3.0 through Hadoop 0.19.0. Support for
Ganglia 3.1 is expected for Hadoop 0.20. The Ganglia framework is available from http://
ganglia.sourceforge.net.

Ganglia by itself is a highly scalable cluster monitoring tool, and provides visual informa-
tion on the state of individual machines in a cluster or summary information for a cluster or
sets of clusters. Ganglia provides the ability to view different time windows into the past, nor-
mally one hour, one day, one week, one month, and so on.

Caution Due to some limitations in the Ganglia support in Hadoop through at least Hadoop 0.19.1, the
configuration requirements are not as simple as Ganglia configuration normally is.

Ganglia is composed of two servers: the gmetad server, which provides historical data and
collects current data, and the gmond server, which collects and serves current statistics. The
Ganglia web interface is generally installed on the host(s) running the gmetad servers, and in
coordination with the host’s httpd provides a graphical view of the cluster information. In gen-
eral, each node will run gmond, but only one or a small number of nodes will also run gmetad.

For Hadoop reporting to work with Ganglia, the configuration changes shown in Table 6-9
must be made in the conf/hadoop-metrics.properties file. Each Hadoop cluster must be

www.it-ebooks.info

193

rmi:///jndi/
rmi://node182:8004/jmxrmi
rmi:///jndi/
rmi://node182:8004/jmxrmi
http://ganglia.sourceforge.net
http://ganglia.sourceforge.net
http://www.it-ebooks.info/

194

CHAPTER 6 TUNING YOUR MAPREDUCE JOBS

allocated a unique multicast address/port, and be considered a single reporting domain.

Each cluster must also be allocated a unique cluster name. The cluster name is referred to as
CLUSTER in this section. The UDP port for reporting is referred to as PORT, and for simplicity, the
multicast port will be identical to PORT.

Table 6-9. Required Parameters for Hadoop Ganglia Reporting Configuration

Substitution String Description

CLUSTER The unique cluster name shared by all hosts within the cluster/reporting
domain.

HOSTNAME The hostname of the machine that will be the Ganglia reporting master for
CLUSTER

PORT The non-multicast UDP port that the gmond server on HOSTNAME will listen on.

Also the multicast port unique to CLUSTER, which all gmond servers in CLUSTER
will listen and transmit on.

MULTICAST The multicast address that the gmond servers in the cluster will communicate
over. The default of 239.2.11.71 is acceptable as long as each CLUSTER uses a
unique PORT.

Note MULTICAST:PORT must be unique per CLUSTER, but generally MULTICAST is left at the default
value, so PORT becomes the unique value per cluster. The gmond on HOSTNAME will need to be configured to
listen on the non-multicast UDP port of PORT. Many enterprise-grade switches will need to have multicast
enabled for each CLUSTER’S MULTICAST: PORT.

All nodes in the cluster will have the gmond server configured with the cluster name param-
eter set with the cluster’s unique name. One node in the cluster, traditionally the NameNode
or a JobTracker node, is configured to also accept non-multicast reporting on a port, com-
monly the same port as the multicast reception port. This host will be considered the Ganglia
cluster master, and its hostname is the value for HOSTNAME. This host is also the host used in
the /etc/gmetad. conf file. The conf/hadoop-metrics file needs to be altered as shown in List-
ing 6-2. The HOSTNAME and PORT must be substituted for the actual values. This file must then
be distributed to all of the Hadoop conf directories and all Hadoop servers restarted.

Listing 6-2. The conf/hadoop-metrics.properties File for Ganglia Reporting

Configuration of the "dfs" context for ganglia
dfs.class=org.apache.hadoop.metrics.ganglia.GangliaContext
dfs.period=10

dfs.servers=HOSTNAME : PORT

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 TUNING YOUR MAPREDUCE JOBS

Configuration of the "mapred" context for ganglia
mapred.class=org.apache.hadoop.metrics.ganglia.GangliaContext
mapred.period=10

mapred.servers=HOSTNAME : PORT

Configuration of the "jvm" context for ganglia
jvm.class=org.apache.hadoop.metrics.ganglia.GangliaContext
jvm.period=10

jvm.servers=HOSTNAME : PORT

All of the Hadoop servers will now deliver metric data to HOSTNAME : PORT via UDP, once
every 10 seconds.

The gmetad server that will collect metric information for the cluster will need to be
instructed to collect metric information about CLUSTER from the master node via a TCP connec-
tion to HOSTNAME : PORT. The following is the configuration line in the gmetad. conf file for CLUSTER:

data_source "CLUSTER" HOSTNAME:PORT

The Ganglia web interface will provide a graphical view of the clusters, as shown in
Figure 6-1.

Production Grid Report for Fri, 06 Mar 2009 10:10:46 -0800 Get Fresh Data
Last sorted
CEfsseasaiee T
Production Grid (22 s BlogCrawlerCluster
CustomFeedsCluster
CPUs Total: ~ 550 CustomSourceCrawlerCluster Production Grid Memory last hour Production Grid Network last hour
Hosts up: 125 DBFrontEnd_MemDB_Cluster 1 2000
s00
g DBFrontend_TextBeta2_Cluster , 806 - .
Hosts down: 75 8 4 | DBFrontEnd_TextBeta _Cluster £ wos ol
& 300 | pBFrontEnd_TextDemo_Cluster = 5006 PRECCT]
Avg Load (15, 5, 1m): E 200 | DBFrontEnd_Video_Cluster o 5
54%, 52%, 48% = 100 || DBInternal_Backup_Cluster 03:20 03:40 20:00 =
Localtime: o DBInternal_DataWarehouse_Cluster | [+ | MMemory Used MMemory Shared [Memory Cached
2009-03-06 10:10 DBInternal_FrontEndstaging_Cluster O Menory Buffered Wttenory Swapped Bk B =
B 1-mn | pginternal SourceCrawl Cluster s B Total In-Core Memory oI mout
. DustBusterProCluster
Video Prod2 pnysica view) MCATCluster
MatchCandidateCrawlerCluster
CPUs Total: 40 MatcherCluster || Video Prod2 Memory last hour Video Prod2 Network last hour
Hosts up: 48 NewsCrawlerCluster a0t st
Hosts down: 9 § o | RealTimeCrawlerCluster g oo y aom
M ourceCrawlerCluster v] £ w £ 0w
g 106 8
Avg Load (15, 5, 1m): H I I o el
470%, 422%, 348% & ‘ ‘ ‘ 09:20 09:40 10:00 5 w0
Localtime: =5 == Wtenory Used M Memory Shared [Memory Cached e e e
-03- O Menory Buffered Wttenory Swapped
2009-03:06 10:10 Oil-min Load ONodes B CPUs M Running Processes B Total In-Core Memory oI mout
RealTimeCrawlerCluster qhysica view)
CPUs Total: 2 RealTimeCrawlerCluster Load last hour RealTimeCrawlerCluster Memory last hour RealTimeCrawlerCluster Network last hour
Hosts up: 1 106 .
Hosts down: 0 g 1w o H
H £ % som
g5 4 1 = § 20w
Avg Load (15, 5, 1m) H 0.0 5
156%, 222%, 276% S t H oa:00 0a:20 0a:40 & aou
Localtime: —3 nx‘m Wtenory Used M bemory Shared [Memory Cached o — P —h
s O Menory Buffered Wttenory Swapped
2009-03-06 08:40 Oil-min Load ONodes B CPUs M Running Processes B Total In-Core Memory oI mout
NewsCrawlerCluster hysica view)
CPUs Total: 32 NewsCrawlerCluster Load last hour NewsCrawlerCluster Memory last hour NewsCrawlerCluster Network last hour
Hosts up: 4 S 104
Hosts down: 6 g g o
2 1 I.L £ s & em
3 < 4 oom
Avg Load (15, 5, 1m) H o £
Localtime: e =5 Wtenory Used M Memory Shared [Memory Cached = == =
05 O Menory Buffered Wttenory Swapped
2009-03:06 10:10 Ol-min Load ONodes B CPUs M Running Processes B Total In-Core Menory oI mout
DustBusterProCluster hysica view)
CPUs Total: 16 DustBusterProCluster Load last hour DustBusterProCluster Memory last hour DustBusterProCluster Network last hour
Hosts up: 2 e
Hosts down: 2 q me g
£ 0mn s <
S 2 i osw
Avg Load (15, 5, 1m): H o = v
I] |
X Find: [] @brevious s Next s Highlight all [JMatch case

Figure 6-1. The Ganglia web view of a running set of clusters

www.it-ebooks.info

195

http://www.it-ebooks.info/

196

CHAPTER 6 TUNING YOUR MAPREDUCE JOBS

When tuning jobs, Ganglia provides a wonderful interface to determine when your job
is fully utilizing a cluster resource. Determining which resource is fully utilized, tuning the
appropriate configuration parameters for that resource, and then rerunning the job will allow
you to optimize your job’s runtime on your cluster.

Chukwa: A Monitoring Service

Chukwa’s goal is to provide extract, transform, and load (ETL) services for cluster logging data,
thereby providing end users with a simple and efficient way to find the logging events that are
actually important. Chukwa is new in Hadoop 0.19.0 and evolving rapidly.

Chukwa uses HDEFS to collect data from various data providers, and MapReduce to ana-
lyze the collected data. The instance in Hadoop 0.19.0 appears to be currently optimized for
the collection of data from log files, and then run a scheduled MapReduce job over the col-
lected data. The Chukwa Quick Start is hosted on the Hadoop wiki, at http://wiki.apache.
org/hadoop/Chukwa_Quick Start.

FailMon: A Hardware Diagnostic Tool

The FailMon framework attempts to identify failures on large clusters by analyzing data col-
lected from the Hadoop logs, the system logs, and other sources. The FailMon tools stem from
a larger IBM effort to improve the operational reliability of large installations by predicting
failures and taking corrective action before the failure occurs (see (https://issues.apache.
org/jira/secure/attachment/12386597/failmon.pdf). This is a very early technology and is
expected to evolve rapidly.

The FailMon package consists primarily of data collection tools with MapReduce jobs to
perform analysis of the collected data.

Tuning to Improve Job Performance

The general goal for tuning is for your jobs to finish as rapidly as possible using no more
resources than necessary. This section covers best practices for achieving optimum perfor-
mance of jobs.

Speeding Up the Job and Task Start

If the job requires many resources to be copied into HDFS for distribution via the distributed
cache, or has large datasets that need to be written to HDFS prior to job start, substantial wall
clock time can be spent copying in the files. For constant resources, it is simplest and quickest
to make them available on all of the cluster machines and adjust the TaskTracker classpaths to
reflect these resource locations.

The disadvantage of installing the resources on all of the machines is that it increases
administrative complexity, as well as the possibility that the required resources are unavailable
or an incorrect version. The advantage of this approach is that it reduces the amount of work
the framework must do when setting up each task and may decrease the overall job runtime.

Table 6-10 provides a checklist of items to look for that affect write performance and what
to do when the situations occur.

www.it-ebooks.info

http://wiki.apache
https://issues.apache.org/jira/secure/attachment/12386597/failmon.pdf
https://issues.apache.org/jira/secure/attachment/12386597/failmon.pdf
http://www.it-ebooks.info/

CHAPTER 6 TUNING YOUR MAPREDUCE JOBS 197

Table 6-10. What to Monitor for Initial Bulk Transfer of Input Data

Resource What to Look For What to Do
Source machine CPU The CPU is maxed out, the com- Change the compression or change
utilization pression level is too high, or the the number of threads.

compression algorithm is compu-
tationally too expensive

Source machine network Saturation of the outbound net- Increase the number of transfer
work connection with traffic for threads or provide a higher-speed
HDEFS network connection.

Per DataNode network input ~ Ifitis not saturated, more writes Increase the number of simulta-

could be delivered to this DataNode neous threads writing or reduce the
number of files being created by
increasing the individual file sizes.

DataNode I/0 wait I/0 contention on a DataNode Add more independent locations

to dfs.data.dir or add more
DataNodes.

If you have a large number of files that need to be stored in HDFS prior to the task start,
such as might occur if your job needs to populate the job input directory, there are several
things you may try, in varying combinations:

It may be faster to copy the files from a machine that hosts a DataNode, as all of the
writes will first go to the local DataNode, and the application will not have to wait for
the data to traverse the network. The downside is that one replica of every block will
end up on the local DataNode, greatly reducing the opportunity for data to be local to

a map task. The DataNode may also get unbalanced with respect to storage, compared
to other DataNodes. Ideally, bulk input of data to be used as input to a map task should
be input from a host that does not also provide DataNode services, to ensure even dis-
tribution of the stored blocks across the DataNodes.

It may be faster to run the copies in parallel. The limiting factor will be the network
speed or the local DataNode disk speed in the event the copy host is also a DataNode.

Use compression for data to be used once. LZO provides very good compression at
little CPU overhead, provided that a native implementation is available.

Create an archive of the input files, so that fewer files need to be created in HDFS. The
downside is that zip and tar archives must be processed whole by a map task and may
not be split into pieces (at least through Hadoop 0.19.0). Writing compressed sequence
files, where the key/value pairs are of the type BytesWritable, will give you input that
may be split and a reduction in file size.

If you have large volumes of data, you may need to set up special machines with
high-bandwidth network connections to the switching fabric that holds your
DataNodes. Each block being written is sent directly to a DataNode. That DataNode
will in turn send the block to the next DataNode in the chain and so on, until the
required number of replicas are complete.

If the origination machine has a higher bandwidth connection and is able to write mul-
tiple blocks in parallel (via multiple open files) while the bandwidth to each DataNode
will be capped by the DataNode network speed, the origination machine will be able to
write to HDFS at a higher rate.

www.it-ebooks.info

http://www.it-ebooks.info/

198

CHAPTER 6 TUNING YOUR MAPREDUCE JOBS

There are very few tunable parameters at this point. You may change the dfs.block.size
parameter to issue larger or smaller writes. You may decrease the dfs.replication parameter
to reduce the overall HDFS write load, or increase it to increase the chance of local access by
later MapReduce jobs. Compression generally helps but may cause issues later. Figure 6-2
illustrates how HDFS operations that your application issues are actually handled by the
framework. Implicit in Figure 6-2 is that the replication count is three.

> N
ameNode
DFS create < Create file
Writes until NameNode allocates DataNodes
dfs.block.size (
bytes of Block and Nodes 3 ™ -
data buffered First DataNode, local machine

W if possible
Async listener

for

responses. |g——ACK Second DataNode

If bad ACK

file closed
Third DataNode,

Close. nonlocal if possible
Write any
remaining data. '
Wait for all ACKs ¥»| NameNode mark file complete

Figure 6-2. Writing a block of data to HDFS

From a monitoring perspective, you will want to monitor the network utilization on the
upload machine and to a lesser extent on the DataNodes. If you are using compression, you
will want to monitor CPU utilization on the machines doing the compression.

You may also wish to monitor the disk-write rate on the DataNodes, to verify that you are
getting a good write rate. Since the incoming data rate is capped by the network rate, generally
this is not a significant factor. If you see pauses in the network traffic or disk I/0, it implies that
a Hadoop server may be unresponsive, and the client is timing out and will retry.

In general, increasing the server threads (dfs.datanode.handler.count) and the TCP listen
queue depth (ipc.server.listen.queue.size) may help. It may be that the NameNode is not
keeping up with requests, and in that case, increasing dfs.namenode.handler.count may help.

Optimizing a Job’s Map Phase

The map phase involves dispatching a map task to a TaskTracker. Once the TaskTracker has
a task to execute, it will prepare the task execution environment by building or refreshing the
DistributedCache data. The TaskTracker maintains information about the DistributedCache

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 TUNING YOUR MAPREDUCE JOBS

for a particular job, and multiple tasks from the same job will share the same local execution
environment. If you don’t have an existing child JVM that has been used for this job’s task and
is within its reuse limit, start a new child JVM. The TaskTracker will then trigger the start of the
map task in the child JVM.

The child JVM will start reading key/value pairs from its input, executing the map method
for each pair. The output key/value pairs will be partitioned as needed and collected in the
proper output format. If there is a reduce phase, the output format will be on the local disk in
a sequence file. If there is not a reduce phase, the output will be in the job-specified output
format and stored in HDFS.

Figure 6-3 shows a diagram of the job setup and map task execution. The left side follows
the actions of the JobTracker from job submission through executing the map tasks on the
available TaskTrackers. The right side follows the loop that a TaskTracker executes for map
tasks. The diagram is read from top to bottom. The Tasktracker$Child is the class providing
amain() method for the actual map task, which will be executed in a JVM launched and man-
aged by the TaskTracker.

TaskTracker
Receive task to execute

Create or refresh task
local directory.

Unpack JARs and
TaskTracker DistributedCache Items
Prepare task runtime

Create or reuse JVM

for child to execute
JobTracker task as
Compute input splits Tasktracker$Child
and split locality.
Produce task list,
1 task per split
Tasktracker$Child Mgggz;ﬂzss

Set up to read input split from HDFS

JobTracker and write output to local file system map,
For each open task close

execution slot,
schedule a task
from the list

TaskTracker
Cleanup

TaskTracker
Serve map output to
reduce tasks via
HTTP

Figure 6-3. Behind the scenes in a map task

www.it-ebooks.info

199

http://www.it-ebooks.info/

200

CHAPTER 6 TUNING YOUR MAPREDUCE JOBS

The following are some items you can tune for the map phase:

Map task run time: Each map task has some setup and teardown overhead. If the run-
time of the map task is short, this overhead becomes the major time component. If

the runtimes of tasks are too long, a single task may hold the cluster for a long period,

or retrying a failed task becomes expensive. In general, less than a minute is usually

too short, What is too long for a map task is job-specific. The primary tuning point for
this is the dfs.block.size parameter. Increasing this parameter usually increases the
split size and the task run time. On a per-job or per-cluster basis, you may also change
mapred.min.split.size. It is better to use dfs.block.size, as the data is more likely to be
local when the split size equals the HDFS file system block size.

TaskTracker node CPU utilization: If the map tasks are computationally intensive, a sig-
nificant goal is to use all of the available CPU resources for that computation. There are
two methods for controlling CPU utilization for map tasks:

e The job or cluster may configure the use of MultithreadedMapRunner for the
MapRunner via mapred.map.zrunner.class, and specify the number of execution
treads via mapred.map.multithreadedrunner.threads.

* The cluster may specify the number of map tasks to run simultaneously by a Task-
Tracker via mapred. tasktracker.map.tasks.maximum. This may be done on the
command line for any job that uses the GenericOptionsParser.

Data location: If the map tasks are not receiving their input split from a local DataNode,
the I/0 performance will be limited to the network speed. This value is visible in the job
counters of running and completed jobs, under the section titled “Data Local map tasks,”
the Total column gives the number of map tasks that ran with the input split served from a
local DataNode. Other than increasing the replication factor and trying to ensure that the
input split size is the file system block size, there is little tuning to be done.

Child garbage collection: If there is significant object churn in the Mapper .map method, and
there is insufficient heap space allocated, the JVM hosting the task may spend a signifi-
cant amount of wall clock time doing garbage collection. This is readily visible only via the
Ganglia reporting framework or through the JMX MBean interface. The Ganglia reporting
variable is gcTimeMillis() and is visible in the main reporting page for Ganglia, as shown
in Figure 6-4.

Figure 6-4 shows an example of a Ganglia report for a two-host cluster, where one host is
having problems. Note in the bottom-right graph, showing gcTimeMilis, how the host cloud9 is
spending roughly 2 to 400 msec per sample period doing garbage collection. This would imply
that the child JVM has been configured with insufficient memory. At the current time, it is not
possible to differentiate the garbage collection timing for the different server processes.

www.it-ebooks.info

http://www.it-ebooks.info/

Fle Edit View History Bookmarks Tools Help

CHAPTER 6

@ Ganglia:: Cluster Report - Mozilla Firefox

TUNING YOUR MAPREDUCE JOBS

4P~ § -0 [0 1ahc=

”

= | e=Tvahoo

[Most Visited > £3Smart Bookmarks¥ [JJava¥ [JC++~ {JAmazonDev~ [IWebStds~ [IECKANKARY [JOrade¥ [IPranic¥ [3FreeEnergy” [JIGaming~ |[s]Amazon Search CIRWC Movies~ [IVserver~™

cloud9 Hadoop Map/Reduce .. X [6) Ganglia:: Cluster Report x|

Cluster Report for Sun, 08 Mar 2009 21:17:52 -0700

Metric _gcTimeMills [*| Last 1omin|~| Sorted byname [+

Get Fresh Data

Physical View

Grid > my cluster > --Choose a Node|~

Overview of my cluster

CPUs Total: 3 my cluster Load last 10min 2 my cluster CPU last 10min H my cluster Memory last 10min H
Hosts up: 2 5.0 £ 100 g g
Hosts down: 0 B oo e 2 i i
R £l e g £
S ao i = g
Avg Load (15, 5, 1m): 5 il|® 2 &
L 5 4 20115 J
o
32%, 39%, 23% ol 20115 B Menory Used M Memory Shared [Memory Cached
Localtime: M User CPU [Nice CPU M System CPU [WAIT CPU O Memory Buffered B Memory Swapped
2009-03-08 21:17 O1-nin Load [ONodes M CPUs M Running Processes || [Idle CPU B Total In-Core Memory

my cluster Network last 10min H

Cluster Load Percentages e o

O50-75 (50008 gmoaw Fl

Oo-25 (50.002) C L] il

B oom)

& ap 5

o
s
o mout

Show Hosts: yes © no O | my cluster gcTimeMillis last 10min sorted by name | Columns 4 [~

cloude

8 2 H |ER

S 10 3e

. o 21:15 H|o 20 21:15
o

B gcTineMillis last 10min (now M gcTimeMillis last 10min (n

(Nodes colored by 1-minute load) | Legend

Ganglia Web Frontend version 3.0.7 Gheck for Updates
Ganglia Web Backend (gmetad) version 3.0.7 Check for Updates
Downloading and parsing ganglia’s XML tree took 0.0051s.
Images created with RRDTool version 1.3.4.

x Fmd:l @ Pprevious BNext Highlight all [IMatch case
) vonnlonds | F10i686-Liviso | [ctear
Done [® 0.6025 [Foxyeroxy: patterns [Adblock

Figure 6-4. Ganglia report showing gcTime for a two-host cluster, where one host is in trouble

In this case, it’s possible that increasing the child JVM memory limit, via
mapred.child. java.opts, would be helpful. In this 10-minute window, the same task was
run twice. The second time, it was run with twice as much memory per child JVM via
mapred.child.java.opts. Note how much less time was taken in garbage collection on the
right side of the graph for cloud9 versus the left half of the graph.

Here are the command-line options to enable multithreaded map running with ten
threads:

-D mapred.map.runner.class=org.apache.hadoop.mapred.lib.MultithreadedMapRunner w»
-D mapred.tasktracker.map.tasks.maximum=10

Tuning the Reduce Task Setup

The reduce task requires the same type of setup as the map task does with respect to

the DistributedCache and the child JVM working environment. The two key differences

relate to the input and the output. The reduce task input must be fetched from each of the
TaskTrackers on which a map task has run, and these individual datasets need to be sorted.
The reduce output is written to HDFS, unlike with the map task, which has output to the local
file system.

www.it-ebooks.info

201

http://www.it-ebooks.info/

202 CHAPTER 6 TUNING YOUR MAPREDUCE JOBS

As you can see from Figure 6-5, there are several steps for a reduce task, each of which has
different constraints, as follows:

¢ The JobTracker can launch only so many tasks per second; this is something that will
change after Hadoop 0.19.1.

¢ The tuning parameters for the map task with respect to job setup apply equally to the
reduce task.

¢ The framework must fetch all of the map outputs for the reduce task, from the
TaskTrackers that have them.

¢ The data to be fetched may be large enough that the network transfer speed becomes
a bounding issue.

JobTracker

TaskTracker Task Info Schedule the reduces

Receive task to execute .
as task slots are available

Create or refresh task
local directory.
Unpack JARs and
DistributedCache Items

TaskTracker
Prepare task runtime

Create or reuse JVUM
for child to execute
task as
Tasktracker$Child

Tasktracker$Child HTTP GET 'S ! |
Collect the map outputs
from each TaskTracker Map Outputs TaskTracker
Sequence Files L | HTTP service

Tasktracker$Child
Shuffle the map output.
Merge-sort the shuffled data.
Local file system used for bulk storage

Tasktracker$Child Reduct_ar class
: Configure,

Set up to read from local file system reduce

and write to HDFS ’

close
TaskTracker
Commit output,
clean up

Figure 6-5. Behind the scenes in the reduce task

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 TUNING YOUR MAPREDUCE JOBS

The following parameters affect the reduce task:

e mapred.reduce.parallel.copies: Controls how many fetches are run in parallel for
each reduce task.

e tasktracker.http.threads: Controls the number of threads each TaskTracker runs to
service these map output requests.

e ipc.server.listen.queue.size: At alower layer, controls the number of requests that
can queue before the client gets a connection-refused message.

There are several ways to reduce the size of the map output files, which can greatly speed
up this phase. Some care needs to be used, as some of the compression options may slow
down the shuffle and sort phase. The simplest thing is to specify a combiner class, which will
act as a mini-reduce phase in each map task (as described in Chapter 5). This works very well
for aggregation jobs, and not so well for jobs that need the full value space in the reduce task
on which to operate. Many sites will enable map output file compression, via the Boolean
value mapred. compress.map.output, in the hadoop-site.mxl1 file.

The choice of the compression algorithm is less clear. Native LZO is usually a good
choice. The final trade-off is record-level versus block-level compression. The default is
stored in io.seqfile.compression.type, and is RECORD. Conceptually, RECORD is better for the
map output, as there will be a fair bit of reading through the files during the shuffle and sort
phases. This is something that will have to be tried on a per-job basis. The other issue is that,
at least through Hadoop 0.19.0, there is only one setting for this parameter, which affects all
SequenceFiles.

Note There are a number of parameters that control the shuffle and merge. Tuning these parameters is
expert work. There is a short discussion of the parameters in the Hadoop documentation, in the “Shuffle/
Reduce Parameters” section (http://hadoop.apache.org/core/docs/current/mapred tutorial.
html#Shuffle/Reduce+Parameters).

Choosing the number of reduce tasks to run per machine and per cluster is the final
level of tuning. A major determinant here is how the output data will be used, and that is
application-specific. With reduce tasks, I/0, rather than CPU usage, is usually the bottleneck.
If the DataNodes are coresident with the TaskTrackers, the reduce tasks will always have a
local DataNode for the output. This will allow the initial writes to go at local speed, but the file
closes will block until all the replicas are complete.

It is not uncommon for jobs to open many files in the reduce phase, which generally
causes a huge slowdown, if not failure, in the HDFS cluster, so the job will take a significant
amount of time to finish.

www.it-ebooks.info

203

http://hadoop.apache.org/core/docs/current/mapred_tutorial.html#Shuffle/Reduce+Parameters
http://hadoop.apache.org/core/docs/current/mapred_tutorial.html#Shuffle/Reduce+Parameters
http://www.it-ebooks.info/

204 CHAPTER 6 TUNING YOUR MAPREDUCE JOBS

The following are some tuning points for the reduce phase:

Shuffle/sort time: The shuffle and sort cannot complete until all of the map output data is
available. If this is an issue, you can try the following:

e Use a combiner class.

¢ Increase the number of tasktracker.http.threads.

 Increase the ipc.server.listen.queue.size.

* Setmapred.compress.map.output to true.

* Vary the compression codec stored in mapred.map.output.compression.codec.
e Experiment with io.seqgfile.compression.type as RECORD or BLOCK.

* Change your algorithm so that less data needs to pass to the reduce phase. Try
more reduce tasks, to reduce the volume of data that each reduce phase must sort.

Network saturation: The pull of the map outputs should just saturate your net-

work. If the reduce tasks are timing out while trying to fetch outputs, increase the
tasktracker.http.threads. If the network is saturated, enable compression, reduce the
number of map tasks, improve the combiner class, or restructure the job to reduce the
data passed to the reduce phase.

Note | once had a job where part of the value associated with each key was a large block of XML data that
was unused by the reduce phase. Modifying the map to drop the XML data provided a tenfold improvement.

Actual reduce time: You may find that the time to actually reduce the data, after the shuffle
and sort are done, is too long. If you are using MultipleOutputFormat, ensure that the number
of files being created is small. If many small files must be created, write them as a zip archive.
The Ganglia gmetric value FilesCreated will give you an idea of the rate of HDEFS file creation.

Write time: The write time may be too long if the volume of data or the number of files are
large. Enable output compression via setting mapred.output.compress to true. Experiment
with codecs. Pack multiple files into zip files or other archive formats.

Note | had one job that needed to create many tens of thousands of small files. Writing the files as a zip
archive in HDFS resulted in a hundredfold speed increase.

Overall reduce phase time: If the reduce phase is very long, you may want to tailor the
number of reduce tasks per job and per machine. The job may specify the number of
reduce tasks to run, but at least through Hadoop 0.19.1, the number of reduce tasks per
TaskTracker is fixed at start time. If your cluster will run a specific set of jobs, with experi-
mentation, you may find a reasonable number for the cluster-level parameter, and given
that, identify a specific value for the number of reduce tasks for each job.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 TUNING YOUR MAPREDUCE JOBS

Addressing Job-Level Issues

One of the more interesting things to see is a cluster going almost idle while a job is running.
This usually happens because a small number of tasks have not finished. This situation is
called the job tail. This can happen with the map tasks or the reduce tasks. With multithreaded
map tasks, the key or keys passed to one thread can sometimes take much longer to finish, and
the task needs to wait for one or a small number of threads to complete, leaving the machine
mostly idle. This is called the fask tail.

Dealing with the Task Tail

I've had substantial experience with clusters set up with a single map task per TaskTracker,
and have set the number of threads used by the MultithreadedMapRunner class to tune the task
for full CPU utilization (roughly 80% to 90%). In one particular job, there was a large variance
in the time it took to process a key: some keys took three hours, and others three seconds. If
the long-running keys came late in an input split, the task would end up running one thread
and idle six of the processors on the machine. The only solution for this was to reorder the
input keys so that the long-running keys came first in the splits, or to abandon the long-
running keys after a set elapsed run time, and reprocess all of the long-running keys in an
additional job later.

Dealing with the Job Tail

The Hadoop standard is for very large jobs, spread over many machines, such that the time
of one or two tasks is small compared to the run time of the job. This, in part, is where the
10-minute timeouts for server failures come from—a 10-minute period is considered short in
the time of a job, so why not wait for that long? Many organizations have short timelines for
jobs and limited budgets for hardware. These organizations must tune their jobs so that the
clusters are well utilized.

The job tail really comes down to either a small number of reduce tasks taking much lon-
ger than others, either because the partitioning of the key space is very uneven or the duplicate
keys fall unevenly in the partitions. The net result is that some reduce tasks have substantially
more work to do. This is readily addressed only by turning the partitioning, via a custom
partitioner class set via the JobConf.setPartitionerClass(Class<? extends Partitioner>
theClass) method.

Tuning the number of reduce tasks so they fall evenly on your reduce slots may also help.
Having one reduce task start after all the rest of the reduce tasks have finished can drastically
increase the job runtime.

Summary

This chapter detailed how jobs are run by the Hadoop Framework and how MapReduce
application writers and cluster administrators can tune both jobs and clusters for optimal
performance.

The NameNode, JobTracker, DataNodes, and TaskTrackers have a number of start time
parameters that directly affect how jobs are executed by the cluster and the overall run time
of the jobs. The execution of a job is performed in several steps: setup, map, shuffle/sort, and
reduce. It’s possible to do some tuning to improve performance in each step.

www.it-ebooks.info

205

http://www.it-ebooks.info/

206

CHAPTER 6 TUNING YOUR MAPREDUCE JOBS

This chapter discussed several tools for monitoring clusters and jobs. Ganglia is the tool
I prefer for tuning and general dashboard-level awareness, and Nagios is the one I use for
operational support. Using these tools enables rapid recognition of problems with jobs and
clusters and provides insight into what parameters may need to be tuned, before the CEO calls
you into the front office to explain why the mission-critical jobs haven’t been running success-
fully. Ganglia also provides the informative, pretty graphs that higher-level management like
so much.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7

Unit Testing and Debugging

Two questions echo endlessly in the dark hours of small, enclosed areas lit by the dim glow of
display screens: “Is it working?” and “How did that happen?” This chapter is about answering
those questions.

“Is it working?” will be addressed by writing unit tests. The agile programming model
suggests starting with unit tests and building the code afterwards. I generally try to follow this
model, although under pressure, I have shifted to just writing the code, usually to my later
regret. Testing the lower-level APIs in your applications is a known skill set. This chapter will
cover unit tests that actually run MapReduce jobs at a small scale.

There are several ways to determine what is happening in a running program. The first
level is through examining the log messages or other job output data. This requires detailed
understanding of the output and may not provide sufficient information to isolate the prob-
lem. An alternative is to put custom code into the application to trigger different behavior or
logging around the area of code that is in question. The most comprehensive method is to
attach to the running application with a debugger and step through the execution of the code.
This chapter will cover interactive debugging, using the Eclipse platform to provide the graphi-
cal interface.

Unit Testing MapReduce Jobs

MapReduce jobs, by their very nature, don’t lend themselves to the traditional unit testing
model. The common approach is to verify that all of the lower-level APIs are working correctly
through their own unit tests. Next, you build small test datasets that have known outcomes
and run them on a simulated MapReduce cluster, and then examine the output. These tests,
when run on the simulated clusters, tend to be quite slow—on the order of minutes per test—
due to the cluster setup and teardown times. If a real cluster is available for testing, the test run
time will be shorter, but the tests must be coordinated among the cluster users.

The unit tests covered here are built on the Hadoop basic test case class org.apache.
hadoop.mapred.ClusterMapReduceTestCase. This class provides a basic JUnit 3 test base that will
start and stop a mini-HDFS with two DataNodes and a NameNode, and a mini-MapReduce
cluster with two TaskTrackers and a JobTracker. This is a complete cluster, with web consoles
for the JobTracker and the NameNode. All of the servers will run on the local machine, and the
ports will be chosen from the free ports on the machine.

Because ClusterMapReduceTestCase is a JUnit 3-style test class, at least through Hadoop
0.19.0, it does not support annotations. The virtual cluster will be established and torn down
for each test that any derived classes execute.

www.it-ebooks.info

207

http://www.it-ebooks.info/

208

CHAPTER 7 UNIT TESTING AND DEBUGGING

JUnit 4 supports the annotations @BeforeClass and @AfterClass, which allow for the
cluster setup and teardown to happen one time per test class, providing each test with a clean
cluster and saving significant wall clock time if many tests are run by the class. The JUnit
4-compliant delegate class demonstrated in this chapter allows ClusterMapReduceTestCase to
be used with JUnit 4, so you can define when the virtual clusters are created and destroyed.

THE JAR FILES THAT COME WITH YOUR HADOOP DISTRIBUTION

In the archive that contains a Hadoop release are a number of prebuild release-specific JAR files. These JAR
files are named in the form hadoop-major release-minor release-component name.jar.

The standard Hadoop JARs are found in the root directory of the installation. For Hadoop 0.19.0, the JAR
files are hadoop-0.19.0-core. jar. This JAR is for the component core, for the major release 0.19,
and the minor release 1.

The root directory will contain JAR files for Ant, Core, examples, test, and tools. The contrib.
component JARs also follow the same naming convention.

Each component may have an associated 1ib directory containing JAR files on which the component
depends. By convention, the 1ib directory is located in the same directory as the component JAR.

In this chapter, | refer to the JARs as hadoop-rel-component.jar, where component is replaced
with the actual component name, such as hadoop-<rel>-core. jar for the Hadoop Core JAR.

Requirements for Using ClusterMapReduceTestCase

The ClusterMapReduceTestCase class, like all Hadoop Core classes, makes strong assumptions
about the runtime environment. For Hadoop Core unit tests, and for running standard jobs,
the Hadoop Ant environment and the bin/hadoop script configure the runtime environment
for the unit test or job, respectively. The unit tests that developers write to run in their work-
space, or those created for build automation tools, do not generally have this luxury and must
set up the runtime environment directly.

The ClusterMapReduceTestCase starts a virtual Hadoop cluster on which the tests are run.
If the cluster does not start successfully, the test case will fail, without exercising the classes
being tested. A startup failure is commonly due to a configuration issue, either with the run-
time classpath or server or cluster configuration file. In particular, the NameNode and the
JobTracker use Jetty to provide web servers for their web Uls. The error messages relating
to the Jetty web server start failures do not provide sufficient information for the novice to
resolve the configuration problem.

For developers running the tests from their IDE, it is not uncommon to load the
Hadoop source code into the workspace, in place of using hadoop-<rel>-core.jar. Most
of the Hadoop classes require configuration information that is provided in the distribu-
tion’s config/hadoop-default.xml file. A copy of hadoop-default.xml is also bundled into the
hadoop-<rel>-core.jar. When this configuration information is absent, the virtual cluster
behavior is unpredictable.

The following are the requirements for using ClusterMapReduceTestCase in a unit test:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 UNIT TESTING AND DEBUGGING

hadoop-<rel>-core jar: This is required for basic Hadoop classes. Include this JAR
in the build path of your project and in the runtime classpath for the JUnit execution
environment.

hadoop-<rel>- test.jar: This provides ClusterMapReduceTestCase and supporting classes.
Include this JAR in the build path of your project and in the runtime classpath for the
JUnit execution environment.

1ib/*.jar: This provides the required services for the Hadoop Core classes. Include the
needed JARs in the build path of your project and in the runtime classpath for the JUnit
execution environment. It is often simpler to just include all of the JARs in the 1ib directory.

lib/jetty-ext/*.jar: This provides the additional classes that Jetty requires for the web
consoles that will be run for the virtual cluster.

hadoop.log.dir: The framework requires this Java system property to be set to the path
to an existing writable directory. This must be defined at test case start time, or by

using the call System.setProperty("hadoop.log.dir", "path"), before the first call to
ClusterMapReduceTestCase.setup(). The absence of a valid hadoop.log.dir system prop-
erty results in a NullPointerExceptions or I0OException being thrown by the test case
during cluster setup.

javax.xml.parsers.SAXParserFactory: This must be Xerces, not SAX, or a validating parser
error will be thrown. The correct value for this property is org.apache.xerces.jaxp.
SAXParserFactoryImpl. It may be specified by the following argument on the JVM com-
mand line:

D javax.xml.parsers.SAXParserFactory=
com.sun.org.apache.xerces.internal. jaxp.SAXParserFactoryImpl

Alternatively, you can call the following before the first call to ClusterMapReduceTestCase.
setup():

non

System.setProperty("javax.xml.parsers.SAXParserFactory”,
com.sun.org.apache.xerces.internal.jaxp.SAXParserFactoryImpl™)

-

Let’s look at some ways to check whether the requirements for using

ClusterMapReduceTestCase have been met.

Troubles with Jetty, the HTTP Server for the Web Ul

Jetty requires a validating parser that can handle its XML usage. Most parsers will do fine, but
some will fail.

Note | was working on a large application that had a complex classpath. For unit testing, the entire class-
path, including the Hadoop JARSs, were folded together. All of a sudden, the unit tests started failing with an
exception thrown by Jetty. The Saxon JAR was in the classpath before the Jetty JAR, so it was being used to
deliver the XML parsers, and the parser was not validating.

www.it-ebooks.info

209

http://www.it-ebooks.info/

210

CHAPTER 7 UNIT TESTING AND DEBUGGING

A couple of system properties control the XML parser that applications will get:

javax.xml.parsers.SAXParserFactory: This contains the class name of the factory for
constructing XML parsers. Set this to com.sun.org.apache.xerces.internal.jaxp.
SAXParserFactoryImpl. This is the Sun JDK default and works well with Jetty. It avoids
issues with alternative parsers in the classpath.

org.mortbay.xml.XmlParser.NotValidating: This instructs Jetty to not validate the XML
configuration data. You should set it to false. Validated XML is good, and these are parsed
only at job start time.

These properties may be set by passing them as arguments to the JVM via the
-Dproperty=value syntax, or by calling System. setProperty(name,value); when performing
setup for the test.

Hadoop Core servers rely on Jetty to provide web services, which are then available for
internal and external use. If the Jetty JAR is missing from the classpath, the servers will not
start. Listing 7-1 shows the log lines that indicate this.

Listing 7-1. Log Lines That Indicate No Jetty JAR Is in the Unit Test Classpath

java.io.IOException: Problem starting http server

Caused by: org.mortbay.util.MultiException[java.lang.reflect. =
InvocationTargetException, java.lang.reflect.InvocationTargetException, w»
java.lang.reflect.InvocationTargetException]

The Hadoop Core Jetty configurations also require the JARs that are in the 1ib/jetty-ext
directory of the installation. If they are not present in the classpath of the unit test, non-
descriptive failure-to-start error messages will be generated.

Listings 7-2 through 7-5 shows the various log entries indicating that specific Jetty JARs
are missing from the unit test classpath. In these listings, only the relevant exception lines are
shown; the stack traces have been removed to aid clarity. The string XXXXX represents some
TCP port number.

Listing 7-2. Log Lines That Indicate jetty-ext/commons-el.jar Is Not in the Unit Test Classpath

java.io.IOException: Call to /0.0.0.0:XXXXX failed on local exception: =
Connection refused: no further information
Caused by: java.net.ConnectException: Connection refused: no further information

Listing 7-3. Log Lines That Indicate jetty-ext/jasper-runtime.jar Is Not in the Unit Test Classpath

java.lang.NoClassDefFoundError: org/apache/jasper/JasperException
Caused by: java.lang.ClassNotFoundException: org.apache.jasper.JasperException

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 UNIT TESTING AND DEBUGGING

Listing 7-4. Log Lines That Indicate jetty-ext/jasper-compiler.jar Is Not in the Unit Test Classpath

java.io.IOException: Problem starting http server

Caused by: org.mortbay.util.MultiException[java.lang.ClassNotFoundException: =
org.apache.jasper.servlet.JspServlet, java.lang.ClassNotFoundException: =
org.apache.jasper.servlet.JspServlet, java.lang.ClassNotFoundException: =
org.apache.jasper.servlet.JspServlet]

Listing 7-5. Log Lines That Indicate jetty-ext/jsp-api.jar Is Not in the Unit Test Classpath

java.lang.NoClassDefFoundError: javax/servlet/jsp/JspFactory
Caused by: java.lang.ClassNotFoundException: javax.servlet.jsp.JspFactory

The Hadoop Core JAR Is Missing or Malformed

Particularly for IDE developers, the classpath may have the Hadoop source tree rather than the
Hadoop Core JAR. In this case, various required configuration files may be missing, resulting
in unexpected failures. Listings 7-6 and 7-7 show the log lines that indicate missing configura-
tion files.

Listing 7-6. Log Lines That Indicate the hadoop-default.xml File Is Missing or Malformed

java.lang.NullPointerException
at org.apache.hadoop.hdfs.server.namenode. =
FSNamesystem.close(FSNamesystem. java:523)
at org.apache.hadoop.hdfs.server.namenode. =
FSNamesystem.<init>(FSNamesystem.java:293)

Listing 7-7. Log Lines That Indicate the Java System Property hadoop.log.dir Is Unset

ERROR mapred.MiniMRCluster: Job tracker crashed
java.lang.NullPointerException
at java.io.File.<init>(Unknown Source)
at org.apache.hadoop.mapred.JobHistory.init(JobHistory.java:143)
at org.apache.hadoop.mapred.JobTracker.<init>(JobTracker.java:1110)
at org.apache.hadoop.mapred.JobTracker.startTracker(JobTracker.java:143)
at org.apache.hadoop.mapred. =
MiniMRCluster$JobTrackerRunner.run(MiniMRCluster.java:96)
at java.lang.Thread.run(Unknown Source)

The MiniDFSCluster creates the directories for HDFS storage in the path build/test/data/
dfs/data, or build\test\data\dfs\data under Windows. It will attempt to remove the direc-
tory before starting. Listing 7-8 shows the error message that results if the directories cannot
be deleted. The typical reason for the failure is that a prior instance of MiniDFSCluster is still
running.

www.it-ebooks.info

211

http://www.it-ebooks.info/

212

CHAPTER 7 UNIT TESTING AND DEBUGGING

Listing 7-8. Log Lines That Indicate a Unit Test Is Already in Progress

java.io.IOException: Cannot remove data directory: build\test\data\dfs\data
at org.apache.hadoop.hdfs.MiniDFSCluster.<init>(MiniDFSCluster.java:263)
at org.apache.hadoop.hdfs.MiniDFSCluster.<init>(MiniDFSCluster.java:119)
at org.apache.hadoop.mapred.ClusterMapReduceTestCase. =
startCluster(ClusterMapReduceTestCase.java:81)

The Virtual Cluster Failed to Start

ClusterMapReduceTestCase builds a virtual Hadoop cluster on which to run the test cases. By
default, this virtual cluster starts six server processes: one NameNode, one JobTracker, two
DataNodes, and two TaskTrackers. If the NameNode or the JobTracker did not start, the tests
cannot be run.

The HDFS portion of the cluster is started first. It is composed of one NameNode and two
DataNodes. If the HDFS fails to start, the MapReduce portion is not started.

The NameNode is kind enough to actually report that it is up, as in this example log line:

namenode.NameNode: Namenode up at: localhost/127.0.0.1:XXXXX

The DataNodes’ state must be deduced from the log messages. The log messages in List-
ing 7-9 indicate successful startup. (Your timestamps and port allocations will vary.)

Listing 7-9. Log Lines That Indicate Both DataNodes Are Running

Starting DataNode 0 with dfs.data.dir:
= puild\test\data\dfs\data\data1,build\test\data\dfs\data\data2

INFO datanode.DataNode: New storage id DS-222715038-192.168.1.12-2232- =
1236829361312 is assigned to data-node 127.0.0.1:2232

INFO datanode.DataNode: DatanodeRegistration(127.0.0.1:2232, =
storageID=DS-222715038-192.168.1.12-2232-1236829361312, infoPort=2233, =
ipcPort=2234)In DataNode.run, data = FSDataset{dirpath= =

"C:\Documents and Settings\Jason\My Documents\HadoopBook\ w»
code\examples\build\test\data\dfs\data\datai\current, =

C:\Documents and Settings\Jason\My Documents\HadoopBook\ =
code\examples\build\test\data\dfs\data\data2\current'}

INFO datanode.DataNode: using BLOCKREPORT INTERVAL of 3600000msec ‘=
Initial delay:Omsec

Starting DataNode 1 with dfs.data.dir: =
build\test\data\dfs\data\data3,build\test\data\dfs\data\datas

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 UNIT TESTING AND DEBUGGING

INFO datanode.DataNode: New storage id DS-2049952137-192.168.1.12-2239- =
1236829361718 is assigned to data-node 127.0.0.1:2239

INFO datanode.DataNode: DatanodeRegistration(127.0.0.1:2239, w=
storageID=DS-2049952137-192.168.1.12-2239-1236829361718, infoPort=2240, =
ipcPort=2241)In DataNode.run, data = FSDataset{dirpath= w»

"'C:\Documents and Settings\Jason\My Documents\HadoopBook\ w»
code\examples\build\test\data\dfs\data\data3\current, =

C:\Documents and Settings\Jason\My Documents\HadoopBook\ w»
code\examples\build\test\data\dfs\data\datas4\current'}

INFO datanode.DataNode: using BLOCKREPORT INTERVAL of 3600000msec ‘w»
Initial delay: omsec

Waiting for the Mini HDFS Cluster to start...

INFO datanode.DataNode: BlockReport of 0 blocks got processed in 0 msecs
INFO datanode.DataNode: Starting Periodic block scanner.

INFO datanode.DataNode: BlockReport of 0 blocks got processed in 0 msecs
INFO datanode.DataNode: Starting Periodic block scanner.

The two DataNodes are started after the NameNode is started, and each has a Starting
line followed by a final line that indicates the BLOCKREPORT INTERVAL. If the lines containing
BLOCKREPORT INTERVAL are missing, the DataNode did not start.

As with the HDFS portion, the JobTracker informs you directly that it is running, but the
TaskTracker status must be deduced from the logs. Here is the message from a successfully
started JobTracker:

INFO mapred.JobTracker: Starting RUNNING

Listing 7-10 shows the log lines that show the TaskTracker is running. You need two sets of
these for full service.

Listing 7-10. Log Lines That Indicate a TaskTracker Is Running

mapred.TaskTracker: TaskTracker up at: 0.0.0.0/0.0.0.0:2262
mapred.TaskTracker: Starting tracker tracker hosti.foo.com:0.0.0.0/0.0.0.0:2262

If the hadoop. log.dir system property is unset, a subprocess of the virtual cluster may
crash and leave the test case in limbo. Listing 7-11 shows this error.

Listing 7-11. A Virtual Cluster Server Process Has Crashed

ERROR mapred.MiniMRCluster: Job tracker crashed
java.lang.NullPointerException
at java.io.File.<init>(Unknown Source)
at org.apache.hadoop.mapred.JobHistory.init(JobHistory.java:143)
at org.apache.hadoop.mapred.JobTracker.<init>(JobTracker.java:1110)
at org.apache.hadoop.mapred.JobTracker.startTracker(JobTracker.java:143)
at org.apache.hadoop.mapred. =
MiniMRCluster$JobTrackerRunner.run(MiniMRCluster. java:96)
at java.lang.Thread.run(Unknown Source)

www.it-ebooks.info

213

http://www.it-ebooks.info/

214

CHAPTER 7 UNIT TESTING AND DEBUGGING

There should be no ERROR level log messages.

The Eclipse framework provides a decent way to run individual or class-based Hadoop
unit tests, as well as simple debugging. Occasionally, some state can get lost, particularly in the
Windows environment, and the virtual cluster will fail to start. The indication of this will be a
series of messages stating that a connection attempt has failed. In particular, if you see con-
nection failure messages that have /0.0.0.0:, it is an indication that Eclipse needs a restart, as
shown in Listing 7-12.

Listing 7-12. Log Lines That Indicate Eclipse Has Lost State and Needs to Be Restarted

INFO ipc.Client: Retrying connect to server: /0.0.0.0:9100. Already tried 0 time(s).
INFO ipc.Client: Retrying connect to server: /0.0.0.0:9100. Already tried 1 time(s).
INFO ipc.Client: Retrying connect to server: /0.0.0.0:9100. Already tried 2 time(s).
INFO ipc.Client: Retrying connect to server: /0.0.0.0:9100. Already tried 3 time(s).
INFO ipc.Client: Retrying connect to server: /0.0.0.0:9100. Already tried 4 time(s).
INFO ipc.Client: Retrying connect to server: /0.0.0.0:9100. Already tried 5 time(s).
INFO ipc.Client: Retrying connect to server: /0.0.0.0:9100. Already tried 6 time(s).
INFO ipc.Client: Retrying connect to server: /0.0.0.0:9100. Already tried 7 time(s).
INFO ipc.Client: Retrying connect to server: /0.0.0.0:9100. Already tried 8 time(s).
INFO ipc.Client: Retrying connect to server: /0.0.0.0:9100. Already tried 9 time(s).

Simpler Testing and Debugging with
ClusterMapReduceDelegate

When running tests, it is very helpful to be able to interact with the test cluster HDFS, to access
the Web GUISs of the various servers, and to examine the log files. This book’s downloadable
code includes a class com.apress.hadoop.mapred.test.ClusterMapReduceDelegate that pro-
vides a wrapper around the Hadoop Core test framework class ClusterMapReduceTestCase.
This delegate class provides a JUnit 4-friendly way to build test classes, and exposes informa-
tion useful to understanding what is happening in your test. All the test case classes discussed
here extend the class ClusterMapReduceDelegate.

Core Methods of ClusterMapReduceDelegate

Table 7-1 lists the core methods that any unit test interacting with Hadoop will use. In particu-
lar, all JobConf objects used by the test cases and classes being tested must be children of the
JobConf object returned by the createJobConf() method.

All tests will need to call the methods setupBeforeClass() and tearDownAfterClass() at
least once to start and stop the virtual cluster. Any test case that needs to create files in HDFS
or access files in HDFS will need to call the method getFileSystem() to get a file system object
to use for the interactions.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7

Table 7-1. Core Methods of ClusterMapReduceDelegate

UNIT TESTING AND DEBUGGING 215

Method

When to Use

What It Does

setupBeforeClass()

logConfiguration
(JobConf conf, Logger log)

Configuration
getHDFSConfiguration()

Configuration
getJobTrackerConfiguration()

Path getTestRootDir()

FileSystem getFileSystem()

JobConf createJobConf ()

void tearDownAfterClass ()

void logDefaults
(Logger log)

In the @BeforeClass method.

If you need detailed information
on how the virtual cluster is
configured.

If you or your test need to
interact with NameNode. This
object has the key parameters
such as fs.default.name and
dfs.http.address.

If you or your test need to inter-
act with the JobTracker. This
object has key parameters such
asmapred. job.tracker,
mapred.job.tracker.http.
address and mapred.system.
dir.

To determine the root path of
the test in HDFS, when you
need to examine data files.

When the test case need to
create files or otherwise inter-
act with HDFS.

Must be used to create the
JobConf object’s used by your
test cases.

In the @AfterClass method of
your test class.

If you have a problem with the
test case or cluster starting.

Ensures that the required Hadoop
system properties are set to sen-
sible values if they are unset. It will
then start the virtual cluster, with

2 TaskTrackers, 2 DataNodes, a
NameNode, and a JobTracker. This
method will throw an exception or
possibly hang if the virtual cluster
does not start.

Dumps the key parameters out of
conf, and the virtual cluster
NameNode and DFS configuration
objects to log at level info.

Returns the virtual cluster’'s HDFS
configuration object.

Returns the configuration object used
by the MiniMRCluster private base
class, which sets up the JobTracker
for the virtual cluster.

Returns the path of the test case in
HDES.

Returns a file system object con-
structed for the virtual cluster’s HDFS
file system.

Creates a JobConf object that is
correctly configured for the virtual
cluster.

Stops the virtual cluster.

Writes the locations of the Core
Hadoop JAR files and the critical
parameters to log at the info level.

Configuration Parameters for Interacting with Virtual Clusters

Several core parameters are needed for the tester and the test cases, when interacting with the
virtual cluster. Table 7-2 details the parameter names, how to get their values, and what to do
with them. When debugging test cases, it is very useful to know where the log files are being
written, and the web addresses for the NameNode and JobTracker. For accessing files in the
virtual cluster’s HDFS, the HDEFS file system URL must be available.

www.it-ebooks.info

http://www.it-ebooks.info/

216 CHAPTER 7

UNIT TESTING AND DEBUGGING

Table 7-2. Important Configuration Parameters for Interacting with the Virtual Cluster

Parameter

What It Is

How to Get It

What to Do with It

hadoop.log.dir

fs.default.name

mapred.job.tracker.

http.address

dfs.http.address

The path to the directory log
files are written to

The URL for HDFS

The URL for the virtual cluster
JobTracker web interface.

The URL for the virtual cluster
NameNode web interface.

System.getProperties
("hadoop.log.dir");

getFileSystem().
getUri();

createJobConf().
get("mapred. job.
tracker.http.
address");

getHDFS
Configuration().get
("dfs.http.address");

Look in this directory
for cluster log files, such
as user logs for the per
task log files.

Use this URL to interact
with the virtual HDFS
from the command
line via bin/hadoop

dfs -fs URL file
operations.

Use this URL to view
the state of running and
finished jobs in the
virtual cluster.

Use this URL to view
the state of the virtual
cluster HDFS.

Writing a Test Case: SimpleUnitTest

The sample SimpleUnitTest test case simply starts a cluster, writes a single file to the clus-

ter HDFS, and reads that file back, verifying the contents are correct. This section will walk
through building this unit test. The full code for this example is in the file SimpleUnitTest.java
of package com.apress.hadoopbook.examples.ch7 in the downloadable code for this book.

The TestCase Class Declaration

In Listing 7-13, the test case class extends ClusterMapReduceDelegate and a Logger object is
declared. Normally, the Logger would be from the class being tested to better enable control
over the logging levels. In this sample test case, there is no class being tested, so a logger is

created.

Listing 7-13. Class Declaration from SimpleUnitTest.java

/** This simple unit test exists to demonstrate the creation and teardown of a
* virtual cluster and the writing of a test case that uses the created cluster.

*

* @author Jason

*
*/

import com.apress.hadoop.mapred.test.ClusterMapReduceDelegate;
public class SimpleUnitTest extends ClusterMapReduceDelegate {
public static Logger LOG = Logger.getlLogger(SimpleUnitTest.class);

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 UNIT TESTING AND DEBUGGING

The Cluster Start Method

The startVirtualCluster()method in SimpleUnitTest, shown in Listing 7-14, is used to start
the virtual cluster and verify that the cluster has started successfully. startVirtualCluster()
uses the JUnit 4 annotation @BeforeClass to indicate to the JUnit framework that this method
must be run one time only, and before any of the test cases in the class are launched. The test
also makes two JUnit assertNotNull checks, to verify that the cluster configuration informa-
tion is available. If there are any failures, an exception should be thrown. The JUnit framework
will catch the exception and mark the test set as failed.

The setupTestClass() call is a method on the ClusterMapReduceDelegate and actually
starts the virtual cluster and collects the configuration information. It also will set a small
number of required system parameters in the configuration object returned by getConf(), if
those parameters are currently unset.

Listing 7-14. Cluster Setup Method with JUnit 4 @BeforeClass Annotation

/** This is the JUnit4 before class, cluster initialization method.

*

* This method starts the cluster and performs simple validation of the working w»
state of the cluster.

*

* Under some failure cases usually related to incorrect CLASSPATH w»
configuration, this method may never complete.

*

If all of the test cases in your file can share a cluster, use w

the @BeforeClass annotation.

* @throws Exception

*/
@BeforeClass

public static void startVirtualCluster() throws Exception

{
/** Turn down the cluster logging to filter the noise out. Do this if w»

the test is basically working. */

setupTestClass();

/** Verify that there is a JobConf object for the cluster. */
assertNotNull("Cluster initialized Correctly", getConf());
/** Verify that the file system object is available. */
assertNotNull("Cluster has a file system", getFs());

The Cluster Stop Method

SimpleUnitTest.stopVirtualCluster(),shown in Listing 7-15, uses the JUnit 4 annotation
@AfterClass to indicate to the JUnit framework that it is to be called after the last test in the
class has been run. It is essentially the finally clause for the test class.

www.it-ebooks.info

217

http://www.it-ebooks.info/

218

CHAPTER 7 UNIT TESTING AND DEBUGGING

teardownTestCase() is a method on the ClusterMapReduceDelegate class that will termi-
nate the virtual cluster and clear the cached cluster information.

Listing 7-15. Cluster Stop Method with JUnit 4 @AfterClass Annotation

/** This is the JUnit4 after class tear down method.
* This stops the cluster, and would perform any needed cleanup.
* If all of the test cases in a file can share a cluster use the @AfterClass w
annotation.
* @throws Exception
*/
@AfterClass
public static void stopVirtualCluster() throws Exception {
teardownTestClass();

}

The Actual Test

The unit test, shown in Listing 7-16, writes a string to a newly created file in the virtual cluster
HDEFS, and then reads the string back from the file to verify that the same string can be read
back. The test has the standard stylized framework you will see in all of the sample code. Any
code that allocates objects that hold system-level file descriptors is done in a try block. The
try block has a finally clause where the system-level file descriptors are closed. This pattern,
if rigorously applied, will greatly reduce job failures when the jobs are running at large scales.

Listing 7-16. The Actual Test Code with the JUnit 4 @Test Annotation

/** A very simple unit test that uses the virtual cluster.
*
* The test case writes a single file to HDFS and reads it back, verifying w»
the file contents.
*
* @throws Exception
*/
@Test
public void createFileInHdfs() throws Exception
{
final FileSystem fs = getFs();
assertEquals("File System is hdfs", "hdfs", fs.getUri().getScheme());

Path testFile = new Path("testFile");
FSDataOutputStream out = null;
FSDataInputStream in = null;

final String testData = "HelloWorld";

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 UNIT TESTING AND DEBUGGING

try {
/** Create our test file and write our test string to it. The writeUTF w»
method writes some header information to the file. */
out = fs.create(testFile,false);
out.writeUTF(testData);
/** With HDFS the file really doesn't exist until after it has been
* closed. */
out.close();
out = null;

/** Verify that the file exists. Open it and read the data back
* and verify the data. */

assertTrue("Test File " + testFile +

in = fs.open(testFile);

String readBack = in.readUTF();

assertEquals("Read our test data back: " + testData, testData, readBack);

in.close();

in=null;

exists", fs.exists(testFile));

} finally {
/** Our traditional finally when descriptors were opened
* to ensure they are closed. */
Utils.closeIf(out);
Utils.closeIf(in);

The test grabs the FileSystem object out of the base class using the following call:
final FileSystem fs = getFs();

This ensures that the file operations will be on the virtual cluster’s HDFS.
As a double layer of paranoia, the following line verifies that the file system is in fact an
HDFS file system:

assertEquals("File System is hdfs", "hdfs", fs.getUri().getScheme());

The following line will create testFile, if there is not an existing file by that name. The file
handle is returned and stored in out.

out = fs.create(testFile,false);
The following line writes the string testData with a small header to testFile.
out.writeUTF(testData);

At least through Hadoop 0.19.1, files do not really become available until after they are
closed; therefore, the file is closed via out.close(). Since the try block will also call the close()
method on out, if out is not set to null, out is set to null to avoid a duplicate close().

www.it-ebooks.info

219

http://www.it-ebooks.info/

220

CHAPTER 7 UNIT TESTING AND DEBUGGING

The following line will trigger an exception if fs.exists(testFile) is not true. This verifies
that the file exists in the file system.

n n

assertTrue("Test File " + testFile + " exists", fs.exists(testFile));

At this point in the test case, the file has been created and is known to exist. The test case
will now open the file and read the contents, verifying that the contents are exactly what was
written.

To open the file, rather than to create it, the following line is used:

in = fs.open(testFile);

The first line in the next snippet reads back one UTE8 string, and the next line verifies that
the expected data was read.

String readBack = in.readUTF();
assertEquals("Read our test data back: " + testData, testData, readBack);

A Test Case That Launches a MapReduce Job

In this example, we will go over a test case that actually calls a MapReduce job and examines
the output. My favorite initial testing tool is the PiEstimator example in the hadoop-<rel>-
examples JAR, which is the class for which this unit test is built. The PiEstimator class, as it
stands, is not unit test-friendly, and very little information can be extracted. The only thing
that can be done to verify the result is to examine the estimated value of pi.

As is common in unit tests, this test case declares that it is in the same package as the class
under test:

package org.apache.hadoop.examples;

The full text file is PiEstimatorTest. java.

The PiEstimator test class started life as a copy of SimpleUnitTest, java. This copy was
then modified to highlight the relevant details for the PiEstimator test case. The PiEstimator.
startVirtualCluster method has been modified to reduce the logging verbosity of the virtual
cluster server processes, as shown in Listing 7-17.

Listing 7-17. Reduction in Logging Level for the Virtual Cluster

/** Turn down the cluster logging to filter the noise out.

* Do this if the test is basically working. */
final String rootloglevel = System.getProperty("virtual.cluster.loglevel","WARN");
final String testloglevel = System.getProperty("test.log.level”, "INFO");
LOG.info("Setting Log Level to " + rootloglevel);
LogManager.getRootLogger().setlevel(Level.tolLevel(rootLoglevel));

/** Turn up the logging on this class and the delegate. */
LOG.setLevel(Level.tolLevel(testLoglevel));
ClusterMapReduceDelegate.L0G.setLevel(Level.toLevel(testLoglevel));

No changes have been made to the stopVirtualCluster() method.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 UNIT TESTING AND DEBUGGING

Note If you wish to interact with the HDFS or the JobTracker web interface, it is necessary to put a break-
point on stopVirtualCluster(), to prevent the cluster from being torn down. When the debugger breaks
there, the various servers are still running and available. The NameNode web GUI is not known to work cor-
rectly with Hadoop 0.19.0 under the virtual cluster.

The actual test case is very different from SimpleUnitTest, java. The method under test
is launch(), and the test method is testLaunch(). The preamble, shown in Listing 7-18, logs a
couple of key pieces of information to enable the test runner to interact with the virtual cluster
services. The JobTracker URL will let you interact with the running or finished job, examine
the task outputs, and look at the job counters. The HDFS URL will let you interact directly with
the file system to view the data files.

Note When interacting with the JobTracker web interface, the URLs for the task log files are generated
with fictitious names of the form hostX.foo.com. Replace the fictitious hostname with 1ocalhost, and you
will be able to fetch the task logs. Alter http://hosto.foo.com:3126/tasklog?taskid=attempt
200903130041 0001 m_000000 O&all=true to http://localhost:3126/tasklog?taskid=attempt
200903130041 0001 m_000000 08all=true.

Listing 7-18. Test Member Preamble with Useful Debugging Information

@Test
public void testlLaunch() throws Exception {
final FileSystem fs = getFs();
final JobConf testBaseConf = getConf();
LOG.info("The HDFS url is " + fs.getUri());
LOG.info("The Jobtracker URL is " + getJobtrackerURL());
LOG.info("The Namenode URL is " + getNamenodeURL());

Listing 7-19 constructs a new JobConf object out of the test default configuration
via JobConf conf = new JobConf(testBaseConf). This is a highly recommended prac-
tice, as the object the method ClusterMapReduceDelegate.getConf() returns is shared by
all test cases of that virtual cluster instance. It is actually the JobConf object returned by
ClusterMapReduceTestCase.createJobConf() method. As a debugging nicety, the next line tells
the TaskTrackers to send all task output to the console of the process that submitted the job.
This is set using the configuration parameter jobclient.output.filter to ALL.

Tip Itis always wise to ensure that the JAR that contains your MapReduce classes is part of the classpath
for tasks, and the conf.setJarByClass(PiEstimator.class) call ensures that.

www.it-ebooks.info

221

http://host0.foo.com:3126/tasklog?taskid=attempt_
http://localhost:3126/tasklog?taskid=attempt_
http://www.it-ebooks.info/

222

CHAPTER 7 UNIT TESTING AND DEBUGGING

THE MAGIC OF TASK OUTPUT FILTERING

The configuration parameter jobclient.output.filter specifies what output, if any, from the tasks are
printed on the console of the job submitter. The valid values are as follows:

e ALL: Return all task output.
e NONE: Return no task output.

KILLED: Return output from tasks that are killed.

FAILED: Return output from tasks that failed.
SUCCEEDED: Return output from tasks that succeeded

The default value is FAILED, and only failed tasks have their output printed.

Listing 7-19. Set Up the JobConf Object for the Class Tested

/** Make a new {@link JobConf} object that is set up to
* ensure that the jar containing {@link PiEstimator}
* is available to the TaskTrackers.
*
* Note: It is very bad practice to modify the configuration given back by getConf()
* as the returned object is shared among all tests in the Test file.
*/
JobConf conf = new JobConf(testBaseConf);
/** Make all task output come to the console of the unit test. */
conf.set("jobclient.output.filter","ALL");

/** Ensure that hadoop- -examples.jar is pushed into the DistributedCache

* and made available to the TaskTrackers.
*

*/
conf.setJarByClass(PiEstimator.class);

The PiEstimator instance needs to be created and configured, as shown in Listing 7-20.

Listing 7-20. Preparing the PiEstimator Instance to Be Run

/** Create the PiEstimator object and initialize it with our conf object. */
PiEstimator toTest = new PiEstimator();
toTest.setConf(conf);

The launch() method is invoked, and the results are tested, as shown in Listing 7-21. This
requires knowledge of the proper arguments to the method.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 UNIT TESTING AND DEBUGGING

Listing 7-21. Actually Calling the PiEstimator.launch() Method and Testing the Result

int maps = 10;

long samples = 1000;

double result = toTest.launch(maps, samples, null, null);
LOG.info("The computed result for pi is " + result);
assertTrue("Result Pi >3 ", result > 3);

assertTrue("Result Pi <4 ", result < 4);

This completes the walk-through of a unit test that invokes a MapReduce job.

Running the Debugger on MapReduce Jobs

There are several basic strategies for running a MapReduce job under the debugger. Here,
we'll start with simplest and move to the more complex methods.

INCREASING THE MAPREDUCE JOB TIMEOUT LENGTH

When running MapReduce jobs under a debugger, it is important to drastically increase the value of the
configuration key mapred. task.timeout. The default value is 600000, or 10 minutes. When you are
single-stepping through a map or reduce task, it is common for more than 10 minutes to pass. If the value
has not been lengthened, the task you are debugging will be Killed.

You can set the task timeout length to a large long value via the bin/hadoop jar command line, using
-Dmapred. task.timeout, after the main class specification, if the job uses the GenericOptionsParser
that the ToolRunner class provides. For example, to set a 2-hour timeout, uses the value 7200000, as
follows:

bin/hadoop jar job.jar main.class -Dmapred.task.timeout=7200000 other arguments

This value is parsed as a long, so values up to 9223372036854775807 will work on 32-bit JVMs.

Running an Entire MapReduce Job in a Single JVM

The normal process of job submission involves the JobClient class storing all of the relevant
information about the job in HDFS, and then making an RPC call to the JobTracker to submit
the job for execution. The JobClient determines the address of the JobTracker through the
configuration value of the configuration key mapred. job.tracker. This configuration key may
have the value of 1local, in which case the entire MapReduce job will be run in the JVM that is
submitting the job. This is ideal for debugging small-scale problems.

There are some restrictions to this technique. The cause of most of the restrictions is
that the map and reduce tasks do not run in their own JVMs. There is no way to change the
JVM working directory, classpath, or other command-line configured options. A significant
result of this is that the DistributedCache behavior is very different. If your job relies on the
DistributedCache, this method will not be a good debugging choice. The lifetime of your

www.it-ebooks.info

223

http://www.it-ebooks.info/

224

CHAPTER 7 UNIT TESTING AND DEBUGGING

classes will be longer than you expect, and you may experience unexpected results due to prior
variable initialization for static variables.

The number of reduce tasks is limited to zero or one. If your job requires more than one
reduce task, this method will not be a good debugging choice.

The example in this section uses our old friend PiEstimator, the example that comes with
Hadoop Core, as the MapReduce job.

Figures 7-1 through 7-4 are guides to configuring a run/debug profile for a MapReduce
application so that it may be run using the LocalJobRunner, JobTracker, in a single JVM.

& Run Configurations E x|
Create, manage, and run configurations
Run a Java applicatian @

= e
SEEIEEE

Hame: [PiEstimator For Local Debugging

[tvpe Filer test

[31 PiEstimator =]
31 sampleMapperRunner

Broject:
51 simpleReduce L examples e I ‘

[simplestHadoop

3 Main . 09 Arquments| =i JRE| 4, Classpath | & Source | B Environment | £ Common|

Main class:
[TotslOrdersimpleReducs
[T variableExpansion [org. apache hadoop.examples, PiEstimatar Search... I
- JET Transformation ™ Include system libraries when searching For a main class
El-Ju Unit

™ Include inherited mains when searching For a main class
Ju CopyofTestkeyFisldBasedComparator

Ju MissingConfiguration all jetky-gxt

Ju MissingConfiguration all jetty-ext but jasper-compiler
Ju MissingConfiguration all jetty-ext - no datanode web. xml
Ju MissingCanfiguration all jetty-gxt - no hadoop-default
Ju MissingConfiguration all jetty-ext - no hadoop-default (1)
Ju MissingConfiguration all jetty-ext - no hdfs web,xml

Ju MissingConfiguration all jetty-ext - no log4j.properties
Ju MissingConfiguration all jetty-ext but jasper-runtime

™ stop in main

Ju MissingCanfiguration all jetty-ext but jsp-api

Ju MissingConfiguration have all jetty-ext but commaons-gl
Ju MissingConfiguration missing jetty-ext

Ju MissingConfiguration Saxon

Ju MissingCorfiguration, missingJstty

Ju MissingConfiguration. simpleTest

Ju PiEstimator Test

Ju SimpleUnitTest -
Ju TestsyFieldBasedComparatar

Ju Wrapper

- J4 Uit Plug-in Test

[Ooerational O¥T Interoreter = Apply. Revert

Filker matched 61 of 62 ikems

Figure 7-1. Creating a run configuration for the PiEstimator in Eclipse

The classpath must include the Core JAR, the example JAR (since the test case comes from
this JAR), and all of the JARs from 1ib and 1ib/jetty-ext, as shown in Figure 7-1. You must
explicitly specify all of the JARs required for your job here. In this example, Eclipse is not con-
figured to load the native compression codec libraries.

What is the point of using a visual debugger if the source code is not available? You will
need to set up any source paths required for your application, as shown in Figure 7-3.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7

UNIT TESTING AND DEBUGGING

& Run Configurations A
Create, manage, and run configurations
Run 2 Java application @
=
L -
DEE tiame: | FiEstimator For Local Debugging
iype filter text -
! © main [69- Arguments =1 JRE [dlasspath . Source | I Environment | = Cammen |
DemonstrationOfFinal
Classpath:
DistributedCacheExample
Jobclisrk 2% Baotstrap Erlries g
MR eussAndstaticInitislzers B\ IRE System Library [jre6] =
MainProgrameshel —I’
MapReduceTntra commons-el.jar - C:\Documents and Settings|JasoniMy DocumentsiHadoap Sourcethadoop-0. 19,04kt |

Ju
Ju
Ju
Ju
Ju
Ju
Ju
Ju
it

MapReduceIntroLongritableReduce
New_configuratian
OutputComparatorAndGrouping
PiEstimator

SampleMapperRunner

SimpleReduce

SimplestHadoap
TotalOrderSimpleReduce
WariableExpansion

T JET Transformation
~«Ju Junit

CopyOfTestkeyFieldBasedCamparatar
MissingConfiguration &l jetty-gxt

MissingConfiguration al jetty-ext but jaspe
MissingConfiguration al jetty-ext - no datar
MissingCanfiguration al jetty-ext - no hada
MissingCanfiguration al jetty-ext - no hada
MissingConfiguration all jetty-ext - no hdfs
MissingConfiguration all jetty-ext - no log4
MissinaC onfinArinn all ity e e

Filter matched &1 of 62 items

Jasper-compiler.jar - C:\DocUments and Settings| Jasor|My DocumentsiHadoop Sourcethadoop-0, 19.01lbjetty-ext)
jasper-runtime jar - C:\Documents and Settings} Jason}My DocumentsiHadoop Sourcethadoop-0,19, 0libjetty-ext!
jsp-api.jar - C:\Documents and Settings)JasoniMy Documents\Hadoop Sourcethadoop-0.19, Ollibljetty-sxty
xlenc-0.52. jar - CyDocuments and Settings!Jason|My Documents{Hadoop Sourcethadoop-0.18.04fi}
commons-cli-2,0-SNAPSHOT. jar - CyDocuments and Settings!Jasonify Documents\Hadoop Sourceihadoop-0.19.04ib}
commons-cadec-1,3.jar - C:\Documents and SettingsyJasaniy Documents\Hadoop Source\hadoop-0, 19,04k,
commons-httpclient-3.0.1 jar - C:{Documents and Settings}Jason}My DocumentsiHadoop Sourceihadoop-0,19.01lbY
commons-logging-L,0.4.jar - Ct\Documents and Settings!Jason|My Documents\Hadoop Sourcethadoop-0.19.04lib,
commons-logging-api-1,0.4.jar - C:\Documents and SettingsiJasonyMy DocumentsiHadoop Sourceihadoop-0,19. 0yiby
commons-net-1,4.1jar - CtDocuments and SettingsyJasaniMy DocumentsiHadoop Source\hadoop-0. 19,04/,
hsqidb-1.8.0.10.jar - C:\Documents and SettingsiJason|My DocumentsiHadoop Sourceihadoop-0.19. 01l
jets3t-0.6.1. jar - C:\Documents and Settings) JasoniMy DocumentsyHadoop Sourcethadoop-0. 19,04,
jekty-5.1.4.Jar - C:\Documents and SettingsiJasoniiy DocumentsiHadaop Sourceihadoop-0.19.01ib}

junit-3.8. 1. jar - C:\Documents and SettingshJasoriiy DocumentsiHadoop Sourceihadoop-0. 19.0Yiby

Kfs-0.2.0.jar - C:\Dacuments and Settings|JasoriMy DocumentsiHadoop Sourceihadoop-0. 13.0Yiby
log4j-1.2,15.jar - C:\Documents and Settings\Jason|My Documents\Hadoop Sourcethadoop-0.13.04lip}

jar - C:\Dacumments and Settingsi JasoniMy DocumentsiHadaop Sourceihiadoop-0, 19, 07ib

serviet-apl.jar - C:\Documents and SettingshJasoriMy DocumentsiHadeop Sourceihadoop-0.19.01ibY
slF4i-api-1.4,3.jar - Cr\Documents and SettingsJason|My DocumentsiHadoop Sourcethadoop-0,19.0ib]
sF4j-log4it2-1.4.3.ar - C:iDocuments and Settings)JasaniMy DorumentsiHadoop Source|hadoop-0, 19,041k,
18.0-core.jar - Cx\Docurents and SettingsJason|My DocumentsiHadoop Sourcethadoop-0,19.0}

.19, D-examples. jar - C:\Documents and SettingsJasaniMy DocurnentsiHadoop Sourcethadoop-0, 19,07

Remove
Add Projects. ..
Add 18R, .
Add External JARs. .
Advanced.
Edf...
Restore Default Entries

Apply Reyert

Create, manage, and run configurations

Run 2 Java application

<
L]

IEEE

- Ju
- Ju
u
- Ju
u
~Jy
Ju
Ju
Jir

4

[evpe Fiter text

DemonstrationOfFinal
DistributedCacheExample

TohClisrk

MR eussAndstaticInitislzers
MainProgrameShel

MapReducelntro
MapR.educelntroconfig
MapR.educeIntroLongiritable
MapReduceIntroLongritableCorrect
MapReduceIntroLongiritableCorrectl
MapReduceIntroLongiritableReduce
Mew_configuratian

OUEpLKC EMpiarator ARdGrouping

FiE stimator For Lacal Debugging
SampleMapperRunner

SimpleReduce

SimplestHadoap
TotalOrdersimpleReduce
VariableExpansion

~ % JET Transformation
E-Ju Jnit

CopyOfTestkeyFieldBasedComparator
MissingConfiguration all jetty-ext
MissingConfiguration all jetty-ext but jaspe
MissingConfiguration all jetty-ext - no datar
MissingConfiguration all jetty-ext - no hado
MissingConfiguration all jetty-ext - no hado
Missingonfiguration all jetty-ext - no hdfs
Missingonfiguration all jetty-ext - no logi
nCrninurating all isttvect bk ago) 52

Filter matched 61 of 62 items

tarne: | FiEstimator For Local Debugging

® Main (m: Arguments rgg, IRE r% Classpath rF.-'v Source

2] Enwmnmenﬂ =] Q:mmurq

Source Lookup Path:

|

\Documents and Settings|Jasoniiy Documents|Hadoop Sourcethadoop-0.19.Disrc

(& benchmarks - C:\Documents and Sektings\JasoniMy Documents\Hadoop Sourcelhadoop-0.19,isre
(& bin - C:\Documents and Settings\JasaniMy Documents\Hadaop Source\hadaop-0.13.0bsre

(= buld - C:\Documents and Settingsi Jasoniby DocumentsiHadoop Sourceihadoop-0. 19, 0sre

(= o+ - CiDocuments and Settings|JasaniMy Documents\Hadoop Sourceihadoop-0,19.0sre

(= contrib - C:\Documents and Settings| Jasoniiy DocumentsiHadoop Sourcethadoop-0.18.0isre
(= core - CyDocuments and Settings|JasaniMy Documents\Hadoop Sourceihadoop-0,18.0sre

= docs - C:\Documents and Settingsi Jasoniy DocumenitsiHadoop Sourceihadoop-0, 19, 0lsr

= examples - C:\Documents and Settings) JssoniMy Documents\Hadoop Sourcehadaop-0.19.0sr
= hdfs - CDocuments and Settings|JasaniMy Documents\Hadoop Sourceihadoop-0,19.0sre

(= mapred - C:{Documents and Settings|JasaniMy DocumentsiHadaop Source|hadaop-0,19,0sre
(= native - C:\Documents and Settings!Jason|My Documents\Hadoop Sourcethadoop-0.18.0fsrc
(= test - C:{Documents and Settings}JasonyMy DocumentsiHadoop Sourcehadoop-0,19. Oisre

(= tools - C:Documents and Settings! JasonifMy Documents\Hadoop Sourceihadoop-0.18.0src

(= webapps - C\Documents and SettingsyJasaniy Documents\Hadoop Source\hadoop-0,19.04src

12 Default

¥ search for duplicate source Files on the path

Ad
Edit...
Remove
Down

Restore Default

d...
Wej

Al Reyert

Figure 7-3. Configuring the source path

www.it-ebooks.info

225

http://www.it-ebooks.info/

226 CHAPTER 7 UNIT TESTING AND DEBUGGING

You also need to set up the following arguments, as shown in Figure 7-4:

e -Dmapred.task.timeout=7200000: Ensure that your tasks are not killed by the framework
for not responding.

e -Dmapred. job.tracker=local: Run the MapReduce job using the LocalJobRunner,
entirely in this JVM.

e -Dfs.default.name=file:///: Use the local file system for all storage.

e -Dhadoop.tmp.dir=/tmp/pidebug: Store all working files in this directory.
e -Dio.sort.mb=2: Allocate only 2MB for the merge-sort working space.

¢ 2: Run two map tasks.

¢ 1000: Generate 1,000 random samples in each map task.

& Run Configurations x|

Create, manage, and run configurations

@ working directory does not exist @

SEEIIEEE

[evpe Fiter text

fame: [PiEstimator For Lacal Debugging

& Main rﬁa= Arguments . B, JRE} g classpatﬂ B SDurze] [} Enwrunmenﬂ =] Q:mmurq

[~ Program arguments:

-[T] PiEstimator For Local Debugging =l

«[3] SampleMapperRunner

3] SimpleReduce

«[3] SimplestHadoop

«[3] TotalOrderSimpleReduce

-~ variableExpansion

~Y JET Transformation

E-Ju Jnkk
Ju CopyOfTestkeyFieldbasedComparator
Ju MissingCanfigurstion l jetty-ext
Ju MissingConfiquration al jetty-ext but jaspe
Ju MissingConfiquration sl jetty-xt - no datar
Ju MissingConfiquration al jetty-ext - no hado
Ju MissingCanfiguration 2l jetty-ext - no hado
Ju MissingCanfiguration all jetty-ext - no hdfs
Ju MissingCanfiguration 2l jetty-ext - no log4
Ju MissingConfiguration all jetty-gxt but jaspel
Ju MissingConfiguration all jetty-sxt but jsp-ap
Ju MissingConfiguration have all jetty-ext but
Ju MissingConfiguration missing jetty-ext
Ju MissingConfiguration Saxon
Ju MissingConfiguration. missing Jatty

= JU MissingConfiguration. simpleTest

~Ju PiEstimatorTest

= JU SimpleUnitTest

= JU TestKeyFieldBasedComparator

- JU Wirapper

- J& JUnit Plug-in Test

Operational QT Interpreter

- Craci Framewnrk =
4 v

Filter matched 61 of 62 items

-Dmapred.task.timeout=7200000
~Dmapred.job tracker=local

D' default.name=file:]
-Dhadoop tmp dir=jtmp/pidebug
-Dia.sart,mb=2

z
1000

|
Variables ..

M arguments:

-Xms200m
-Kmxz00m

- |

|
Variables...

~Warking drectary:

€ pefauti [{workspace_loc:examples)

@ otheri | ftmpjpidebug

workspace... | e System.., | varisbies... |

Apply. Revert

@

Figure 7-4. Configuring the command-line arguments for debugging. Note the need to make the
working directory.

Once the directory /tmp/pidebug has been made, the Run button in the bottom-right cor-
ner of the Run Configurations window will be active. Click this button just to verify that the job
will work in this setting. The output should be as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 UNIT TESTING AND DEBUGGING

Number of Maps = 2 Samples per Map = 1000

Wrote input for Map #0

Wrote input for Map #1

Starting Job

jvm.JvmMetrics: Initializing JVM Metrics with processName=JobTracker, sessionld=
mapred.FileInputFormat: Total input paths to process : 2
mapred.JobClient: Running job: job local 0001
mapred.FileInputFormat: Total input paths to process : 2
mapred.MapTask: numReduceTasks: 1

mapred.MapTask: io.sort.mb = 2

mapred.MapTask: data buffer = 1593843/1992304

mapred.MapTask: record buffer = 5242/6553

mapred.MapTask: Starting flush of map output

mapred.MapTask: Finished spill 0

mapred.TaskRunner: Task:attempt local 0001 m 000000 0 is done. =
And is in the process of commiting

mapred.LocalJobRunner: Generated 1 samples.

mapred.TaskRunner: Task 'attempt local 0001 _m 000000 0' done.
mapred.MapTask: numReduceTasks: 1

mapred.MapTask: io.sort.mb = 2

mapred.MapTask: data buffer = 1593843/1992304

mapred.MapTask: record buffer = 5242/6553

mapred.MapTask: Starting flush of map output

mapred.MapTask: Finished spill o

mapred.TaskRunner: Task:attempt local 0001 _m 000001 0 is done. ‘=
And is in the process of commiting

mapred.LocalJobRunner: Generated 1 samples.

mapred.TaskRunner: Task 'attempt local 0001 m 000001 0' done.
mapred.Merger: Merging 2 sorted segments

mapred.Merger: Down to the last merge-pass, with 2 segments left =
of total size: 76 bytes

mapred.TaskRunner: Task:attempt local 0001 r 000000 0 is done. =
And is in the process of commiting

mapred.LocalJobRunner:

mapred.TaskRunner: Task attempt local 0001 r 000000 0 is allowed to commit now
mapred.FileOutputCommitter: Saved output of task 'attempt local 0001 r ‘=
000000 0" to file:/C:/tmp/pidebug/test-mini-mr/out
mapred.LocalJobRunner: reduce > reduce

mapred.TaskRunner: Task 'attempt local 0001 r 000000 0' done.
mapred.JobClient: Job complete: job_local 0001

mapred.JobClient: Counters: 11

mapred.JobClient: File Systems

mapred.JobClient: Local bytes read=450833

mapred.JobClient: Local bytes written=503689

www.it-ebooks.info

227

http://www.it-ebooks.info/

228

CHAPTER 7

mapred.JobClient:
mapred.JobClient:
mapred.JobClient:
mapred.JobClient:
mapred.JobClient:
mapred.JobClient:
mapred.JobClient:
mapred.JobClient:
mapred.JobClient:
Job Finished in 1.547
mapred.JobClient:

Estimated value of PI is 3.132

Combine output

seconds

UNIT TESTING AND DEBUGGING

Map-Reduce Framework
Reduce input groups=2

records=0

Map input records=2
Reduce output records=0
Map output bytes=64

Map input bytes=48
Combine input records=0
Map output records=4

Reduce input records=4

The final line, with the estimated value of pi, indicates that the environment is correctly

configured.

For Figure 7-5, a breakpoint was set in the map task, and the job launched via the Debug

As Java Application menu item.

i Edt Source Refactor Navigate Search Project Window Help

= Pistinator$Pitepper.map(Object, Object, OutputCollector, Reporter)ine: 58
= MapRunner <K1,1,K2,v2> run(RecordReader <K1,V1», OutputColctor 2,25, Reperter) Ine: 50
= MapTaskrun(lobCare, Task nbilcaProtoco) ne: 332
= LocabiobRunmer$ob.run() ine: 138
@ Daemon Thread [Comm thread for attempt_local_0001_m_000000_0] (Runring)
9 Daemon Thread [SpilThread] (Runring)
o8 Caprogram Fles\Javaliresibinljavam.exe (Mer 13, 2009 1055154 Pit)

© reporter

5

[w2 [#-0--a-|) |@ss- |9 ie |- ma-0 - 5[5 oot &3avs (s Resource
35 Debug 63\ Servers| G @ e k%P] e 7 =0 ey O % treaponis] =Bl % %y =0
) (3] PiEstimator For Local Debugging [Java Applcation] Name [Lvalue
282 org.apache.hadoop examples. PiEstimator at locahost:1223 © this FiEstimatorgFiMapper (id=50)
»® Thread [main] (Running) O key Longiritable (id=58)
=g Thread [O val Longritable (id=63)
= Writable, OutputC ,LongWritable >, Reporter) line: 83 © out MapTask§MapOutputBuffer <K, > (id=64)

Task§2 (id=63)

=

(3] smpletntTest java (1] PstiatorTest java

b Pistimator.cass £2 1] JobCllntjava | X hadoop-cefaultxnl

| 6] Fiesystemjava | 0] Pestinatorjava | o Opton.dess | 18

B2 outine 23

“[ER ¥ o w~=0

* Gparam reporter

public void map(Longlritable key,
Writable val,
outputCollector<longiritable, Longiritables out,
Reporter reporter) throws IOException
b long nSamples = key.get():
for(long idx = 0; idx < nSamples; id+H {
double x = r.nextDouble():
double y = r.nextDowsle():
double @ = (x-0.5) % (x-0.5)+(y-0.5] ¥ (y-0.5)
if (4> 0.25) (
nunOutsidett;
) else
nunTnside+t;
)
if (1dx51000 == 1) (
reporter.setStatus ("Generated "idk+” samples.”);
)

B O, pistimator

©° piReducer

© ° main(stringl})
©° Fiestinator()
& launch(it, ong, String, Sting)
. run(stringl])

Pitepper
25r:Random

& numinside : long
& mumOutsde oo
©° Fittapper()

.0 cose)

.+ configure(JobConf)
© . map(LongWritabe, Virtable, OutputColector <LongiWrkable

& conf : JobCanf
& rumnside :long
& numOutsids :long
©° PReducer()

©. dose()

©. configure(3obCon)
© . reduceLongilritabl, Tterator <LongWritable’», OutputCale|

K| ki —] |
B Corvle 31) T 0 0| 5 5o 2 Collerarcy] (R EE =Rl
IPiEstimats i 1] C:\Program Fil (Mar 13, 2009 10:55:54 PM)
Wrote input for Map #1 =

starting Job

09/03/13 22:56:17 INFO wapred.FileInputFormat: Total input paths to process @ 2
09/03/13 2 7 INFO nmapred.JobClient: Running job: job_local 0001

09/03/13 22:56:17 INFO wapred.FileInputFormat: Total input paths to process @ 2
09/03/13 22:56:17 INFO mapred.MapTask: muReduceTasks: 1

09/03/13 22:56:18 INFO wapred.MapTask: io.3orc.ms = 2

09/03/13 22:56:18 INFO mapred.MapTask: data buffer = 1593843/1952304

09/03/13 22:56:18 INFO wapred.MapTask: record buffer = 5242/6553

09/03/13 22:56:18 INFO mapred.JobClient: wap 0% reduce 0%

il

09/03/13 22:56:17 INFO Jvm.Jvmletrics: Initializing JVH Metrics with processNeme=JobTracker, sessionld=

09/03/13 22:56:24 INFO mapred.LocaldobRunner: file:/C:/tup/pidebug/test-nini-nr/in/partd:0+118

[

Figure 7-5. Eclipse with PiEstimator stopped in the map task

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 UNIT TESTING AND DEBUGGING

The job is configured to use the local file system for all working storage, and you may
examine the files using the normal file system tools.

In this case, with the PiEstimator test stopped in the first line of the first map task, you can
see that the working directory in the local file system contains a number of interesting files.

mapred/local/localRunner/.job local 0001.xml.crc
mapred/local/localRunner/.split.dta.crc
mapred/local/localRunner/job_local 0001.xml
mapred/local/localRunner/split.dta
mapred/system/job_local 0001/.job.jar.crc
mapred/system/job_local 0001/.job.split.crc
mapred/system/job_local 0001/.job.xml.cxc
mapred/system/job_local 0001/job.jar
mapred/system/job_local 0001/job.split
mapred/system/job_local 0001/job.xml
test-mini-mr/in/.parto.crc
test-mini-mr/in/.parti.crc
test-mini-mr/in/parto

test-mini-mr/in/part1

These files contain the following:

e mapred/local/localRunner/job local 0001.xml contains the textual representation of
the localized JobConf object for the task in progress, which is the task that is stopped in
the debugger.

* mapred/system/job local 0001/job.xml contains the textual representation of the
JobConf object for the job. The file names that end in .crc are checksum files written
out by the framework to provide data integrity checking.

* mapred/local/localRunner/split.dta contains the input split class and the data fields
of the split that this task is to use as input.

e mapred/system/job_local 0001/job.split contains the list of input splits. It is prepared
by the class JobClient as part of the job submission process.

e test-mini-mr/in/parto and test-mini-mr/in/part1 are the input files to the job, pre-
pared by the PiEstimator class. The PiEstimator class writes out SequenceFiles for its
input, and these binary files may be examined with the command-line Hadoop tool via
bin/hadoop dfs -fs file:/// -text /tmp/pidebug/ test-mini-mr/in/parti.

Note -fs file:/// indicates that the local file system is to be used, and -text causes the input file to
be read as a SequenceFile and the key/value pairs printed via their respective toString() methods.

www.it-ebooks.info

229

file:///-text
file:///indicates
http://www.it-ebooks.info/

230 CHAPTER 7 UNIT TESTING AND DEBUGGING

The input files parto and part1 each has a single record of 1000, 0. Let’s examine the con-
tents of parto of the input to demonstrate this.

> bin/hadoop dfs -fs file:/// -text /tmp/pidebug/test-mini-mr/in/parto

1000 0

Debugging a Task Running on a Cluster

Hadoop Core, as of version 0.19.0, does not provide any tools to specify which tasks of a job to
enable Java debugging services on, nor does Hadoop Core provide a way to indicate on which
host and port such a task might be listening for remote debugging connections. To debug tasks
running on a cluster, the JVM parameters for the task have remote debugging enabled via the
command-line arguments. The core issue is to arrange for the JVM of the server or task that is
to be debugged to have the additional command-line arguments that enable the Java Platform
Debugger Architecture JPDA) servers. Table 7-3 describes the parameters to the JPDA debug-
ging agent, agentlib:jdwp, that must be enabled in the task JVM to allow connections from
debuggers.

Tip The Sun VM Invocation Options guide at http://java.sun.com/javase/6/docs/technotes/
guides/jpda/conninv.html#Invocation provides many details on how the command-line arguments for
debugging may be constructed.

Table 7-3. Configuration Parameters for the Debugger Agent

Parameter Description

suspend Set this to suspend=y to suspend the task on start; otherwise, the task will run nor-
mally until a debugger connects to it.

address Set this to address=0.0.0.0 to have the debugger agent bind to the machine wild-
card address at an allocated port. This address is specific to IP version 4.

launch A program to invoke when the debugger initializes. The program receives two argu-
ments: the transport, dt_socket, and the allocated port. Only a program name is
accepted as a value. This program may be used to provide notification that the task
has engaged the debugger agent and the port it is listening on for a debugger con-
nection.

onthrow Do not initialize the debugger agent until an exception with the parameter value is
thrown. In the example onthrow=java.io.IOException, the debugger agent would
not initialize and bind a port until an IOException was thrown. At this point, any
program defined by launch would be executed. Program execution will be stopped,
while the agent waits for a debugger connection.

onuncaught Works like onthrow, except that the exception must not be caught.

www.it-ebooks.info

file:///-text
http://java.sun.com/javase/6/docs/technotes/
http://www.it-ebooks.info/

CHAPTER 7 UNIT TESTING AND DEBUGGING

This section will consider only using the debugger configured for TCP/socket-based trans-
port, a la remote debugging, in Eclipse.

The configuration parameter that needs to be set is mapred.child. java.opts, which may
be set at the job level. The JPDA invocation arguments need to be added to the value for this
parameter. The parameters that are most relevant to the user are suspend and address. The
suspend=y setting forces the JVM to be stopped just before the main() method is invoked. The
value suspend=n may also be used, in which case the JVM will run normally. The parameter
address=0.0.0.0 instructs the debugger interface in the JVM to allocate a free port and to listen
for connections on the wildcard address of the local machine. The port that is allocated will be
printed on the standard output.

Note Unless the cluster is configured for one map task per machine, and the job has no reduce tasks
specified, there will be multiple tasks running on any given TaskTracker machine. This precluded specifying
a fixed port as part of the address parameter. If only a single task will run at a time, a port may be specified
via address=host:port, where host is optional.

Let’s start a Hadoop job with remote debugging enabled.

HADOOP_OPTS=-agentlib:jdwp=transport=dt socket,server=y,suspend=y,address=0.0.0.0 =
bin/hadoop dfs -fs file:/// -text /tmp/pidebug/test-mini-mr/in/parto

Listening for transport dt socket at address: 59348

It is best to have only the option suspend set to y for all of the task JVMs, isolate this option
to a single machine in the cluster, to avoid requiring extensive interaction with each task, at
minimum, connecting to the task in the debugger to resume execution.

Figures 7-6, 7-7, and 7-8 show our friend PiEstimator being run on a small cluster. The
JPDA arguments will be passed via the command line to the child JVM, and JVM reuse will be
explicitly disabled to avoid complications. Figure 7-6 shows the Eclipse setup for a remote
debugging session.

In the dialog box in Figure 7-7, New has been clicked, and the title of the debug session
changed to Remote PiEstimator 53075. The Source tab has been configured identically to the
earlier source configuration shown in Figure 7-3, with the hadoop/src directory and its sub-
folders. Then you click the Apply and Debug buttons, to save this session and connect to the
task. Figure 7-8 shows the PiEstimator task in the debugger, stopped at a breakpoint in the
map () method.

www.it-ebooks.info

231

file:///-text
http://www.it-ebooks.info/

232

CHAPTER 7 © UNIT TESTING AND DEBUGGING

Debug Configurations

Create, manage, and run configurations

Attach to @ Java virtual maching accepting debug connections

[evpe fiter text

Ju MissingConfiguration all jetty-ext
Ju MissingConfiguration all jetty-ext but jasy
Ju MissingConfiguration all jetty-ext - no datar
Ju MissingConfiguration all jetty-ext - no hado
Ju MissingConfiguration all jetty-ext - no hado
Ju MissingConfiguration all jetty-ext - no hdfs
Ju MissingConfiguration al jetty-ext - no log4j
Ju MissingConfiguration al jetty-ext but jasper
Ju MissingConfiguration al jetty-ext but jsp-ar.
Ju MissingConfiguration have al jetty-exk but
Ju MissingConfiguration missing jetty-ext
Ju MissingConfiguration Saxon
Ju MissingConfiguration, missingJetty
Ju MissingConfiguration, simpleTest
Ju PiEstimatorTest
Ju SimpleUnitTest

= Ju TestKeyFieldBasedComparator

- JU Wrapper

-~ J& Unit Plug-in Test

- & 0361 Framework

-] RaP Application

-7 RAP JUnit Test

A Remate ATL Compatibilty

A Remate ATL Transformation

2] Repart
JH4 Task Context Plug-n Test
Juy Task Context Test

Filter makched 66 of 67 items

Figure 7-6. Serting up Eclipse for a remote debugging session

Debug Configurations

Create, manage, and run configurations

Attach to @ Java virtual machine accepting debug connections

SRR

Remote PiEstimator Pork 53075

[evpe Filter text

Ju MissingZonfiguration al jetty-gxt

Ju MissingConfiguration all jetty-gxt - no dat.
Ju MissingConfiguration all jetty-ext - no hads
Ju MissingConfiguration all jetty-ext - no hads
Ju MissingConfiguration all jetty-ext - no hdf:
Ju MissingConfiguration all jetty-ext - no log:

= JU MissingConfiguration all jetty-ext but jasps
Ju MissingConfiguration all jetty-ext but jsp-
Ju MissingConfiguration have all jetty-ext but

= JU MissingConfiguration missing jetty-ext

= JU MissingConfiguration Saxon

= JU MissingConfiguration. missing Jetty

= Ju MissingConfiguration. simpleTest

~Ju PiEstimatorTest

= Ju SimpleUnitTest

~Ju TestKeyFieldBasedComparator

- Ju Wirapper

¥ JUnik Plugin Test

& 05G] Framework

[Rep Application

RAP JUnit Test

Remote ATL Compathiity

Remoke ATL TransFormation

Remote Java Application

=] rReport
JHi Task Context Plug-in Test
Juy Task Context Test

Filter matched 67 of 6@ items

Ju MissingConfiguration all jetty-gxt but jasi "

examples

[Standard (Socket Attach)

cloudd
53075

Figure 7-7. Specifying the port and host to connect to. This is configured per task and needs to be
determined from task log files.

www.it-ebooks.info

http://www.it-ebooks.info/

|& Debug - org.apache-hadoop.examplesPiEstimator - Eclipse Platform

Fle Run Edt Sowce Refactor Navigate Search Project Window telp

Irs-De|s-0-2%-a- | |®dc - |®4e |8 -6l-0a-

CHAPTER 7 UNIT TESTING AND DEBUGGING

=l81x]

5| %5 Debug & Java ([Resource

5 Debug £3 4 Servers | RS 8l neeS[wR[e 0O

0 Veriobes £2 % Breakpoits|

BIEEIE

%%~ -0

5), Remote PEstmetor ort 55075 [Remote Java Appication]
82 Java HotSpot(TH) Server VM[ati53022]
B

= Wirable, OutputCe

= Pistinator$Pilepper.map(Object, Object, OutputCollector, Reporter)ine: 58
= MapRunner <K1,1,K2,v2> run(RecordReader <K1,V1», OutputColctor 2,25, Reperter) Ine: 50
= MepTaskrun(lobCorf, TaskUmbicalProtocol) ne: 332
= Chidmain(Strinal}) ne: 155

9 Daemon Thread [1PC Ci 1127.0.0.1:43401 1

9 Daemon Thread [Thread for syncLogs] (Runring)

8 Daemon Thread [Timer thread for menitering] (Runring)

9 Daemon Thread [Comm thread for attempt_200302221346_0113_m_000000_0] (Running)

@ Daemon Thread [SpilThread] (Runring)

 LongiWritable, Reparter) ne: 53

Heme [volue |
© ths PEstinatordPiMepper (d=29)

© key Longivritable (19=37)

© vl Longivrtable (id=40)

© out

MapTask§MapOutputBuffer <k,> (id=43)

© reporter Task§2 (d=45)

u o

%] hadoop-defoultxml | 3] Fesystemjava | L1 Pstinatorjava | o) Option.cass | 1) o [5) TsskAttemptiD avs | 1) toragel T = 03 oute 52 S[ER % e w~=0
[re— 1l © O, resinar
eparam key * Pitapper

* Gparam reporter
"
public void map(Longlritable key,
Writable val,
outputCollector<longiritable, Longiritables out,
Reporter reporter) throws IOException
long nSamples = key.get():
for(long idx = 0; idx < nSamples; idtH {
double x = r.nextDouble():
double y = r.nextDowsle():
double @ = (x-0.5) % (x-0.5)+(y-0.5] ¥ (y-0.5)
if (4> 0.25) (
nunOutsidett;
) else
nunTnside+t;
)
if (1dx51000 == 1) (
reporter.setStatus ("Generated "idk+” samples.”);
)

25'r:Random
& numinside : long
& mumOutsde oo
©° Fittapper()

J .0 cose)
© .. configure(JobConf)

© - map(LongWirtable, Writable, OutputColector <Longibrtae
©° piReducer

& conf JobCort

& ruminside : ong

& pumOutside : g

©° FiReducer()

.« dose)

.. configure(1obConf)

.« reduce(Longirtable, Ttrator <Longiértabl’», OutputColk
ez main(Stringl])
©° Pistimator()
& launchiint, long, String, Sring)
. run(stringl])

] _>l_I Kl | 0|
] Console 53 Tasks| 0 JUnit | 5" Seerch| 5 Call Hirerchy | kGl E-r5-=0
) .00 oor consok
=]
1 e
[fa Read-Only SmartInsert | 83:1 [

Figure 7-8. A remotely connected session to a map task

To determine the port to connect to, if no 1

aunch program has been provided, requires

finding the per-task stdout log file. At present, this step is manual and requires issuing shell

commands on one of the cluster machines.

The job ID must be determined. This is available via the JobTracker web interface or via

the command-line tool:

bin/hadoop job -list

In this case, two tasks are suspended and waiting for the debugger, one at
192.168.1.2:43004 and the other at 192.168.1.2:35403. These values are what you would put
into the Host and Port fields of the Remote Debugging configuration dialog box. The slaves.sh
command will execute its command-line arguments as a shell command on each machine in
the conf/slaves file, the output of these commands will have the generating host’s IP address

prefixed to the output lines.

Let’s see an example of determining the ports and hosts of the suspended tasks:

www.it-eb

ooks.info

233

http://www.it-ebooks.info/

234

CHAPTER 7 UNIT TESTING AND DEBUGGING

> bin/hadoop job -list

1 job currently running
JobId State StartTime UserName Priority SchedulingInfo
job 200902221346 0119 1 1237025200426 jason NORMAL

> cd logs
../bin/slaves.sh cat $PWD/userlogs/*200902221346_0119*/stdout

192.168.1.119: cat: /home/jason/src/hadoop-0.19.0/logs/ =
userlogs/attempt 200902221346 0119 r 000000 O/stdout: w»

No such file or directory w

192.168.1.119: cat: /home/jason/src/hadoop-0.19.0/logs/ =
userlogs/attempt 200902221346 0119 r 000002 O/stdout: w»

No such file or directory

192.168.1.2: Listening for transport dt socket at address: 43004
192.168.1.2: Listening for transport dt socket at address: 35403

Note The port numbers change for each task, and there may be inconsistency in the ports shown in the
screenshots and those mentioned in the text.

Rerunning a Failed Task

The IsolationRunner provides a way of rerunning a task out of a failed job. Normally, the
framework immediately removes all local task specific data when a task finishes.

Configuring the Job or Cluster to Save the Task Local Working Directory

Two configuration keys provide some control over the ability to rerun a task. The value of the
configuration key keep.task.files.pattern is a Java regular expression, which is matched
against task files. Any task that matches this pattern will not have its task files removed. The
effective code used for this is as follows:

alwaysKeepTaskFiles =
Pattern.matches(conf.getKeepTaskFilesPattern(), task.getTaskID().toString()

To save the results of all map tasks, a pattern * _m.* would work. To match all reduces
tasks, ¥ 1 *.

The other option is to set the value of the configuration key keep.failed.tasks.files to
true. Any task that fails will not be subject to cleanup.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 UNIT TESTING AND DEBUGGING

Caution Nothing will reclaim this space, which may be quite large. Do this with care and clean up
afterwards.

Determining the Location of the Task Local Working Directory

The root directory set for the local working areas is stored in the configuration under the key
mapred.local.dir, and may be a comma-separated list of directories. Running the find com-
mand on this set of directories looking for files named job.xml will present a set of candidate
tasks to be run via the IsolationRunner.

> find /tmp/hadoop-0.19.0-jason/mapred/local/ -wholename '*attempt*/job.xml' -print

/tmp/hadoop-0.19.0-jason/mapred/local/taskTracker/jobcache/ =
job 200902221346 0119/attempt 200902221346 0119 m_000000_0/job.xml

Running a Job with a Keep Pattern and Debugging via the IsolationRunner

Again, this example uses our old friend the PiEstimator job. It demonstrates how to run it so

that the map task local file space is left in intact. Then you find the job.xml files that can be run

via the IsolationRunner and run one of them in a way that will enable the use of the debugger.
Here’s how to put it all together for the IsolationRunner:

> bin/hadoop jar hadoop-0.19.0-examples.jar pi =
-D keep.task.files.pattern=".* m.*" 2 1000

.cd
Estimated value of PI is 3.102

> find /tmp/hadoop-0.19.0-jason/mapred/local/ -wholename '*attempt*/job.xml' -print

/tmp/hadoop-0.19.0-jason/mapred/local/taskTracker/jobcache/ w=»
job_200902221346_0120/attempt_200902221346_0120_m_000002_0/job.xml
/tmp/hadoop-0.19.0-jason/mapred/local/taskTracker/jobcache/ =

job_ 200902221346 0120/attempt 200902221346 0120 _m_000003_0/job.xml
> cd /tmp/hadoop-0.19.0-jason/mapred/local/taskTracker/jobcache/ w=»
job 200902221346 0120/attempt 200902221346 0120 m_000003_0/

www.it-ebooks.info

235

http://www.it-ebooks.info/

236

CHAPTER 7 UNIT TESTING AND DEBUGGING

> HADOOP_OPTS=-agentlib:jdwp=transport=dt socket,server=y,address=0.0.0.0 =
~/src/hadoop-0.19.0/bin/hadoop org.apache.hadoop.mapred.IsolationRunner ../job.xml

Listening for transport dt socket at address: 54990

Once the child JVM is configured and waiting, Eclipse must be configured to connect to
it. Figure 7-9 shows the Eclipse Debug Configuration window for setting up a remote debug-
ging connection. The Host field must be filled in with the host on which the JVM is running,
and the Port field filled in with the value from the Listening for transport dt socket at
address: XXXXX output line from the JVM. Figure 7-10 shows Eclipse connected to the running
JVM of the PiExample test case.

& Debug Configurations x|

Create, manage, and run configurations
Attach to & Java virtual machine accepting debug connections

FEEIEESE

Mame: I Remate PiEstimator Port 53075

ype Fiter et -
I 1 Connect ™ B Source | £ gummmﬂ

- Ju1 MissingConfiguration all jetty-ext but jaspd = ———
- Jur MissingConfiguration all jetty-ext - no datar LS
-~ Ju MissingConfiguration all jetty-ext - no had [examples Browse. ..

- Ju MissingCanfiguration all jetty-ext - no hado

Connection Type:
~Ju MissingConfiguration al jetty-ext - no hdfs
Ju MissingCenfiguration al jetty-ext - no log4j [tandard Gocket Attach) |
Ju MissingCenfiguration al jetty-ext bt jaspel Conmattion Propertios:
Ju MissingCenfiguration al jetty-ext but jop-s¢ ey |

Ju MissingCanfiguration have all jetty-ext but
Ju MissingCanfiguration missing fetty-ext Port; [54950
Ju MissingConfiguration Saxon
Ju MissingConfiguration, missingJetty
Ju MissingConfiguration. simpleTest
- Ju PEstimatorTest
= Ju SimpleUnitTest
= Ju TestKeyFieldBasedComparator
- Ju Wrapper
-~ J6 Unit Plug-in Test
~ & 3G Framework
7 RaP Application
175 RAP Uik Test
A5 Remoke ATL Compatibilley
A Remate ATL Transformation
B+, Remote Java Application
{2, Remote PiEstimator Port 53075
=] Report
Jt4 Task Context Plugrin Test
~Juy Task Context Test
~E Test

re Apply Revert
Filter matched &7 of 68 items.

@

I~ allow termination of remate yM

gt

Figure 7-9. Eclipse setup to connect to port 54990 on the specified host

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 UNIT TESTING AND DEBUGGING 237

|& Debug - org.apache-hadoop.mapred.IsolationRunner - Eclipse Platform

=181 x]
Fle Run Edt Source Refactor Navigate Search Project Window Help
o e, ol = =) Java esource
Jti-H@|s-0-2%-a-| J|ee - |[®[5e 8-l = B et
5 Debug 53 _4b Servers | i el ® 5[0 [e T = O)fe0-varisbes 12\ O reakpaints| B e % %Y O
) (2, Remote Pstimator Port 53075 [Remote Java Application] Neme [volue |
-8 Java HotSpot(TH) Server Vi[at:54950] © args String[1] (id=15)
Eof® Thread [main] (Suspended (exception NullPainterException)) © jobFilename File (id=21)
= IsolatiorRunner.main(Stringl]) ine: 180 © conf JobConf (id=26)
© tasad ol
© i e
© partton o
© local LocalFileSystem (id=31)
© Ipiralloc LocalDirallocator (id=37)
(2 _>lj
b Pistimator.dess | L] PiEstiator.java J soltionRunner.cl [J] TaskAttemptiDava | J] Storagelnfoava | 1) JobCorfjava | X mapred tutorialxnl | 1) TaskTrackersava |73 = OB outine 3 oA R % o v =0
| G IslatorRunner
Task task;
it (ishep) ¢
Path localSplit = new Path(new Path(jobFilename.toString()).getParent (),
"aplic.dran) ;
DatalnputStream splitFile = FileSystem. getLocal(cont) .open(localSplic ;
String splitClass = Text.readString(splitFile):
Bytesiriteble split = new Bytesiritable(l:
Split.readFiclds (splicFile);
SplitFile.close();
task = new HapTask(JobFilename.toString(), taskld, partition, splitClass, split);
) else ¢
int nunliaps = cont.getNunliapTasks (]
£32)Tuiss ingMapoutputs (local, taskld, muliaps, conf);
task = new ReduceTask(JobFilename.toString(), taskld, partition, mumliaps):
)
task.setCont (cont) ;
task.run(cont, new Fakelmbilical(ll:
y
y
] ;l:‘
5D Console 53 2] Tasks | i Junit | 5 Search| 5 Cll erarchy | 85 Cal irarchy | GG A B -r3--8
| 4120 oo corsok
=]
K} _>l_I
[Read-Only SmartInsert | 180+ 1 [

Figure 7-10. Eclipse connected to the IsolationRunner

Now you may set your breakpoints, debug, and explore.

Summary

It is very important to know that your code is correct. This chapter has provided you with the
techniques needed to build unit tests for your MapReduce jobs. MapReduce applications can
also be test-driven.

This chapter also demonstrated three ways to run MapReduce applications under the
Eclipse debugger. This will enable you to understand problems that occur only at scale on your
large clusters, as well as explore how things work directly on your local development machine.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8

Advanced and Alternate
MapReduce Techniques

This chapter discusses techniques for handling larger jobs with more complex requirements.
In particular, the section on map-side joins covers the case in which the input data is already
sorted, and the section on chaining discusses ways of adding additional mapper classes to a
job without passing all the job data through the network multiple times.

The traditional MapReduce job involves providing a pair of Java classes to handle the
map and reduce tasks: reading a set of textual input files using KeyValueTextInputFormat or
SequenceFileInputFormat, and writing the sorted results set out using TextOutputFormat or
SequenceFileOutputFormat. The framework will schedule the map tasks if possible so that each
map task’s input is local, and provides several ways of reducing the volume of output that
must pass over the network to the reduce tasks. This is a good pattern for many (although not
all) applications.

There are other options available to Hadoop Core users, either by changing the pattern of
the job or by providing the ability to use other languages, such as C++ or Perl and Python, for
mapping and reducing.

Streaming: Running Custom MapReduce Jobs
from the Command Line

The streaming API allows users to configure and submit complete MapReduce jobs using the
command line. As an added bonus, streaming provides the ability to use external programs as
any of the job’s mapper, combiner, or reducer. The job is a traditional MapReduce job, with
the framework handling input splitting, scheduling map tasks, scheduling input split pairs to
run, shuffling and sorting map outputs, scheduling reduce tasks to run, and then writing the
reduce output to the Hadoop Distributed File System (HDFS).

In the following example, we will demonstrate how to run a simple streaming job to sort
all the input records of a dataset using MapReduce. The argument informs the bin/hadoop
script that the streaming JAR is to be used. Mapper and reduce are defaulted to the identity
versions. -inputformat org.apache.hadoop.mapred.KeyValueTextInputFormat causes the
KeyValueTextInputFormat class to be used to provide the key/value pairs from the input. The
use of this input format requires the output key format be set to Text via -D mapred.output.
key.class=org.apache.hadoop.io.Text.

www.it-ebooks.info

239

http://www.it-ebooks.info/

240

CHAPTER 8 ADVANCED AND ALTERNATE MAPREDUCE TECHNIQUES

bin/hadoop jar ./contrib/streaming/hadoop-0.19.0-streaming.jar -Dw»
mapred.output.key.class=org.apache.hadoop.io.Text=

-inputformat org.apache.hadoop.mapred.KeyValueTextInputFormatws
-numReduceTasks 2 -input words -output next

packageJobJar: [/tmp/hadoop-0.19.0-jason/hadoop-unjari1738/ Jw=

[] /tmp/streamjob11739.jar tmpDir=null

mapred.FileInputFormat: Total input paths to process : 1
streaming.StreamJob: getlocalDirs(): [/tmp/hadoop-0.19.0-jason/mapred/local]
streaming.StreamJob: Running job: job 200902221346 0136
streaming.StreamJob: To kill this job, run:

streaming.StreamJob: /home/jason/src/hadoop-0.19.0/bin/../bin/hadoop jobws
-Dmapred. job.tracker=cloud9:8021 -kill job 200902221346 0136
streaming.StreamJob: Tracking URL: w»
http://192.168.1.2:50030/jobdetails.jsp?jobid=job 200902221346 0136
streaming.StreamJob: map 0% reduce 0%

streaming.StreamJob: map 50% reduce 0%

streaming.StreamJob: map 100% reduce 0%

streaming.StreamJob: map 100% reduce 8%

streaming.StreamJob: map 100% reduce 17%

streaming.StreamJob: map 100% reduce 58%

streaming.StreamJob: map 100% reduce 100%

streaming.StreamJob: Job complete: job 200902221346 0136
streaming.StreamJob: Output: next

Hadoop streaming provides the user with the ability to use arbitrary programs for a job’s
map and reduce methods. The framework handles a streaming job like any other MapReduce
job. The job might specify that an executable be used as the map processor and for the reduce
processor. Each task will start an instance of the applicable executable and write an applicable
representation of the input key/value pairs to the executable. The standard output of the exe-
cutable is parsed as textual key/value pairs. The executable being run for the reduce task will
given an input line for each value in the reduce value iterator, composed of the key and that
value.

The following example uses /bin/cat as the mapper and a Perl program to produce line
counts of distinct lines from the input set. The argument -file /tmp/wordCount.pl causes
the file /tmp/wordCount.pl to be copied into HDFS and then made available to the map and
reduce tasks in their current working directory. The argument -reducer "/usr/bin/perl -w
wordCount.pl" causes the Perl program wordCount.pl to be used to perform the reduce.

bin/hadoop jar ./contrib/streaming/hadoop-0.19.0-streaming.jar -input wordses
-output next -file /tmp/wordCount.pl -mapper /bin/cates
-reducer "/usr/bin/perl -w wordCount.pl"

www.it-ebooks.info

http://192.168.1.2:50030/jobdetails.jsp?jobid=job_200902221346_0136
http://www.it-ebooks.info/

CHAPTER 8 ADVANCED AND ALTERNATE MAPREDUCE TECHNIQUES

packageJobJar: [/tmp/wordCount.pl, /tmp/hadoop-0.19.0-jason/hadoop-unjar57851/]w=
[] /tmp/streamjob57852.jar tmpDir=null

09/03/15 15:20:40 INFO mapred.FileInputFormat: Total input paths to process : 1
09/03/15 15:20:40 INFO streaming.StreamJob: getlocalDirs():w
[/tmp/hadoop-0.19.0-jason/mapred/local]

09/03/15 15:20:40 INFO streaming.StreamJob: Running job: job 200902221346 0139
09/03/15 15:20:40 INFO streaming.StreamJob: To kill this job, run:

09/03/15 15:20:40 INFO streaming.StreamJob: =
/home/jason/sxrc/hadoop-0.19.0/bin/../bin/hadoop jobws

-Dmapred. job.tracker=cloud9:8021 -kill job 200902221346 0139

09/03/15 15:20:40 INFO streaming.StreamJob: Tracking URL:ws
http://192.168.1.2:50030/jobdetails.jsp?jobid=job 200902221346 0139

09/03/15 15:20:41 INFO streaming.StreamJob: map 0% reduce 0%

09/03/15 15:20:53 INFO streaming.StreamJob: map 50% reduce 0%

09/03/15 15:20:55 INFO streaming.StreamJob: map 100% reduce 0%

09/03/15 15:21:13 INFO streaming.StreamJob: map 100% reduce 100%
09/03/15 15:21:14 INFO streaming.StreamJob: Job complete: job 200902221346 0139
09/03/15 15:21:14 INFO streaming.StreamJob: Output: next

cat /tmp/wordCount.pl

#! /usr/bin/perl -w
use strict;

The reduce is just passed the same key with
each value in the value group, so keep track of
the last key seen to determine when a new value group has started.

my $lastSeenKey;
my $currentCount = 0;

while(<>) {
chomp;

my $currentkey = $;

if ($lastSeenKey 88 $lastSeenKey ne $currentKey) {
emit the record for the previous key
print $currentCount, "\t", $lastSeenKey, "\n";
$currentCount = 1;
$lastSeenKey = $currentKey;

www.it-ebooks.info

241

http://192.168.1.2:50030/jobdetails.jsp?jobid=job_200902221346_0139
http://www.it-ebooks.info/

242 CHAPTER 8 ADVANCED AND ALTERNATE MAPREDUCE TECHNIQUES

} else {
save currentKey away just in case it hasn't been saved
$lastSeenKey = $currentKey;
$currentCount++;

}

make sure that the count for the last key in the input is emitted
if ($lastSeenKey) {
print $currentCount, "\t", $lastSeenKey, "\n";

}

Hadoop streaming is a wonderful tool. I had a large dataset composed of many input files
in one compression format, and the data needed to be compressed in a different format. The
author ran a streaming job, with the map executable set to /bin/cat and the minimum input
split size set to Long.MAX_VALUE, and enabled map output compression of the required type.
In a few minutes the cluster had uncompressed and recompressed the data files.

The following streaming example takes input from the directory words, uses /bin/
cat as the map executable, has no reduce phase, and compresses the job output using the
GzipCodec. The IdentityMapper could have been used just as easily, but the use of /bin/cat
is just plain fun.

bin/hadoop jar ./contrib/streaming/hadoop-0.19.0-streaming.jarw=s

-D mapred.output.compress=truew

-D mapred.output.compression.codec=org.apache.hadoop.io.compress.GzipCodec=
-D mapred.min.split.size=111111111111 -input wordse

-mapper /bin/cat -numReduceTasks 0 -output next

packageJobJar: [/tmp/hadoop-0.19.0-jason/hadoop-unjar13326/]w=

[] /tmp/streamjob13327.jar tmpDir=null

mapred.FileInputFormat: Total input paths to process : 1
streaming.StreamJob: getlocalDirs(): [/tmp/hadoop-0.19.0-jason/mapred/local]
streaming.StreamJob: Running job: job 200902221346 0125
streaming.StreamJob: To kill this job, run:

streaming.StreamJob: /home/jason/src/hadoop-0.19.0/bin/../bin/hadoop jobws
-Dmapred. job.tracker=cloud9:8021 -kill job_ 200902221346 0125
streaming.StreamJob: Tracking URL: w»

http://192.168.1.2:50030/jobdetails. jsp?jobid=job_200902221346_0125
streaming.StreamJob: map 0% reduce 0%

streaming.StreamJob: map 100% reduce 0%

streaming.StreamJob: Job complete: job 200902221346 0125
streaming.StreamJob: Output: next

www.it-ebooks.info

http://192.168.1.2:50030/jobdetails.jsp?jobid=job_200902221346_0125
http://www.it-ebooks.info/

CHAPTER 8 ADVANCED AND ALTERNATE MAPREDUCE TECHNIQUES

bin/hadoop dfs -1s next

Found 2 items

drwxr-xr-x - jason supergroup 0 2009-03-15 01:59 /user/jason/next/_logs
-IW-T--T-- 3 jason supergroup 1496397 2009-03-15 01:59w=
/user/jason/next/part-00000.gz

Note The streaming API explicitly forces the output key/value classes to be text. If Java classes are
used for the mapper, combiner, or reducer, the InputFormat used must produce text key/value pairs, or
the mapred.map.output.key.class and mapred.map.output.value.class configuration key/val-
ues must be explicitly set to the class names of the key/value classes via -D mapred.map.output.key.
class=java.class.name or -D mapred.map.output.value.class=java.class.name.

JYTHON: A WAY OF INTERACTING WITH JAVA CLASSES IN PYTHON

The Jython Project, http://www.jython.org/, provides an implementation of Python written in Java. Not
all Python features are available. There are additional language constructs that allow the addition of arbitrary
Java classes into the namespace of the Jython applications. There are also additional primitive operators for
interacting with native Java types, and a transparent translation between the Java String class and the Python
string class.

The Hadoop Core distribution provides a Jython example MapReduce application in sxc/examples/
python/WordCount. py. People have good results having Python applications used by Hadoop streaming.

Streaming Command-Line Arguments

The streaming command-line interface provides a rich set of command-line arguments for
controlling the execution of your streaming job. The standard Hadoop GenericOptionsParser
arguments are also supported. Table 8-1 describes the streaming-specific command-line
arguments, and Figure 8-1 details how the job records are transformed between records and
key/value pairs as the framework passes the records through the steps of a streaming job.

www.it-ebooks.info

243

http://www.jython.org/
http://www.it-ebooks.info/

244 CHAPTER 8

ADVANCED AND ALTERNATE MAPREDUCE TECHNIQUES

Table 8-1. Streaming Specific Command-Line Arguments

Flag Value Description Java Equivalent

-input Required The file or directory to use as input. This FileInputFormat.
flag sets the input location for the addInputPath()
MapReduce job. It may be given mul-
tiple times to provide multiple input paths.

-output Required The directory to use for output. This flag FileOutputFormat.
sets the directory that output files will setOutputPath()
be written to. The directory must not
exist prior to job start, and will be cre-
ated by the framework for the job.

-mapper org.apache. AJava class name or an executable JobConf.

hadoop. file. This flag is used as the mapper for setMapperClass()
mapred.lib. the map tasks.

Identity

Mapper

-combiner None A Java class name or an executable file. JobConf.

This flag is used as the combiner for setCombinerClass()
the map output.

-reducer org.apache. AJava class name or an executable file. JobConf.

hadoop. This flag is used as the reducer for the setReducerClass()
mapred.lib. reduce tasks.

Identity

Reducer

-file None A file to be made available locally to DistributedCache.
each task. This flag is often used to pass addCacheFile() with
the executable to be used for the mapper, symlink
combiner, or reducer to the tasks. The
executable will be stored in the current
working directory of the task.

-inputformat org.apache. The class name of the handler that will JobConf.setInputForm

hadoop. split and read the input files and pro-

mapred. vide key/value pairs for the mapper.

TextInput There is special handling for the fully

Format qualified class names of TextInputFormat,
KeyValueTextInputFormat,
SequenceFileInputFormat, and
SequenceFileAsTextInputFormat. The
default TextInputFormat is most
efficient because the individual input
lines are not split into key/value pairs.

-outputformat org.apache. The class that will be used write the

hadoop. output files for the job.

mapred.

TextOutput

Format

-partitioner org.apache. The class that will be used to determine JobConf.

hadoop. which reduce any given key is sent to. setPartitioner
mapred.lib. Class()
Hash
Partitioner
-numReduceTasks 1 The number of reduce tasks to run. JobCont.setNum

www.it-ebooks.info

ReduceTasks()

http://www.it-ebooks.info/

CHAPT

ER 8 ADVANCED AND ALTERNATE MAPREDUCE TECHNIQUES 245

Flag

Value

Description

Java Equivalent

-inputreader None

-cmdenv

-mapdebug

None

None

-reducedebug None

-verbose

None

Custom class to read records from input
files. This is currently used only in the
framework for the org.apache.hadoop.
streaming.StreamXmlRecordReader,
which lets splits be defined by a begin-
ning and ending XML tag. The argument
StreamXmlRecord, begin=BEGIN_STRING,
end=END_STRING will result in input splits
composed of the text found in files
between BEGIN_STRING and END_STRING.
(See Listing 8-1 for an example.)

Key/value pairs to set in the process
environment before starting an execut-
able mapper, combiner, or reducer.

A script to invoke when a map task fails.

A script to invoke when a reduce task fails.

Used to turn on verbose output for the
streaming framework.

JobConf.
setMapDebugScript()

JobConf.setReduce
DebugScript()

How the Streaming Jobs Split an

d Join Key/Value Pairs

Whole Line | | Key | keywvalueseparatorin.inputline | Value |

| StreamInputFormat | | KeyValueTextinputFormat |

Key Only |

Only if Not StreamInputFormat

Key | Value |

[Key | stream.map.inputfield.separator | Value |
Join
| Mapper |
Split
[Key | stream.map.outputfield.separator | Value |
| Framework Shuffle and Sort |
| Key [stream.reduce.input.field.separator | Value | Join
| Reduce |
Split
[Key [stream.reduce.output.field.separator| Value |
[Key Value |
| TextOutputFormat |
Join
[Key [mapped.textoutputformat.separator | Value |

Figure 8-1. How key/value pairs are split and joined in a streaming job

www.it-ebooks.info

http://www.it-ebooks.info/

246

CHAPTER 8 ADVANCED AND ALTERNATE MAPREDUCE TECHNIQUES

Using -inputreader org.apache.hadoop.streaming.StreamXmIRecordReader

The -inputreader command-line flag is an unusual input format handler that provides two
core features. The keys that are emitted by the StreamXMLRecordReader class contain only the
text that is between a beginning and an ending marker, inclusive. Any text in the file that is not
between a beginning and an ending marker is ignored.

When run on an Ant build file, the following example produces a sorted list of the target
blocks within the XML file. The block selection is based on the begin=<target name and end=</
target> values. The keys produced will contain all the text of the block, starting with <target
name and ending with </target>. This text will include any line separator sequences that are
present in the original file in the block. The value is the empty string.

It is best to use StreamXmlRecordReader with a Java-based mapper because the
key/value pairs may contain line separators. Listing 8-1 demonstrates the use of the
StreamXMLRecordReader, Listing 8-2 provides the input, and Listing 8-3 provides the output.

Listing 8-1. Using the StreamRecordReader

bin/hadoop jar ./contrib/streaming/hadoop-0.19.0-streaming.jar =
-Dmapred.mapoutput.key.class=org.apache.hadoop.io.Text -inputreader=s
"org.apache.hadoop.streaming.StreamXmlRecordReader,begin=w

<target name,end=w

</target>" -input xml test.xml -output next

mapred.FileInputFormat: Total input paths to process : 1
streaming.StreamJob: getlocalDirs(): [/tmp/hadoop-0.19.0-jason/mapred/local]
streaming.StreamJob: Running job: job 200902221346 0144
streaming.StreamJob: To kill this job, run:

streaming.StreamJob: /home/jason/src/hadoop-0.19.0/bin/../bin/hadoop jobws
-Dmapred.job.tracker=cloud9:8021 -kill job 200902221346 0144w
streaming.StreamJob: Tracking URL: http://192.168.1.2:50030/=
jobdetails.jsp?jobid=job 200902221346 0144w

streaming.StreamJob: map 0% reduce 0%

streaming.StreamJob: map 50% reduce 0%

streaming.StreamJob: map 100% reduce 0%

streaming.StreamJob: map 100% reduce 100%

streaming.StreamJob: Job complete: job 200902221346 0144
streaming.StreamJob: Output: next

www.it-ebooks.info

http://192.168.1.2:50030/%E2%9E%A5
http://www.it-ebooks.info/

CHAPTER 8 ADVANCED AND ALTERNATE MAPREDUCE TECHNIQUES

Listing 8-2. StreamXMLRecordReader Sample Input, xml_text.xml

<xml>
<target name="part 05">part 05</target>
<target name="part 04"><name>part 04</name></target>
<target name="part 03"><name>part 03</name><value>More things</value></target>
<target name="part 02">

<name>part 02</name>

<description>Multi line

text block>

</description>
</target>
<target name="part 01"><name>part 01</name>
</target>
</xml>

Listing 8-3. StreamRecordReader Output, Next/Part-00000

<target name="part 01"><name>part 01</name>
</target>
<target name="part 02">

<name>part 02</name>

<description>Multi line

text block>

</description>
</target>
<target name="part 03"><name>part 03</name><value>More things</value></target>
<target name="part 04"><name>part 04</name></target>
<target name="part 05">part 05</target>

The StreamXmlRecordReader parameters are described in Table 8-2. Two parameters, begin
and end, are required. There is some ability to control how much read ahead is done when
looking for a match end.

It is possible to control the maximum size of a key. If the parameter slowmatch=true is pro-
vided, the framework will attempt to exclude recognizing the beginning and ending text if they
are within a CDATA block. The framework will look ahead only in lookahead bytes, which by
default is equal to twice maxrec bytes, or 50,000.

www.it-ebooks.info

247

http://www.it-ebooks.info/

248

CHAPTER 8 ADVANCED AND ALTERNATE MAPREDUCE TECHNIQUES

Table 8-2. Control Parameters for StreamXMLRecordReader

Parameter Default Description

begin None Required, String, or Java regular expression used to match the
beginning of a block of interest. The value is interpreted as a regular
expression if slowmatch is true.

end None Required, String, or Java regular expression used to match the end of
a block of interest. The value is interpreted as a regular expression if
slowmatch is true.

slowmatch False Attempts to exclude beginning or ending matches that are in CDATA
blocks.

maxrec 50000 Used only when slowmatch is true. The record reader will look for-
ward only the maximum of maxrec or lookahead bytes for the end of
a CDATA block.

lookahead 2*maxrec Used only when slowmatch is true. The record reader will look for-
ward only the maximum of maxrec or lookahead bytes for the end of
a CDATA block.

For more information, look at the excellent tutorial on using streaming at the Hadoop
Core web site: http://hadoop.apache.org/core/docs/current/streaming.html.

Using Pipes
Hadoop Core provides a set of APIs for use by other languages that allow a reasonably rich
interaction with the Hadoop framework. There are libraries available for C++. The C++ inter-
face lends itself to usage by Simplified Wrapper and Interface Generator (SWIG) to generate
other language interfaces.

The usage of the pipes APIs are outside of the scope of this book (refer to the wordcount-
simple.cc example in your distribution and the tutorial in the Hadoop wiki: http://wiki.
apache.org/hadoop/C++WordCount).

SWIG

SWIG (http://www.swig.org/)is a tool for building language interfaces to C and C++ code.
The C++ APIs for interacting with MapReduce are located in the directory sxc/c++/pipes/api/
hadoop of the Hadoop Core distribution.

Using Counters in Streaming and Pipes Jobs

The framework monitors the standard error stream of the mapper and reducer processes. Any
line read from the standard error stream that starts with the string reporter: is considered
by the framework as an interaction command. As of Hadoop 0.19.0, there are two commands
honored: counter: and status:.

The actual command control string is configurable. The default value is reporter:,
but the value of stream.stderr.reporter.prefix will be used if set. The standard error

www.it-ebooks.info

http://hadoop.apache.org/core/docs/current/streaming.html
http://wiki
http://www.swig.org/
http://www.it-ebooks.info/

CHAPTER 8 ADVANCED AND ALTERNATE MAPREDUCE TECHNIQUES

stream is read via a LineReader, and a command must be one whole line as returned by the
LineReader.readlLine() method. We strongly recommend that you follow the same practice
with counters in your streaming jobs as you do with regular jobs. A counter record should
be emitted for each input record, for each output record, for each record that is invalid, and
for each crash or exception when possible. The more detail about the job provided by the
counters, the more understandable the job behavior is. A line output to the standard error
stream, of the form reporter:counter:UserCounters,InputLines,1, will increment a counter
Inputlines in the counter group UserCounters. If the job was run with the command-line
parameter -D stream.stderr.reporter.prefix=mylog:, the line would be mylog:counter:
UserCounters, Inputlines,1.

Note The value specified for the stream.stderr.reporter.prefix configuration key is the entire pre-
fix string, the framework will use that exact string as the prefix, and the text that comes afterward must be
counter:group, counter,increment. The colon character is not added by the framework as a separator.

Using the reporter:counter:group,counter,increment Command

Aline of the form reporter:counter:group,counter,increment is converted by the framework
into a call on the Reporter object of the following:

reporter.incrCounter("group", "counter", increment);

The parameter increment must be a whole number between LONG.MIN_VALUE and Long.
MAX_VALUE. The group and counter parameters must not have the comma character in them.

Using the reporter:status:message Command

Aline of the form reporter:status:message is converted by the framework into a call on the
Reporter object of the following:

reporter.setStatus(message);

Alternative Methods for Accessing HDFS

Hadoop Core provides two tools: 1ibhdfs, a native shared library, and fuse-dfs, built upon
libhdfs to allow non-Hadoop-aware Java programs to access the HDFS file system.

libhdfs

libhdfs provides native access to HDFS for applications that can use it. The library provides
application writers with a set of methods for interacting with HDFS. The methods in turn use
JNI to actually interact with an embedded Java Virtual Machine (JVM) which actually interacts
with HDFS. Table 8-3 provides a summary of the methods available.

www.it-ebooks.info

249

http://www.it-ebooks.info/

250

CHAPTER 8

ADVANCED AND ALTERNATE MAPREDUCE TECHNIQUES

Table 8-3. Summary of the Methods Provided by libhdfs

Method Name Description

hdfsConnect() Connects to a NameNode.

hdfsDisconnect() Disconnects from a NameNode.

hdfsOpenFile() Opens an HDFS file.

hdfsCloseFile() Closes an HDFS file.

hdfsExists() Tests for the existence of an HDFS file.

hdfsSeek() Seeks only a read-only HDFS file.

hdfsTell() Tells the current offset of the open HDFS file.

hdfsRead() Reads a block of data from an HDFS file from the current offset
point.

hdfsPread() Reads a block of data from at HDFS file starting at a specified
offset.

hdfsWrite() Writes a block of data to an HDFS file.

hdfsFlush() Flushes pending data. This method is subject to underlying sup-
port for flush in HDFS (not available through Hadoop 0.19.0).

hdfsAvailable() Notes the number of bytes of data available to read without block-
ing from the open file.

hdfsCopy () Copies a file from one file system to another.

hdfsMove() Moves a file from one file system to another.

hdfsDelete() Deletes a file from HDFS.

hdfsRename() Renames a file in HDFS.

hdfsGetWorkingDirectory()
hdfsSetWorkingDirectory()
hdfsCreateDirectory()
hdfsSetReplication()
hdfsListDirectory()
hdfsGetPathInfo()
hdfsFreeFileInfo()

hdfsGetHosts ()

hdfsFreeHosts()
hdfsGetDefaultBlockSize()
hdfsGetCapacity()
hdfsGetUsed()

Returns the working directory of the HDEFS file system.
Sets the working directory of the HDFS file system.
Creates a directory in HDFS.

Sets the replication count for an HDFS file.

Lists the entries in an HDFES directory.

Gets file status information for a path.

Frees the returned file status information, the pointer returned by
hdfsListDirectory() and hdfsGetPathInfo().

Returns the list of DataNode hostnames where the particular block
of the specified path are stored.

Frees the pointer returned by hdfsGetHosts ().
Returns the basic HDFS block size.
Returns the raw storage capacity of the HDFS file system.

Returns the raw size of all of the files in the HDEFS file system.

libhdfs is compiled as part of the normal build process. A Linux i386 version is provided
in the distribution in the directory libhdfs. If you need to build a custom version of the library

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ADVANCED AND ALTERNATE MAPREDUCE TECHNIQUES

or want to experiment with it, you need to force the build system to compile it. The command
to cause libhdfs to be compiled is the following:

ant -Dlibhdfs=1 compile-libhdfs

If the 1ibhdfs property is not set, Ant will not compile 1ibhdfs.

Tip Any application using 1ibhdfs must have a set CLASSPATH environment variable that includes the
hadoop-<rel>-core. jar file and the JARs in the 1ib directory of the Hadoop distribution, and a shared
library loading path that includes the 1ibjvm. so shared library from the Java Development Kit (JDK). If they
are not preset, the embedded JVM will either fail to launch or the class loader of the embedded JVM will not
be able to load the Hadoop classes required to provide HDFS file service.

fuse-dfs

The fuse-dfs application uses 1ibhdfs and the Filesystem in Userspace (FUSE) APIs to make
HDFS file systems appear to be a locally mounted file system on the host machine. It allows
arbitrary programs to access data that is stored in HDFS.

USERSPACE FILE SYSTEMS

The SourceForge project FUSE, http://fuse.sourceforge.net/, provides a set of APIs that allow pro-
grams written to those APIs to be mounted as host-level file systems.

There is no prebuilt version of fuse-dfs bundled into the distribution. In the src/contrib
subtree is a package called fuse-dfs. The README file in src/contrib/fuse-dfs/README pro-
vides details and requirements. The i386 version may be compiled via the following:

ant compile-contrib -Dlibhdfs=1 -Dfusedfs=1

The preceding compile command will populate the directory build/contrib/fuse dfs.

Note The fuse-dfs compilation environment will compile only for the i386 OS architecture. If X86_64 is
required for 64-bit JUMs, the 0S_ARCH variable must be manually modified in src/c++/1ibhdfs/Makefile
and set to amd64.

www.it-ebooks.info

251

http://fuse.sourceforge.net/
http://www.it-ebooks.info/

252

CHAPTER 8 ADVANCED AND ALTERNATE MAPREDUCE TECHNIQUES

The fuse-dfs package requires a modern Linux kernel with the FUSE module, fuse.ko,
loaded. To actually mount an HDFS file system, the environment variables listed in Table 8-4
must be set correctly.

Table 8-4. fuse_dfs Required Environment Variables

Variable Required Element Used By
LD _LIBRARY_PATH This variable must have the pathsto ~ The fuse_dfs program to load the
the directories containing the fol- required shared libraries.

lowing shared libraries: 1ibjvm.so
from the Java Runtime Environment
(JRE), libhdfs.so from the Hadoop
distribution, and 1ibfuse.so from
the system FUSE implementation.

JAVA_HOME The path to the system JRE or JDK The fuse_dfs_wrapper.sh script to
installation. set up the runtime environment for

the fuse_dfs program.
0S_ARCH This variable determines which The fuse_dfs_wrapper.sh script to
version of 1ibjvm. so is used. The set up the runtime environment for

OS compilation architecture of the fuse_dfs program.

libjvm.so, libhdfs, and fuse dfs
must be identical. The current
choices are 1386 and amd64.

CLASSPATH This variable must have the JARs The 1ibjvm. so shared library will use
from the 1ib directory of the distri- this for the classpath of the JVM that
bution and the core JAR. is embedded the fuse_dfs program.

Note The author has used fuse_dfs in Hadoop 0.16.0 successfully. In Hadoop 0.19.0, the FUSE mounts
produced corrupted directory listings. fuse_dfs appears to work correctly in Hadoop 0.19.1.

Mounting an HDFS File System Using fuse_dfs

After successfully compiling the fuse_dfs package via the following command, the directory
build/contrib./fuse_dfs will be populated:

ant compile-contrib -Dlibhdfs=1 -Dfusedfs=1

The directory should contain at least the files fuse dfs and fuse_dfs_wrapper.sh. The
fuse_dfs_wrapper.sh script makes some assumptions that are not generally applicable and
may not work for most installations without modification. The core configuration requires that
the LD_LIBRARY PATH environment variable include the directories that 1ibjvm.so and 1ibhdfs.
so are resident in, and that the CLASSPATH has the Hadoop Core JAR and the support JARs
present.

Listing 8-4, if run from the Hadoop installation root or with the environment variable
HADOOP_HOME set to the installation root, will produce the correct settings for LD_LIBRARY PATH
and CLASSPATH.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ADVANCED AND ALTERNATE MAPREDUCE TECHNIQUES

Listing 8-4. Script to Compute the Correct LD_LIBRARY PATH and CLASSPATH Environment
Variables for fuse_dfs, setup_fuse_dfs.sh

#! /bin/sh

if [-z "${HADOOP_HOME}" -a -r bin/hadoop-config.sh]; then
(echo -n "This script must run from the hadoop installation"
echo "directory, or have HADOOP_HOME set in the environment") 1>&2
exit 1

fi

if [! -z "${HADOOP HOME}" -a -d "${HADOOP_HOME}" 1; then
cd "${HADOOP_HOME}"
if [$? -ne 0]; then
echo "Unable to cd to HADOOP_HOME [$HADOOP_HOME]" 1>&2
exit 1
fi
fi

if [! -r bin/hadoop-config.sh]; then
echo "Unable to find the hadoop-config.sh script" 1>&2
exit 1

fi

export HADOOP_HOME=$PWD
HADOOP_CONF_DIR="${HADOOP_CONF_DIR:-$HADOOP HOME/conf}"

if [-z "${JAVA HOME}"]; then
echo "JAVA HOME is not set" 1>&2
exit 1

fi

Cut from bin/hadoop, to ensure classpath is the same as running installation
if [-f "${HADOOP_CONF_DIR}/hadoop-env.sh"]; then

. "${HADOOP_CONF_DIR}/hadoop-env.sh"
fi

CLASSPATH initially contains $HADOOP_CONF DIR
CLASSPATH="${HADOOP_CONF DIR}"
CLASSPATH=${CLASSPATH}:$JAVA HOME/1ib/tools.jar

www.it-ebooks.info

253

http://www.it-ebooks.info/

254

CHAPTER 8 ADVANCED AND ALTERNATE MAPREDUCE TECHNIQUES

for developers, add Hadoop classes to CLASSPATH
if [-d "$HADOOP HOME/build/classes"]; then

CLASSPATH=${CLASSPATH} : $HADOOP_HOME/build/classes
fi

for f in $HADOOP_ HOME/hadoop-*-core.jar; do
CLASSPATH=${CLASSPATH}:$f;
done

add libs to CLASSPATH

for £ in $HADOOP_HOME/lib/*.jar; do
CLASSPATH=${CLASSPATH} : $f;

done

for f in $HADOOP HOME/1ib/jetty-ext/*.jar; do
CLASSPATH=${CLASSPATH}:$f;
done

LIBJVM="find -L $JAVA HOME -wholename '*/server/libjvm.so' -print | tail -1°
if [-z "${LIBIVM}"]; then

echo "Unable to find libjvm.so in JAVA HOME $JAVA HOME" 1>82

exit 1
fi

prefer the libhdfs in build
LIBHDFS="find $PWD/libhdfs $PWD/build -iname libhdfs.so -print | tail -1°
if [-z "${LIBHDFS}"]; then
echo "Unable to find libhdfs.so in libhdfs or build" 1>&2
fi

if [-z "${LD_LIBRARY PATH}"]; then
LD_LIBRARY PATH=""dirname "${LIBIVM}" : dirname "${LIBHDFS}"™"
else
LD LIBRARY PATH=""dirname "${LIBIVM}" : dirname "${LIBHDFS}" ":"${LD LIBRARY PATH}"
fi
echo "export CLASSPATH='${CLASSPATH}""
echo "export LD _LIBRARY PATH='${LD LIBRARY PATH}'"

After the runtime environment is correctly configured, the fuse dfs program can be run
by using the command-line arguments shown in Table 8-5.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8

ADVANCED AND ALTERNATE MAPREDUCE TECHNIQUES

Table 8-5. fuse_dfs Command-Line Arguments

Argument

Default

Suggested Value

Description

server

port

entry timeout
attribute timeout

protected

rdbuffer

private

ro
Iw

debug

initchecks

nopermissions

big writes

usetrash

notrash

None required

None required

60
60

None

10485760

None

N/A
N/A

N/A

N/A

enabled

None

enabled

disabled

NameNode hostname

NameNode port

/user:/tmp

10485760

None

N/A
N/A

N/A

N/A

enabled

enabled

enabled

disabled

The server to connect to
for HDFS servers.

The port that the
NameNode listens for
HDFEFS requests on.

The cache timeout for
names.

The cache timeout for
attributes.

The list of exact paths
that fuse_dfs will not
delete or move.

The size of the buffer
used for reading from
HDES.

Allows only the user run-
ning fuse_dfs to access
the file system.

Mounts the file system
read-only.

Mounts the file system
read-write.

Enables debugging mes-
sages and runs in the
foreground.

Performs environment
checks and logs results
on startup.

Does not do permission
checking; permission
checking not supported
as of Hadoop 0.19.0.

Configures fuse_dfs to
use large writes.

Uses the trash directory
when deleting files.

Does not use the trash
directory when deleting
files. Does not work in
Hadoop 0.19.0.

The arguments in Table 8-6 are arguments that are passed to the underlying FUSE imple-
mentation, not handled directly by fuse_dfs.

www.it-ebooks.info

255

http://www.it-ebooks.info/

256

CHAPTER 8 ADVANCED AND ALTERNATE MAPREDUCE TECHNIQUES

Table 8-6. Selected FUSE Command-Line Arguments

Argument Default Suggested Value Description

allow_other None enabled Allows access to other users.

allow_root None disabled Allows only root access.

nonempty None disabled Allows mounts over non-empty file or
directory.

fsname None None Sets the file system name for /etc/mtab.

subtype None None Sets file system type for /etc/mtab.

direct_io None None Uses direct I/0 instead of buffered 1/0.

kernel cache None None Caches files in kernel.

[noJauto_cache None None ?nf%bles caching based on modification times

off).

The following command will mount a read-only HDFS file system with debugging on. The
fs.default.name for the file system being mounted is hdfs://cloud9:8020. The mount point
for the file system is /mnt/hdfs, and the arguments after the /mnt/hdfs are passed to the FUSE
subsystem. These are reasonable arguments for mounting an HDFS file system:

./fuse_dfs -oserver=cloud9 -oport=8020 -oro -oinitchecks -oallow other /mnt/hdfswes
-0 fsname="HDFS" -o debug

It is possible to set up a Linux system so that an HDFS is mounted at system start time by
updating the system /etc/fstab file with a mount request for an HDFS file system. To set up
system-managed mounts via /etc/fstab, a script /bin/fuse_dfs must be created that sets up
the environment and then passes the command-line arguments to the actual fuse_dfs pro-
gram. This script just sets up the CLASSPATH environment variable and the LD_LIBRARY PATH
variable as the script in Listing 8-4 does.

A candidate line for use in /etc/fstab is to mount an HDFS file system at system initial-
ization time. The mount script, for the /etc/fstab entry in Listing 8-5, would be passed four
arguments. To actually auto mount, the following could be added: ${HADOOP_HOME }/build/
contrib/fuse-dfs/fuse_dfs "$3" "$4" "$1" "$2". And the script could be placed in /bin (see
the script bin_fuse_dfs in the examples).

Listing 8-5. A Candidate Mount Line for /etc/fstab to Mount an HDFS File System

fuse dfs#dfs://at:9020 /mnt/hdfs fuse rw,usetrash,allow other,initchecks 0 0

Alternate MapReduce Techniques

The traditional MapReduce job reads a set of input data, performs some transformations in
the map phase, sorts the results, performs another transformation in the reduce phase, and
writes a set of output data. The sorting stage requires data to be transferred across the network
and also requires the computational expense of sorting. In addition, the input data is read
from and the output data is written to HDFS. The overhead involved in passing data between
HDFS and the map phase, and the overhead involved in moving the data during the sort stage,
and the writing of data to HDFS at the end of the job result in application design patterns that

www.it-ebooks.info

hdfs://cloud9:8020
dfs://at:9020
http://www.it-ebooks.info/

CHAPTER 8 ADVANCED AND ALTERNATE MAPREDUCE TECHNIQUES

have large complex map methods and potentially complex reduce methods, to minimize the
number of times the data is passed through the cluster.

Many processes require multiple steps, some of which require a reduce phase, leaving at
least one input to the next job step already sorted. Having to re-sort this data may use signifi-
cant cluster resources.

The following section goes into detail about a variety of techniques that are helpful for
special situations.

Chaining: Efficiently Connecting Multiple Map and/or
Reduce Steps

New in Hadoop 0.19.0 is the ability to connect several map tasks together in a chain. Prior to
the chaining feature, the user was forced to either construct large map methods or run mul-
tiple jobs as a pipeline, with all the additional I/O overhead. Figure 8-2 provides a graphical
depiction of the flow of key/value pairs through a job that uses chaining.

The chaining feature constructs a pipeline, internal to the task, which feeds each
key/value pair from each output.collect to the map method of the next mapper in the chain.
The map task may be a chain, and the reduce task may have a chain as a post processor.

This allows for the construction of simple mapper classes that do one thing well, as well as
the ability to rapidly modify a chain to support additional or different features.

Chain Mapping

Input Split Map Task

key, value Mapper.map(key,value) / Mapper.map(key,value)
key, value

key, value output.collect(key,valuef output.collect(key,value)
key, value
key, value output.collect(key,value) ue)
key, value
key, value output.collect(key,value)
key, value
key, value

ue)

Reduce Task

»|| Reducer.reduce(key,value)

output.collect(key,value)

Y
Mapper.map(key,value) / Mapper.map(key,value)
output.collect(key,value)/ output.collect(key,value) e)
€)

| I) ;l output/part-00000

Figure 8-2. Chain mapping

www.it-ebooks.info

257

http://www.it-ebooks.info/

258

CHAPTER 8 ADVANCED AND ALTERNATE MAPREDUCE TECHNIQUES

Note At least through Hadoop 0.19.0, it is not possible to run the chain mapper through the streaming
APIs.

Configuring for Chains

There are two possible chains that can be established for a job: the map task can be a chain or
the reduce task can have a chain.

Passing Key/Value Pairs by Value or by Reference

Part of the contract for key/value pair management with a mapper or reducer is that the
contents of the key/value are not modified during a call to output.collect(key, value).
The framework serializes the key/value into the output format for the particular task, and the
output.collect() method returns with the contents of the key/value object unchanged.

With chaining, each key/value pair passed to the output.collect() method is the input
to the next mapper in the chain. During job configuration, when a mapper is being added to
a chain, the style of key/value passage is specified, either by value or by reference.

Passing by reference eliminates a serialization and deserialization for the key/value, a
potential speed increase. If the Mapper.map() method uses the key or value method after the
output.collect() call, subtle errors may occur if the key or value has been modified by a sub-
sequent mapper.

Note If pass by reference is enabled, some level of verification needs to be in place to ensure that no use
of the key/value object is made after a call to output.collect or that no mapper in the chain that receives
the key or value reference modifies the contents. Any compliance failures in this implicit contract will cause
difficulties in diagnosing problems. This is especially difficult because the configuration for pass by reference
is remote from the Mapper.map() method that has to determine whether the pass by reference is safe and
by the fact that the mapper class might be unaware about being part of a chain.

Type Checking for Chained Keys and Values

The standard Hadoop framework verifies that the type of key/value pairs being passed to the
map or reduce method are the classes configured for the map or reduce. If they are not, an
exception will be thrown.

The RecordReaders for the input split will throw an I0Exception for “wrong key class” or
“wrong value class”, and the OutputCollector will throw an IOException for “Type mismatch in
key from map” or “Type mismatch in value from map”.

At least as of Hadoop 0.19.0, the chaining code does not explicitly check the runtime types
of the key/value pairs being passed between elements in the chain. The types are checked only
during the job configuration phase.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ADVANCED AND ALTERNATE MAPREDUCE TECHNIQUES

Per Chain Item Job Configuration Objects

The chaining interface provides a way for each item in the chain to receive custom configura-
tion parameters. It is recommended that these custom configurations be light configurations,
which have only the special parameters for that item. For a map task, the chain will have only
mapper items. For a reduce task, the chain will have a leading reducer item and then some
number of mapper items.

At task runtime, a JobConf object is made for each item. This JobConf object is constructed
by making a copy of the localized task JobConf object and then copying each key/value pair
out of the per map configuration into the copy. This modified copy is then passed to the con-
figure method of the item.

How the close() Method Is Called for ltems in a Chain

The mapper close() methods are called in order. The reducer close is called after all the map-
per close() methods have completed. If any close() method throws an exception, no further
close() methods are run.

Caution This is the close() behavior, as of Hadoop 0.19.0.

Configuring Mapper Tasks to be a Chain

A mapper task is either a normal map task or a chain. The configuration of one excludes the
configuration for the other. A call to the JobConf.setMapperClass() method after a chain has
been configured will disable the chain.

The framework provides a class, org.apache.hadoop.mapred.1lib.ChainMapper, which
provides the addMapper () method. Table 8-7 details the parameters, and Listing 8-6 provides
the declaration. The addMapper () method configures the mapper tasks to be run as chains and
appends the specified mapper class to the end of the current chain mapper task chain.

www.it-ebooks.info

259

http://www.it-ebooks.info/

260

CHAPTER 8 ADVANCED AND ALTERNATE MAPREDUCE TECHNIQUES

Table 8-7. The ChainMapper.addMapper Parameters

Type Parameter Modified Description

JobConf job true The per job JobCont object.

Class<? extends Mapper klass false The mapper class to be run.

<K1 V1 K2 V2>> Acall, job.setMapperClass
(ChainMapper.class), will be
made by this method.

Class<? extends Ki> inputKeyClass false The input key class; must be the

type of output key of the previous
chain item or the type of key for
this task if it is the first item in the
chain.

Class<? extends V1> inputValueClass false The input value class; must be the
type of output value of the previ-
ous chain item or the type of value
for this task if it is the first item in
the chain.

Class<? extends K2> outputKeyClass false The output key class. A call, job.
setMapOutputKeyClass (output
KeyClass), will be made in this
method.

Class<? extends V2> outputValueClass false The output value class. A call, job.
setMapOutputValueClass(output
ValueClass), will be made in this
method.

boolean byValue false If false, klass, the mapper class
does not use the key or value
objects after the call to output.
collect, or no map later in the
chain will modify the values, and
the key/value will be passed by
reference instead of copied via
serialization.

JobConf mapperConf true The configuration object that pro-
vides custom configuration data
for this mapper instance at map-
per runtime. The input and output
classes will be stored in this object.
Any keys present will override the
corresponding values in the task’s
localized JobCont object.

Note For each addMapper () call, the mapperConf object should be constructed via JobConf
mapperConf = new JobConf(false). This will minimize the possibility that a configuration value will
step on a task’s localized value. Any custom parameters may then be set on the mapperConf object before
the addMapper () call. The clear () method may be used to reset a mapperConf for use in the next call to
addMapper (). As of Hadoop 0.19.0, this parameter should not be passed as a null because a full JobConf
object will be initialized.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ADVANCED AND ALTERNATE MAPREDUCE TECHNIQUES

Listing 8-6. The ChainMapper.addMapper() method Declaration with JavaDoc

Jxk

¥ X X K X K K X X X K X K K X X X K X K K K KX X X X ¥ X

*/

Adds a mapper class to the chain job's JobConf.

<p/>

It has to be specified how key and values are passed from one element of
the chain to the next, by value or by reference. If a mapper leverages the
assumed semantics that the key and values are not modified by the collector
'by value' must be used. If the mapper does not expect this semantics, as
an optimization to avoid serialization and deserialization 'by reference'
can be used.

<p/>

For the added mapper the configuration given for it,
<code>mapperConf</code>, have precedence over the job's JobConf. This
precedence is in effect when the task is running.

<p/>

IMPORTANT: There is no need to specify the output key/value classes for the
ChainMapper, this is done by the addMapper for the last mapper in the chain
<p/>

@param job job's JobConf to add the mapper class.
@param klass the mapper class to add.

@param inputKeyClass mapper input key class.

@param inputValueClass mapper input value class.

@param outputKeyClass mapper output key class.

@param outputValueClass mapper output value class.

@param byValue indicates if key/values should be passed by value
to the next mapper in the chain, if any.
@param mapperConf a JobConf with the configuration for the mapper

class. It is recommended to use a JobConf without default values using the
<code>JobConf(boolean loadDefaults)</code> constructor with FALSE.

public static <K1, Vi, K2, V2> void addMapper(JobConf job,

Class<? extends Mapper<Ki, Vi, K2, V2>> klass,
Class<? extends Ki> inputKeyClass,

Class<? extends V1> inputValueClass,

Class<? extends K2> outputKeyClass,

Class<? extends V2> outputValueClass,

boolean byValue, JobConf mapperConf)

Configuring the Reducer Tasks to Be Chains

Configuring the reducer phase is very similar to the configuration of the mapper phase with
one additional requirement: the job configuration step must make a call to ChainReducer.
setReducer () before adding any mappers to the reducer chain. Table 8-8 describes the
parameters for ChainReducer.setReducer(), and Table 8-9 describes the parameters for
ChainReducer.addMapper (). The other minor difference is that the ChainReducer.addMapper ()
method must be used in place of the ChainMapper.addmapper () method.

www.it-ebooks.info

261

http://www.it-ebooks.info/

262

CHAPTER 8 ADVANCED AND ALTERNATE MAPREDUCE TECHNIQUES

Table 8-8. ChainReducer.setReducer Parameters

Type Parameter Modified Description

JobConf job true The per job JobCont object.

Class<? extends klass false The reducer class to be run. A call,

Reducer<K1 Vi K2 V2>> job.setReducerClass
(ChainReducer.class), will be
made by this method.

Class<? extends Ki> inputKeyClass false The input key class; must be the

type of output key of the previous
chain item or the type of key for
this task if it is the first item in the
chain.

Class<? extends Vi> inputValueClass false The input value class; must be the
type of output value of the previ-
ous chain item or the type of value
for this task if it is the first item in
the chain.

Class<? extends K2> outputKeyClass false The output key class. A call, job.
setOutputKeyClass (outputKey
Class), will be made in this
method.

Class<? extends V2> outputValueClass false The output value class. A call, job.
setOutputValueClass(output
ValueClass), will be made in this
method.

boolean byValue false If false, klass, the reducer class
does not use the key or value
objects after the call to output.
collect(), or no map later in the
chain will modify the values, and
the key/value will be passed by
reference instead of copied via
serialization.

JobConf reducerConf true The configuration object that
provides custom configuration
data for this reducer instance
at reducer runtime. A null may
be passed. The input and out-
put classes will be stored in this
object. Any keys present will over-
ride the corresponding values
in the task’s localized JobConf
object.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ADVANCED AND ALTERNATE MAPREDUCE TECHNIQUES

Table 8-9. ChainReducer.addMapper Parameters

Type

Parameter

Modified

Description

JobConf

Class<? extends
Mapper<K1 Vi K2

Class<? extends

Class<? extends

Class<? extends

Class<? extends

boolean

JobConf

V2>>
K1>

V1>

K2>

V2>

job
klass

inputKeyClass

inputValueClass

outputKeyClass

outputValueClass

byValue

mapperConf

true
false

false

false

false

false

false

true

The per job JobConf object.

The mapper class to be run.

The input key class; must be the
type of output key of the previous
chain item or the type of key for
this task if it is the first item in the
chain.

The input value class; must be the
type of output value of the previ-
ous chain item or the type of value
for this task if it is the first item in
the chain.

The output key class. A call, job.
setOutputKeyClass(outputKey
Class), will be made in this
method.

The output value class. A call, job.
setOutputValueClass(output
ValueClass), will be made in this
method.

If false, klass, the mapper class
does not use the key or value
objects after the call to output.
collect(), or no map later in the
chain will modify the values, and
the key/value will be passed by
reference instead of copied via
serialization.

The configuration object that
provides custom configuration
data for this mapper instance at
mapper runtime. The input and
output classes will be stored in
this object. Any keys present will
override the corresponding values
in the task’s localized JobConf
object.

Note Itis important to use ChainMapper.addMapper (), ChainReducer. setReducer(), and
ChainReducer.addMapper () instead of the public methods Chain.addMapper () and Chain.
setReducer (). The chain methods do not configure the job level chaining configuration parameters.

www.it-ebooks.info

263

http://www.it-ebooks.info/

264 CHAPTER 8 ADVANCED AND ALTERNATE MAPREDUCE TECHNIQUES

The provided code in ChainMappingExample and ChainMappingExampleMapperReducer
provides a simple example of chain mapping that is structured to help you understand the
order of events in your chain. The sample code sets a chain mapping job. The maps and the
reduce have a particular id to help distinguish them. The actual ordering information has to be
extracted from the job log.

Table 8-10 demonstrates running the ChainMappingExample and details the exact sequence
of the method invocation on the mapper and reducer classes. The assumptions are that the
hadoopprobook and commons-1ang JARs are in the current working directory. The construct 2>&1
forces the standard error output to go to the same descriptor as the standard output.

HADOOP_CLASSPATH=./commons-lang-2.4.jar hadoop jar hadoopprobook.jar=
com.apress.hadoopbook.examples.ch8.ChainMappingExample -jt localws
-verbose -loglevel INFO -tsr ALL --deleteOutput 2>81 | grep ': Event'

Table 8-10. Event Ordering in the ChainMappingExample

Sequence Number Task Method

0 Master map constructor()
1 Master map configure()

2 Map 1 constructor()
3 Map 1 configure()

4 Map 2 constructor()
5 Map 2 configure()

6 Master map map () Key0

7 Map 1 map () Key0

8 Map 2 map () Key0

9 Master map map () Keyl

10 Map 1 map () Keyl

11 Map 2 map () Keyl

12 Master map map () Key2

13 Map 1 map () Key2

14 Map 2 map () Key2

15 Master map map () Key3

16 Map 1 map () Key3

17 Map 2 map () Key3

18 Master map map () Key4

19 Map 1 map () Key4

20 Map 2 map () Key4

21 Master map close()

22 Map 1 close()

23 Map 2 close()

24 Reduce 1 constructor()

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ADVANCED AND ALTERNATE MAPREDUCE TECHNIQUES
25 Reduce 1 configure()
26 Reduce 2 constructor()
27 Reduce 2 configure()
28 Master Reduce constructor()
29 Master Reduce configure()
30 Master Reduce reduce() Key0
31 Reduce 1 map () Key0
32 Reduce 2 map () Key0
33 Master Reduce reduce() Keyl
34 Reduce 1 map () Keyl
35 Reduce 2 map () Keyl
36 Master Reduce reduce() Key2
37 Reduce 1 map () Key2
38 Reduce 2 map () Key2
39 Master Reduce reduce() Key3
40 Reduce 1 map () Key3
41 Reduce 2 map () Key3
42 Master Reduce reduce() Key4
43 Reduce 1 map () Key4
44 Reduce 2 map () Key4
45 Reduce 1 close()
46 Reduce 2 close()
47 Master Reduce close()

Map-side Join: Sequentially Reading Data from
Multiple Sorted Inputs

In a traditional MapReduce job, the framework sorts all data for a reduce task before present-
ing the keys sequentially to the reduce task. If the input data is already sorted, traditional
MapReduce requires that the full map shuffle and sort process take place before the reduce
task receives the sorted keys.

Map-side joins provide a way for a map task to receive keys in sequential order and to
receive all the values associated with each key (very similar to a reduce task). The map task
reads the data directly from HDFS and no reduce is needed, which greatly reduces cluster
loading. The author processed a dataset that was reduced from 5 hours to 12 minutes by con-
verting the job to use map-side joins.

The map-side join provides a framework for performing operations on multiple sorted
datasets. Although the individual map tasks in a join lose much of the advantage of data local-
ity, the overall job gains due to the potential for the elimination of the reduce phase and/or the
great reduction in the amount of data required for the reduce.

www.it-ebooks.info

265

http://www.it-ebooks.info/

266

CHAPTER 8 ADVANCED AND ALTERNATE MAPREDUCE TECHNIQUES

Caution There are several constraints on when map-side joins may be used, and the cluster loses capa-
bility to manage data locality for the map tasks (see Table 8-11). There are also bugs in the join code that
cause unpredictable behavior if there are more than 31 tables in a join; see https://issues.apache.org/
jira/browse/HADOOP-5589 and https://issues.apache.org/jira/browse/HADOOP-5571.

The author has used map-side joins extensively in large-scale web crawls to eliminate
recently crawled URLs from the set of freshly harvested URLs being prepared for fetching.

As of Hadoop 0.19.0, the join package supports full inner and outer joins. All joins are full
table scans at present; one optimization currently missing from the join package is the capa-
bility to use the indexes supplied with org.apache.hadoop.io.MapFile to skip over unneeded
records in datasets.

In the following section, the term dataset is used to refer to one join item in the set of ele-
ments being joined. The dataset can be an actual dataset or the result of a join.

Note As of at least Hadoop 0.19.0, the joins handle only keys that implement WritableComparable and
values that implement Writable. The join framework has not been updated to handle arbitrary key/value
classes.

Examining Join Datasets

Ajoin dataset is specified by providing a dataset name and an InputFormat class. A dataset is
the set of input splits that an InputFormat will produce when given the name as an argument.
The mapred.min.split.size is set to Long.MAX_VALUE before the InputFormat.getSplits()
method is called. The goal is to force the InputFormat not to split individual data files, thereby
ensuring that each returned split contains the entirety of a single reduce task output, or par-
tition. The directory and the partition files it contains is a dataset. Using the join package
imposes the following limitations on your application.

Table 8-11. Limitations on Datasets Used in Joins

Limitation Why

All datasets must be The sort ordering of the data in each dataset must be identical for
sorted using the same datasets to be joined.

comparator.

All datasets must be par- A given key has to be in the same partition in each dataset so that all
titioned using the same partitions that can hold a key are joined together.
partitioner.

The number of parti- A given key has to be in the same partition in each dataset so that all
tions in the datasets partitions that can hold a key are joined together.
must be identical.

www.it-ebooks.info

https://issues.apache.org/
https://issues.apache.org/jira/browse/HADOOP-5571
http://www.it-ebooks.info/

CHAPTER 8 ADVANCED AND ALTERNATE MAPREDUCE TECHNIQUES

Limitation Why

The InputFormat must The OutputPartitioner class returns a partition number for each
return the input splitsin ~ key, which determines the reduce task each key is assigned to. This
Partitioner order. partition number is commonly used to construct the file name of

the reduce output partition, part-%05d. The file name is the string
part-, followed by a 0 padded five-digit number, which is the reduce
output partition. At split time, no information is readily available

to determine what partition number the split was originally a part

of, so the ordinal number in the InputSplit array, returned by the
InputSplit[] InputFormat.getSplits() method, isused as asur-
rogate for the partition number. For any given key in the Nth input split
returned by an InputFormat.getSplits call, if that key could be pres-
ent in another dataset, it would be present only in the Nth split returned
by that dataset’s InputFormat.getSplits call.

Note The map-side join has no simple way to discover what reduce partition a split was created as.
The InputFormat’s split routine is called with the minimum split size set to Long.MAX_VALUE, under the
assumption that this will cause each split returned to be one complete input partition. The map-side join
assumes that the InputSplit arrays returned by each dataset’s InputFormat.getSplits() returns the
splits, or partitions in the same partition order (i.e., any given single index slice through arrays of splits will
return a set of splits in which all the keys in each set belong to the same partition). If this assumption of
equivalent ordering is incorrect, the behavior of the map-side join will be incorrect, and this failure will be
detectable only by examining the output data.

Under the Covers: How a Join Works

The customary output of a MapReduce job that has a reduce phase is a single directory with N
files of the form part-00000 through part-0*N-1. When a FileInputFormat-based InputFormat
is given that output directory as input, and the mapred.min.split.size is set to Long.MAX_VALUE,
N input splits will be generated one for each part file or partition.

For FileInputFormat-based datasets, the input splits are returned as an array, in partition
file name lexical order (e.g., part-00000 is first in the array, followed by part-00001, and so on).

For each dataset specified in the join, the input splits of the dataset are collected. If the
number of input splits returned by each dataset’s InputFormat is not identical, the framework
throws an exception of the form I0Exception("Inconsistent split cardinality from child
N, Y/Z") where N is the ordinal number of the dataset, per the input specification; Y is the
expected number of splits or partition; and Z is the number of splits provided by the N data-
set’s InputFormat.

For each single index slice of the InputSplit arrays, a WrappedRecordReader is constructed.
The WrappedRecordReaderClass implements the interface org.apache.hadoop.mapred. join.
ComposableRecordReader and provides the standard RecordReader function of next(K key,
V value). The set of ComposableRecordReaders that are to be used for a particular join are bun-
dled into a JoinRecordReader, which also implements the interface ComposableRecordReader.

www.it-ebooks.info

267

http://www.it-ebooks.info/

268

CHAPTER 8 ADVANCED AND ALTERNATE MAPREDUCE TECHNIQUES

The basic JoinRecordReader.next(key, value) method returns the keys of the entire set

of keys present in the WrappedRecordReaders in OutputComparator order. The valueis a
TupleWritable object, which contains each value associated with the key across the set of
WrappedRecordReaders, and information about which WrappedRecordReader the value origi-
nated in. A JoinRecordReader can have any ComposableRecordReader implementer as one of its
inputs; by default, they are WrappedRecordReaders and JoinRecordReaders.

Each map task is given a JoinRecordReader from the outermost join as the task input
record reader and receives the key/value sets of the join one by one in the map method. Ina
simple case, this JoinRecordReader will have N WrappedRecordReaders from slice N of the origi-
nal InputSplit arrays. The default outer join behavior will receive each key in the input split
set, in the sort order with all the values for that key. The map method behaves very much like
a traditional reduce.

Types of Joins Supported

The join framework comes with support for three types of joins: outer, inner, and override.
Joins can be made on direct input datasets or on the results of joining input datasets; arbitrary
deep nesting of this joining structure is supported.

Inner Join

The inner join is a traditional database-style inner join. The map method will be called with
a key/value set only if every dataset in the join contains the key. The TupleWritable value will
contain a value for every dataset in the join.

Outer Join

The outer join is a traditional database-style outer join. The map method will be called for
every key in the set of datasets being joined. The TupleWritable value will contain values for
only those datasets that have a value for this key.

Override Join

The override join is unusual in that the there will only ever be one value passed to the map
method. In the inner and other joins there will be a set of values passed to the map method.
The override join maps a call to the map method with each key in the input split set and with
that single value from the rightmost input split or join that has a value for the key.

The use of this join style requires that you order your input datasets (from least to most
important). For any given key, your map method will be given the value from the most impor-
tant dataset that contains the key.

Composing Your Own Join Operators

The join framework provides a mechanism for defining additional operators. The configu-
ration key mapred. join.define.YOUR_OPERATOR must be set to the class name of a class that
implements the ComposableRecordReader interface. The string YOUR_OPERATOR in the key defini-
tion must be replaced with the name of the custom join operation. YOUR_OPERATOR can then be
passed as the op parameter to the compose methods that accept op, and used anywhere that
the predefined operators, inner, outer, and override, are used.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8

Details of a Join Specification

ADVANCED AND ALTERNATE MAPREDUCE TECHNIQUES

Ajoin specification is an operator and a set of data sources. The predefined operators are
inner, outer, and override to correspond with the join types. A data source is either a table
statement or a join specification. A table statement is a string tb1(input.format.class.

name, "path"). The comma character is used to separate data sources; parentheses, (), are used
to group the data sources for an operator. Table 8-12 provides examples of several join data

source specifications.

Table 8-12. Data Source Examples

Data Source

Description

tb1(org.apache.hadoop.mapred.
KeyValueTextInputFormat,"textSource")

inner(tbl(org.apache.hadoop.mapred.
SequenceFileAsTextInputFormat,
"sequence"),tbl(org.apache.hadoop.
mapred.KeyValueTextInputFormat,
"textSource"))

override(inner(tbl(org.apache.hadoop.
mapred.SequenceFileAsTextInputFormat,
"sequence"),tbl(org.apache.hadoop.
mapred.KeyValueTextInputFormat,
"textSource")), tbl(org.apache.
hadoop.mapred.KeyValueTextInput
Format, "priority")

A data source located in or at the path textSource
that contain records that are to be parsed by the
KeyValueTextInputFormat class.

A data source composed of the inner join of the data
in sequence file format at or in sequence, and the
textual data at or in textSource. The key/value
classes read from sequence are converted into Text.

A composite data source composed of a nested
inner join of sequence and textSource, joined with
priority, and with a preference for values from
priority if multiple sources in the join have values
for a given key.

Handling Duplicate Keys in a Dataset

For a join in which a table in the join has duplicate key/value pairs, the map method will be
called one time for each possible permutation of the key/value pairs. For example, suppose
that a join of two tables is made. Table 1 has two records (1,a and 1,b), and Table 2 has one
record (1, c). The map method will be called twice with key 1; once with a tuple a, ¢; and once

with a tuple b, c.

Composing a Join Specification

The framework provides three helper methods, all named compose(), which build either a
full join specification or build the input specification for a particular dataset in the join. Two
of the methods construct a full join specification and are used when all the datasets within
the join have the same InputFormat. These two methods differ only in accepting String

or Path objects for the dataset locations. The third is used to construct a table statement

for a dataset that includes a specified InputFormat and requires the application developer

to aggregate the results into a full join specification. The methods are provided via the

CompositeInputFormat class.

www.it-ebooks.info

269

http://www.it-ebooks.info/

270

CHAPTER 8 ADVANCED AND ALTERNATE MAPREDUCE TECHNIQUES

String CompositeInputFormat.compose(Class<? extends InputFormat> inf, String path)

This method produces a table statement from an input format class object and a path to a
dataset. The fully qualified class name of inf will be used in the returned table statement.
This method does not produce a full join statement. It is commonly used when building a join
statement from input datasets that have different input formats. (Refer to Table 8-12, items 2
and 3, for examples of complete join statements.)

Here’s a sample use of this method:

CompositeInputFormat.compose(KeyValueTextInputFormat.class, "mydata");

tb1(org.apache.hadoop.KeyValueTextInputFormat, "mydata")

String CompositeInputFormat.compose(String op, Class<? extends InputFormat> inf,
String... path)

This method produces a full join statement. The resulting string can be stored in the configu-
ration under the key mapred. join.expr or used as a nested join within another join statement.
Here’s a sample use of this method:

CompositeInputFormat.compose("inner", KeyValueTextInputFormat, w»
"maptest_a.txt","maptest b.txt","maptest c.txt");

inner(tbl(org.apache.hadoop.mapred.KeyValueTextInputFormat, "maptest a.txt"),=
tbl(org.apache.hadoop.mapred.KeyValueTextInputFormat, "maptest b.txt"),=
tb1(org.apache.hadoop.mapred.KeyValueTextInputFormat, "maptest c.txt"))

String CompositeInputFormat.compose(String op, Class<? extends InputFormat> inf,
Path... path)

This method is identical to the String variant except that Path objects instead of String objects
provide the table paths.

Building and Running a Join

There are two critical pieces of engaging the join behavior: the input format must be set to
CompositeInputFormat.class, and the keymapred.join.expr must have a value that is a valid
join specification. Optionally, the mapper, reducer, reduce count, and output key/value
classes may be set.

The mapper key class will be the key class of the leftmost data source, and the key classes
of all data sources should be identical. The mapper value class will be TupleWritable for inner,
outer, and user-defined join operators. For the override join operator, the mapper value class
will be the value class of the data sources.

In Listing 8-7, note that the quote characters surrounding the path names are escaped.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ADVANCED AND ALTERNATE MAPREDUCE TECHNIQUES

Listing 8-7. Synthetic Example of Configuring a Join Map Job

/** A1l of the outputs are Text. */
conf.setOutputFormat(TextOutputFormat.class);
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(Text.class);
conf.setMapperClass(MyMap.class);

/** setting the input format to {@link CompositeInputFormat}

* is the trigger for the map-side join behavior. */
conf.setInputFormat(CompositeInputFormat.class);
conf.set("mapred.join.expr",
"override(tbl(org.apache.hadoop.mapred.KeyValueTextInputFormat, =
\"maptest a.txt\"),tbl(org.apache.hadoop.mapred.KeyValueTextInputFormat, w=
\"maptest b.txt\"),tbl(org.apache.hadoop.mapred.KeyValueTextInputFormat, w»
\"maptest_c.txt\"))");

Synthetic Example of Configuring a Join Map Job Using the Compose Helper

/** A1l of the outputs are Text. */
conf.setOutputFormat(TextOutputFormat.class);
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(Text.class);
conf.setMapperClass(MyMap.class);
/** setting the input format to {@link CompositeInputFormat}
* is the trigger for the map-side join behavior. */
conf.setInputFormat(CompositeInputFormat.class);
conf.set("mapred.join.expr",CompositeInputFormat.compose("override" =
KeyValueTextInputFormat.class, "maptest a.txt",w
"maptest b.txt", "maptest c.txt"));

The Magic of the TupleWritable in the Mapper.map() Method

The map method for the inner and outer join has a value class of TupleWritable, and each call
to the map method presents one join result row. The TuplelWritable class provides a number
of ways to understand the shape of the join result row. Listing 8-8 provides a sample mapper
that demonstrates the use of TupleWritable.size(), TupleWriter.iterator(), TupleWritable.
has(), and TupleWritable.get() methods. Table 8-13 provides a description of these methods.

www.it-ebooks.info

27

http://www.it-ebooks.info/

272

CHAPTER 8

ADVANCED AND ALTERNATE MAPREDUCE TECHNIQUES

Table 8-13. TupleWritable Methods for Interacting with the Join Result Row

Method

boolean has(int i)

Writable get(int i)

int size()

Iterator<Writable>

iterator()

Argument Description

The ordinal number of Returns true if that dataset provides a value to
a dataset. this result row.

The ordinal number Returns the value object that the dataset has

of a dataset. provided to this result row. The object returned

by get will be reinitialized on the next call to
get. The application will need to make a copy
of the contents before calling get () again if
the contents need to exist past the next call to

get().

Returns the number of datasets in the join.
Only the top-level datasets are counted, even
if the dataset is the result of many nested joins.
This method is used to provide an index limit
for loops through the values using has and get.
for(int i = 0; i < tuple.size(); i++)
if (tuple.has(i))...

Returns an iterator through the values that
are present. For any dataset that did not
contribute a value to this result record, the
iterator will skip over that dataset.

Note A dataset may provide a null value to a join result record if the dataset is composed only of keys.
Using the construct get (i)==null will not correctly indicate that dataset i did not have the join result
record key present; only the call having (i) is sufficient.

Listing 8-8. A Sample Mapper

package com.apress.hadoopbook.examples.ch8;

import

import
import
import
import
import
import
import

java.io.IOException;

org.apache.
org.apache.
org.apache.
org.apache.
org.apache.
org.apache.
org.apache.

hadoop.
hadoop.
hadoop.
hadoop.
hadoop.
hadoop.
hadoop.

io.Text;

io.Writable;
mapred.MapReduceBase;
mapred.Mapper;
mapred.OutputCollector;
mapred.Reporter;
mapred.join.TupleWritable;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ADVANCED AND ALTERNATE MAPREDUCE TECHNIQUES 273

/** A cut down join mapper that does very little but demonstrates
* using the TupleWritable
ES

* @author Jason

ES

*/

class CutDownJoinMapper extends MapReduceBase implements
Mapper<Text, TupleWritable,Text, Text> {

Text outputValue = new Text();

@verride

public void map(Text key, TupleWritable value,
OutputCollector<Text, Text> output, Reporter reporter)
throws IOException {

try {

/** The user has two choices here, there is an iterator

* and a get(i) size option.

* The down side of the iterator is you don't know what table
* the value item comes from.

*/

/** Gratuitous demonstration of using the TupleWritable iterator. */
int valueCountTotal = 0;
for(@SuppresshWarnings("unused") Writable item : value) {
valueCountTotal++;
}
reporter.incrCounter("Map Value Count Histogram", key.toString() +
" " + valueCountTotal, 1);

/** Act like the Identity Mapper. */
final int max = value.size();
int valuesOutputCount = 0;
for(int i = 0; 1 < max; i++) {
if (value.has(i)) {
// Note, get returns the same object initialized
// to the data for the current get
output.collect(key, new Text(value.get(i).toString()));
valuesOutputCount++;

www.it-ebooks.info

http://www.it-ebooks.info/

274

CHAPTER 8 ADVANCED AND ALTERNATE MAPREDUCE TECHNIQUES

assert valueCountTotal == valuesOutputCount :
"The iterator must always return the same number ofwes
values as a loop monitoring has(i)";
} catch (Throwable e) {
reporter.incrCounter("Exceptions", "MapExceptionsTotal", 1);

MapSideJoinExample.LOG.error("Failed to handle record for " + key, e);

Aggregation: A Framework for MapReduce Jobs
that Count or Aggregate Data

The Hadoop Core framework provides a package for performing data aggregation jobs.
This package may conceptually be thought of as Hadoop streaming for statistics. The anal-
ogy is incomplete because some code must be written to use the aggregation services. The
aggregation services are provided by classes that implement the interface org.apache.hadoop.
mapred.lib.aggregate.ValueAggregator. The framework provides a set of aggregator services
(see Table 8-14 for descriptions of the predefined aggregator services). The user can define
the custom aggregator (see Listing 8-15). Aggregation can be run via Hadoop streaming. The
aggregation framework manages the mapper, combiner, and reducer; and the aggregation
service produces the correct key/value pairs to pass forward. The user is responsible for pars-
ing the input record and invoking the aggregate service with the record key and count; the
record and count are the traditional map task output key/value pairs. Quite often, the key
has no meaning for the job and is simply a label for the end user. The count must the textual
representation of an object that the aggregator service expects: a number for DoubleValueSum,
awhole number for the LongValue series, an arbitrary string for the StringValue series, and a
whole number for UniqueValueCount and ValueHistogram.

Table 8-14. Predefined Aggregation Services

Class Description Id Key Value Count Value Example Code Sample
DoubleValueSum Computes the sum of input DoubleValueSum Label The number to accumulate - DoubleValueSum:
values. The input values are in the sum. The behavior is LabelTAB37
expected to be doubles and identical to LongValueSum.pl,
are summed. A single out- so the LongValueSum.pl
put record per reduce. example is used
LongValueMax Computes the maximum LongValueMax Label The number to challenge the ~ LongMax.pl LongValueMax:
input value. The input values current max value with. LabelTAB37
are expected to be longs, and
the max value is output. A
single output record per
reduce.
LongValueMin Computes the minimum in- LongValueMin Label The number to challenge the - LongValueMin:
put value. The input values current min value with. The LabelTAB3
are expected to be longs, and behavior is essentially iden-
the min value is output. A tical to LongValueMax, so the
single output record per LongMax.pl example is used.
reduce.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8

ADVANCED AND ALTERNATE MAPREDUCE TECHNIQUES

275

Class

Description

Id Key Value

Count Value

Example Code

Sample

LongValueSum

StringValueMax

StringValueMin

UniqVvalueCount

ValueHistogram

Computes the long sum of in-
put values. Input values are
expected to be longs, and the
sum is output. A single output
record per reduce.

Computes the lexically great-
est input value. The values
object’s toString() method
is invoked, and the resulting
String is compared. The
lexically largest is output. A
single output record per
reduce.

Computes the lexically least
input value. The values ob-
ject’s toString() method is
invoked and the resulting
String is compared. The
lexically smallest is output.
A single output record per
reduce.

Computes the set of unique
input values. The value ob-
ject's equals() method is
used to determine equality.
The set of unique object is
output. The configuration
parameter aggregate.max.
num.unique.values, which
defaults to Long.MAX_VALUE,
limits the number of unique
items accumulated. Any new
objects encountered in a
map or reduce task past this
value are discarded.

Computes a histogram of
the occurrence counts of the
unique input values. The in-
put value object’s equals()
method is used to determine
equality.

LongValueSum Label

StringValueMax Label

StringValueMin Label

UnigVvalueCount Objectasa

string.

The object
as a string.

ValueHistogram

The number to add to the
sum.

String to challenge the cur-
rent lexically largest string.

String to challenge the cur-

rent lexically smallest string.

Ignored; 1 is acceptable.

The count of times the object

occurred in this record; 1 is
usually correct.

LongSum.pl

StringMax.pl

Uniqvalue.pl

LongHistogram.pl

LongValueSum:
LabelTAB37

StringValueMax:
LabelTABMyLong
StringCandidate

StringValueMin:
LabelTABMyShort
StringCandidate.

UniqvalueCount:
object.toString()
TABignored.

ValueHistogram:
object.to
String()TAB1.

The code that the user must supply can be supplied as a streaming mapper or via a Java

class.

Aggregation Using Streaming

The user-supplied code must take an input record and return an aggregator record. The
aggregator record is textually the id: key\tcount, where id is the aggregator service id, key is
an applicable key for the job, and count is the appropriate value for key commonly 1. Listing

8-9 provides a sample Perl mapper that computes the sums of input files that are sets of long

values.

www.it-ebooks.info

http://www.it-ebooks.info/

276 CHAPTER 8 ADVANCED AND ALTERNATE MAPREDUCE TECHNIQUES

Listing 8-9. Perl Streaming Mapper for LongValueSum of Input Files Composed of Long Values,
LongSum.pl

#! /usr/bin/perl -w
use strict;

eval {
while(<>) {

print STDERR "reporter:counter:Map,Input Records,1\n";

chomp;

my @parts = split(/\s/, $); # split on white space

foreach my $part (@parts) {
print STDERR "reporter:counter:Map,Output Records,1\n";
print "LongValueSum:SUM\t$part\n";

}
}
b
if (s@) {
print STDERR "reporter:counter:Map,Exceptions,1\n";
}

Each reduce task will have a single output value, the key will be the string SUM, and the
value will be the sum of all of the long values routed to that reduce task. The streaming com-
mand that was used is in Listing 8-10. An input file with white space separated whole numbers
must be in /tmp/numbers, and the sums will be placed in /tmp/numbers_sum output.

Note The reducer is defined as aggregate for the streaming job in Listing 8-10.

Listing 8-10. The Streaming Command to invoke LongSum.pl

bin/hadoop jar contrib/streaming/hadoop-0.19.0-streaming.jar -jt localws
-fs file:/// -input /tmp/numbers -output /tmp/numbers sum output -verbosews
-reducer aggregate -mapper LongSum.pl -file /tmp/LongSum.pl

If an error shown in Listing 8-11 happens, it generally means that an unrecognized aggre-
gator id has been output by the mapper.

Listing 8-11. Exception Resulting from an Unrecognized Aggregator Service Id

java.lang.NullPointerException

at org.apache.hadoop.mapred.lib.aggregate.ValueAggregatorCombiner .=
reduce(ValueAggregatorCombiner.java:59)

at org.apache.hadoop.mapred.lib.aggregate.ValueAggregatorCombiner .=
reduce(ValueAggregatorCombiner.java:34)

www.it-ebooks.info

file:///-input
http://www.it-ebooks.info/

CHAPTER 8 ADVANCED AND ALTERNATE MAPREDUCE TECHNIQUES

at org.apache.hadoop.mapred.MapTask$MapOutputBuffer. =
combineAndSpill(MapTask.java:1106)

at org.apache.hadoop.mapred.MapTask$MapOutputBuffer.sortAndSpilles
(MapTask.java:979)

at org.apache.hadoop.mapred.MapTask$MapOutputBuffer.flush(MapTask.java:832)

at org.apache.hadoop.mapred.MapTask.run(MapTask.java:333)

at org.apache.hadoop.mapred.LocalJobRunner$Job.run(LocalJobRunner. java:138)

Aggregation Using Java Classes

AJava application that wants to use the Aggregation services must provide a class that
implements the class ValueAggregatorDescriptor. The framework provides a base class
ValueAggregatorBaseDescriptor that can be extended. The job must provide a specific
implementation of the method ArraylList<Entry<Text, Text>> generateKeyValPairs(Object
key, Object val);.This method must provide the same service that the Perl exam-

ples in the streaming section did. Listing 8-12 provides the Hadoop example of the
AggregatellordCount implementation. The generateEntry() method is provided by the
ValueAggregatorBaseDescriptor and builds a key of the form ID:KEY, where ID is countType and
KEY is a word found in the tokenized variable 1ine.

Listing 8-12. Hadoop Example AggregateWordCount'’s generateKeyValuePairs() Method

public ArraylList<Entry<Text, Text>>
generateKeyValPairs(Object key, Object val) {
String countType = LONG_VALUE_SUM;
Arraylist<Entry<Text, Text>> retv = new Arraylist<Entry<Text, Text>>();
String line = val.toString();
StringTokenizer itr = new StringTokenizer(line);
while (itr.hasMoreTokens()) {
Entry<Text, Text> e = generateEntry(countType, itr.nextToken(), ONE);
if (e !'= null) {
retv.add(e);
}
}

return retv;

}

The job is launched by calling the ValueAggregatorJob.createValueAggregatorJob()
method, as shown in Listing 8-13. The command-line arguments accepted in args are listed in
Table 8-15.

Listing 8-13. Launching the AggregatorWordCount Example from AggregatorWordCount.java

public static void main(String[] args) throws IOException {
JobConf conf = ValueAggregatorJob.createValueAggregatorJob(args
, new Class[] {WordCountPlugInClass.class});
JobClient.runJob(conf);

www.it-ebooks.info

277

http://www.it-ebooks.info/

278

CHAPTER 8 ADVANCED AND ALTERNATE MAPREDUCE TECHNIQUES

Table 8-15. Command-line Options Handled by the ValueAggregatorjob.
createValueAggregatorjob() method.

Ordinal Position Optional Default Value Description

0 Required None The input directory or file to load input re-
cords from.

1 Required None The output directory to store results in. As

with any MapReduce job, this directory must
not exist prior to job start and will be created
by the framework for the job.

Optional 1 The number of reduce tasks.

Optional textinputformat May be textinputformat or seq, indicating
that the records in argument 0, input, are
to be handled using TextInputFormat or
SequenceFileInputFormat.

4 Optional None An XML file to load as configuration data.

5 Optional Empty String The suffix to append to the job name, which is
initialized to ValueAggregatorJob: .

Specifying the ValueAggregatorDescriptor Class via
Configuration Parameters

The Hadoop test class TestAggregates provides an example of specifying the
ValueAggregatorDescriptor class via the configuration instead of using ValueAggregatorJob.
createValueAggregatorJob(). Listing 8-14 covers the special configuration to use a Java

class that implements ValueAggregatorDescriptor. The configuration data causes the class
AggregatorTests to be used. The text UserDefined tells the framework that this is a user-
defined class. The parameter aggregator.descriptor.num tells the framework how many
definitions there are. For each descriptor class to be used by the job, a configuration param-
eter key of the form aggregator.descriptor.# is defined, where # is the ordinal number of the
descriptor class, less than the value of aggregator.descriptor.num. The value is the two-part
text string, UserDefined, and the fully qualified class name, with a comma separating the parts.
Input records are passed this order to each of the defined classes. In Listing 8-14, there is

one class because aggregator.descriptor.numis set to 1, and the class is org.apache.hadoop.
mapred.lib.aggregate.AggregatorTests, the value of aggregator.descriptor.o.

Listing 8-14. How TestAggregates Defines a Custom Aggregator Service.

job.setInt("aggregator.descriptor.num”, 1);
job.set("aggregator.descriptor.o",w
"UserDefined,org.apache.hadoop.mapred.lib.aggregate.AggregatorTests");

The framework does not have an example for defining a custom value aggregation ser-
vice. Such a service would need to implement the ValueAggregator interface, and jobs using
the custom service would have to provide an implementation of ValueAggregatorDescriptor.
generateValueAggregator() that understands the id of the implemented service type.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ADVANCED AND ALTERNATE MAPREDUCE TECHNIQUES

Side Effect Files: Map and Reduce Tasks Can Write Additional
Output Files

The Hadoop Core framework assumes that individual map and reduce tasks can be killed

with impunity, which allows the use of speculative execution and retrying of failed tasks. The
framework achieves this by placing the task output in a per-task temporary directory that is
deleted if the task fails or is killed, or committed to the job output if the task succeeds. Prior to
Hadoop release 0.19.0, this per-task directory was available under the task configuration key
mapred.output.dir. As of Hadoop 0.19.0, this directory is a function of the OutputCommitter
the job is using. The default OutputCommitter is the FileOutputCommitter, which stores the task
local output directory in the configuration key mapred.work.output.dir, and a getter is defined
as FileOutputFormat.getWorkOutputDir(JobConf conf). The FileOutputCommitter class will
move all files and directories from a successful tasks work output directory to the job output
directory.

Tip Side effect files should have job unique names; the method FileOutputFormat.getUniqueName
(conf,name) produces unique names. If fs is a FileSystem object for the job output directory, and conf
is the JobConf object for the task, FSDataOutputStream sideEffect = fs.create(new Path
(FileOutputFormat.getWorkOutputDir(conf), FileOutputFormat.getUniqueName(conf,
"side effect file")));, will create a uniquely named side effect file in the task temporary directory
with a base name of side_effect file and return an FsDataOutputStream object to the opened file.
As of Hadoop 0.19.0, the actual file name is side_effect file {m/r} partition, where {m/r} stands
for a map or reduce task, and partition is the ordinal number of the map or reduce task.

Tasks that want to create additional output files directly can create them in the temporary
output directory.

Tasks can create files in this directory, and the files will be part of the final job output
when the tasks succeed. The OutputCommitter actually commits the files to the actual job out-
put directory.

Handling Acceptable Failure Rates

Hadoop jobs typically process large volumes of data that originates from some other source.
This data, commonly called dirty data, is often not perfectly compliant with the data specifica-
tion. It might also be the case that some input records, while compliant, are unanticipated.
These data records can cause a map or a reduce task to hang, crash, or otherwise complete
abnormally. By default, the framework will retry the failed task, and the entire job will be ter-
minated if the task does not complete after a number of attempts.

Operationally it is not desirable to have a long running job terminated if only a small
number of records are causing problems. New in Hadoop 0.19.0 is the ability to specify that a
job can succeed even if a specified number of records cannot be processed.

www.it-ebooks.info

279

http://www.it-ebooks.info/

280

CHAPTER 8 ADVANCED AND ALTERNATE MAPREDUCE TECHNIQUES

The framework also allows the job to specify what percentage of the map tasks and what
percentage of the reduce tasks must succeed for the job to be considered a success. The
default is 100% of the map tasks and 100% of the reduce tasks.

In some applications, there is a threshold for good enough that is less than 100%. In an
application the author worked with, there was a piece of legacy code that would catastrophi-
cally crash every few thousand records. Due to a variety of business reasons, it was decided not
to attempt to fix the legacy application, but instead to just accept those failures.

In the real world of large-scale data processing, often the individual data records are not
valuable, and the time value of the transformation result of the dataset is high. In these situa-
tions it is acceptable to accept some failing records and or some failing tasks and then let the
job complete.

Dealing with Task Failure

The Hadoop framework provides four different mechanisms for dealing with task failure:

¢ At the highest level, the JobTracker keeps track of the number of tasks that have failed
on a particular TaskTracker node on a per-job basis. If this number crosses a threshold,
mapred.max.tracker.failures, that TaskTracker is blacklisted from executing further
tasks for the job.

¢ The next level is the standard method that most users are familiar with: to retry
a failed tasks a number of times, mapred.map.max.attempts, for map tasks and
mapred.reduce.max.attempts for reduce tasks. If any task fails more than the respective
number of times, the job is terminated. A task isn’t actually considered failed by the
JobTracker until it has used up all of its retry attempts.

¢ The framework also allows the job to specify what percentage of the tasks
can fail before the job is terminated. This is normally 0%, but the parameters
mapred.max.map.failures.percent and mapred.max.reduce.failures.percent control
the allowed failure percentage.

* The job may also specify that bad record skipping is enabled, as described in the next
section.

Skipping Bad Records

You can enable bad record skipping by setting mapred.skip.map.max.skip.records and/or
mapred.skip.reduce.max.skip.groups to a positive nonzero value. The actual value specified is
the size of the record block that is acceptable to lose. The smaller the number, the more work
the framework might need to do to minimize the dropped records.

The configuration parameter mapred.skip.attempts.to.start.skipping determines how
many times a task can fail before skip processing is enabled. Skip processing requires that the
framework keep track of what record is being processed by the task. For streaming jobs and for
jobs that consume multiple records to work on groups of records, the framework cannot track
the records; the application developer has to assist the framework in this tracking. For maps
and reduces, respectively, there are two configuration parameters and two counters that the
application must manage:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ADVANCED AND ALTERNATE MAPREDUCE TECHNIQUES

e The parameters are mapred.skip.map.auto.incr.proc.count and
mapred.skip.reduce.auto.incr.proc.count. The respective parameter must be set to
false in the job configuration.

¢ The application must then increment the respective counter, SkipBadRecords.
COUNTER_MAP_PROCESSED RECORDS or SkipBadRecords.COUNTER REDUCE_PROCESSED GROUPS,
for each record processed.

A binary search is used to locate the failing record group within the task. It appears that
this search is exhaustive and will continue until the number of task failures is exceeded.
For small values of these configuration parameters, increasing the number of task retries is
required.

Tip The number of retries is controlled by the configuration parameters mapred.map.max.attempts
and mapred.reduce.max.attempts with setters JobConf. setMaxMapAttempts() and JobConf.
setMaxReduceAttempts().

Capacity Scheduler: Execution Queues
and Priorities

New in Hadoop 0.19.0 is the Capacity Scheduler. This feature provides somewhat dedicated
resource pools, queuing priority, and pool-level access control. In the public documentation,
a resource pool is referred to as a queue, so that term will be used in this document as well.

A queue has priority access to a specified percentage of the overall cluster task execution
slots. When a cluster has unused task execution slots, a job in a queue can use the idle slots,
even though these slots are over the queue’s priority capacity. If a job with priority access to
these resources is started, the over-priority allocation task slots will be reclaimed as needed
within a specified time interval by killing the tasks executing on them.

A queue may have an explicit list of users allowed to submit jobs to it. The Capacity
Scheduler may also have a list of users allowed to manage the queues.

Enabling the Capacity Scheduler

To enable the Capacity Scheduler, the following parameter must be placed in the hadoop-site.
xml file for the cluster. As of Hadoop 0.19.0, the Capacity Scheduler JAR is not part of the
default runtime classpath. The JAR file is located in contrib/capacity-scheduler/hadoop-0.1
9.0-capacity-scheduler. jar and must be put on the framework classpath. Adding this JAR to
the HADOOP_CLASSPATH by amending the conf/hadoop-env. sh script is sufficient.

Listing 8-15 defines two queues, default and one-small-queue.

www.it-ebooks.info

281

http://www.it-ebooks.info/

282

CHAPTER 8 ADVANCED AND ALTERNATE MAPREDUCE TECHNIQUES

Listing 8-15. Enabling Capacity Scheduling, XML Block, in hadoop-site.xml

<property>
<name>mapred. jobtracker.taskScheduler</name>
<value>org.apache.hadoop.mapred.CapacityTaskScheduler</value>
</property>
<property>
<name>mapred.capacity-scheduler.reclaimCapacity.interval</name>
<value>5</value>
<final>true</final>
<description>The polling interval to find needed task slots
that have a freeloader task executiong.</description>
</property>
<property>
<name>mapred.queue.names</name>
<value>default,one-small-queue</value>
<description>The comma separated list of queue names.</description>
<final>true</final>
</property>
<property>
<name>mapred.acls.enabled</name>
<value>false</value>
<final>true</final>
<description>Are the access control lists enabled,
for job submission and queue management.</description>
</property>

Each queue that the cluster administrator defines must have a configuration block in the
hadoop-site.xml file. Listing 8-16 defines one queue, one-small-queue, with user jason and
group wheel given submission and control permissions. Replace one-small-queue with the
queue name being configured. These values could be in hadoop-site.xml, but the suggested
location is in capacity-scheduler.xml. Figure 8-3 shows the JobTracker web interface for this
queue set.

Listing 8-16. For Each Queue to be Defined, XML Block in capacity-scheduler.xml

<!-- for each queue, the following set of properties must exist -->
<!--, where one-small-queue is the name of the queue -->
<property>
<name>mapred.capacity-scheduler.queue.one-small-queue.guaranteed-capacity</name>
<value>34</value>
<final>true</final>
<description>A value between 0 and 100, the percentage
of the task execution slot that one-small-queue has
priority for.</description>
</property>

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ADVANCED AND ALTERNATE MAPREDUCE TECHNIQUES

<property>
<name>mapred.capacity-scheduler.queue.one-small-queue.reclaim-time-1imit</name>
<value>300</value>
<description>The time in seconds before a task running on a
loaned out slot is killed when the slot is needed.</description>
<final>true</final>
</property>
<property>
<name>mapred.capacity-scheduler.queue.one-small-queue.supports-priority</name>
<value>true</value>
<description>If true, the queue supports priorities for queued
jobs.</description>
</property>
<property>
<name>
mapred.capacity-scheduler.queue.one-small-queue.minimum-user-limit-percent
</name>
<value>100</value>
<description>The percentage of the resources of this queue any user may
use at one time.</description>
</property>
<property>
<name>mapred.queue.one-small-queue.acl-submit-job</name>
<value>jason wheel</value>
<final>true</final>
<description>Two comma separated lists, separated by a space. The list of
users and the list of groups. This is the set that may submit
jobs to one-small-queue</description>
</property>
<property>
<name>mapred.queue.one-small-queue.acl-administer-job</name>
<value>jason wheel</value>
<final>true</final>
<description>Two comma separated lists, separated by a space. The list of
users and the list of groups. This is the set that may kill
or change the priority of other users jobs.</description>
</property>

The sum of the percentage cluster capacity for all queues must not exceed 100, or the Job-
Tracker will not start, and there will be an exception in the log file:

org.apache.hadoop.mapred.JobTracker: java.lang.IllegalArgumentException: w
Sum of queue capacities over 100% at SOMEVALUE

www.it-ebooks.info

283

http://www.it-ebooks.info/

284 CHAPTER 8 ADVANCED AND ALTERNATE MAPREDUCE TECHNIQUES

Started: Sun Mar 22 23:28:14 GMT-08:00 2009
Version: 0.19.1-dev, r

Compiled: Tue Mar 17 04:03:57 PDT 2009 by jason
Identifier: 200903222328

Cluster Summary

Maps | Reduces | Total Submissions | Nodes | Map Task Capacity | Reduce Task Capacity | Avg. Tasks/Node
0 0 0 2 3 3 300

Scheduling Information

Queue Name ‘ Scheduling Information

Guaranteed Capacity (%) : 66.0
Guaranteed Capacity Maps : 1
Guaranteed Capacity Reduces : 1
User Limit: 100

Reclaim Time limit - 300

Number of Running Maps - 0
Number of Running Reduces : 0
Number of Waiting Maps : 0
Number of Waiting Reduces . 0
Priority Supported : NO

Guaranteed Capacity (%) : 34.0
Guaranteed Capacity Maps - 1
Guaranteed Capacity Reduces 1
User Limit: 100

Reclaim Time limit - 300

Number of Running Maps - 0
Number of Running Reduces : 0
Number of Waiting Maps : 0
Number of Waiting Reduces : 0
Priority Supported : YES

one-small-queue

Figure 8-3. Screenshot of a JobTracker screen with two queues enabled

Summary

The Hadoop framework provides a powerful set of tools to enable users to run more than
standard MapReduce jobs. This chapter covers a number (but by no means all) of the features.
Hadoop is under active development, and new features are being introduced on a regular
basis. The Hadoop streaming and aggregator features are powerful and provide the user
command-line tools for performing data analysis on large datasets. Chain mapping provides

a way to maintain code simplicity and reduce overall data flow through the system by allowing
multiple mapper classes to be applied to the data for a job. Map-side joins provide database-
style joins that can drastically speed up jobs that process bulk data that is already sorted. There
are also a number of features that have become their own Apache projects (see Chapter 10).

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9

Solving Problems with Hadoop

On the Hadoop Core mailing list, a user was wondering about the way to handle a specific
style of range query with MapReduce. The application had a search space and incoming
search requests. In this chapter, we’ll look at a similar setup, as follows:

¢ The search space dataset has the key range begin, range end and the value search space
data. For simplicity’s sake, let’s assume that ranges in the search space do not overlap.

¢ The search request dataset has the key value and the value search request data.

e The result set for a value that is between range begin and range end has the key value
and the value search request data, search space data.

How do you solve this problem with a traditional MapReduce application? That’s the
focus of this chapter.

There are a couple of overall design goals, and the weights of the different factors will
vary by installation and by job. In today’s environment, there is an intense pressure to get
processes up quickly and evolve them. Given agile business practices and tight budgets, rapid
evolution becomes the norm. This practice means that there will be little design time, and
the application will be modified, possibly by multiple teams, over a medium to long period
of time.

Design Goals

Our overall goal is to have a job that runs reliably and fast. To achieve reliability, we aim for
simple code, and implement monitoring to be informed when the algorithms being used are
no longer suitable for the scale or patterns of data.

Given that this application is going to evolve rapidly, and eventually be modified, perhaps
by different people, each piece of code needs to be simple and clear. This is in direct opposi-
tion to the requirement that the map and reduce methods be treated as the deeply nested
inner loops that they are and carefully optimized.

The data is expected to be real-world, dirty, and to change over time. Wherever possible,
the application must handle malformed records in a graceful manner and report on the mal-
formed rate.

To achieve good performance, the job must minimize underuse of the hardware, by man-
aging how the data is split, partitioned, and compressed and by tuning the number of tasks
run per node. To avoid having the network speed become the limiting factor, the transform

www.it-ebooks.info

285

http://www.it-ebooks.info/

286

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP

design must attempt to minimize the number of times the data is written to HDFS and the vol-
ume of data passed to reduce tasks.

This example will have as input two datasets. One dataset—the search requests—is composed
of Apache log file data in common log format. The other dataset—the search space—is composed
of IP address ranges and a network name. The output of the job, shown in Table 9-1, will be a mod-
ified common log format with the IP address, the network range, and the network name, in place
of the original IP address, for those search requests for which a network was found.

Note The last two octets of all IP addresses in the log files have been randomized. The command used
was perl -ne 'chomp; if ($_ !~ /A(\d+\ \d+)\. (\d+\.\d+)\s(.*)$/) { print STDERR
"Failure on $ \n"; next; } print $1, ".", int(rand(256)), ".", int(rand(256)),

" ", %3, "\n";' < access _log.txt > access log randomized.txt---; mv -f access log
randomized.txt access log.txt.

Table 9-1. Sample Job Output

Log IP

Net Range Net Range
Begin End Net Name Log Record

12.229.91.253 12.0.0.0 12.255.255.255 ATT - - [18/Nov/2008:14:08:59

-0800] "GET / HTTP/1.1" 404
293 "-" "Mozilla/4.0 (compat-
ible; MSIE 7.0; Windows NT
5.1; .NET CLR 1.0.3705; .NET
CLR 1.1.4322; Media Center PC
4.0; .NET CLR 2.0.50727; .NET
CLR 3.0.4506.2152; .NET CLR
3.5.30729)"

58.68.24.75 58.68.0.0 58.68.127.255 DWL NET - - [20/Nov/2008:00:47:53

-0800] "GET / HTTP/1.1" 302

315 "-" "Mozilla/4.0 (compat-
ible; MSIE 8.0; Windows NT 5.1;
Trident/4.0; .NET CLR 2.0.50727;
.NET CLR 3.0.04506.30; .NET

CLR 3.0.04506.648; .NET CLR
3.5.21022)"

59.92.27.113 59.88.0.0 59.99.255.255 BSNLNET - - [19/Nov/2008:12:38:42

-0800] "GET / HTTP/1.1" 302
309 "-" "Mozilla/5.0 (Windows;
U; Windows NT 5.1; en-US;
rv:1.9.0.4) Gecko/2008102920
Firefox/3.0.4"

60.50.230.247 60.48.0.0 60.54.255.255 XDSLSTREAMYX - - [16/Nov/2008:21:06:18

-0800] "GET / HTTP/1.1" 404
293 "-" "Mozilla/4.0 (compat-
ible; MSIE 6.0; Windows 98)"

61.135.0.92 61.135.0.0 61.135.255.255 CNCGROUP BJ - - [22/Nov/2008:07:07:16

-0800] "GET / HTTP/1.1" 302 309
"-" "Baiduspider+(+http://www.
baidu.com/search/spider.htm)"

www.it-ebooks.info

http://www
http://www.it-ebooks.info/

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP 287

Note Thanks to Apress for the log file samples.

Design 1: Brute-Force MapReduce

The brute-force MapReduce pattern is generally the quickest to get going and the simplest to
manage. The downside is that these jobs quickly become bound by the network speed and the
sorting speed for the cluster.

In a brute-force MapReduce, the only time you have ordered data is in the reduce step.
This forces all of the data to flow through to the reduce task. There is also the additional com-
plexity that you have multiple record types, which need to be distinguished at reduce time.

The overriding constraint here is ensuring that any given search request record finds all
records that it is in range of in the search space.

A Single Reduce Task

If a single reduce task is used, all search request records are guaranteed to be in the same par-
tition as their respective search space records. Table 9-2 defines the comparator behavior for
the three cases the comparator will encounter.

Table 9-2. Comparator Cases

Comparison Comparison
Type of Item 1 Region of Item 1 Type of Item 2 Region of ltem 2 Equality Condition
Search request Entire key Search request Entire key Key, equal to key,
Search request Entire key Search space Begin range Search request key equal to
begin range
Search space Begin range, Search space Begin range, Begin range, equal
end range end range to begin range, and end

range, equal to end range,

The input plan for the reduce method is to receive individual records and to manage the
join behavior by maintaining memory about previous records. This adds complexity to the
reduce method and increases the risk of out-of-memory conditions. To enable the framework
to do the aggregation would require having redundant data in the records; the end range
would need to be in the value of the search space records. This requirement is driven by the
fact that the OutputCompartor object receives only the key. A simplification that results from
this decision is that, in the first pass, using Text is acceptable for the key and value, as the
records may be distinguished lexically. In a future step, as a performance optimization, we will
implement a key class that provides a WritableComparator that handles our keys at the byte
level rather than at the object level. Using the byte-level comparator for a complex key opens
the door to the key format and the comparator getting out of sync, introducing the possibility
of errors.

www.it-ebooks.info

http://www.it-ebooks.info/

288

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP

Note Having Text objects for the key and value greatly simplifies the initial debugging of the jobs, as the
data can be readily examined by eye.

Key Contents and Comparators

For simplicity in this pass, we are going to use the same object, Text, for the keys for both
datasets, and Text for the values. To do this, a simple encoding must be defined that allows the
origination dataset to be determined easily from the text of the key. If there is a way to do this
without needing to write a custom comparator, the job can be up and running very quickly.
For the stock comparator to work, the keys must lexically compare an order that the reduce
method understands and can process with minimal complexity.

In this application, a key is an IPv4 address for a search request record, and a pair of IPv4
addresses for the search space records. If all IP addresses are encoded as a zero-padded, fixed-
length hexadecimal string, the primary lexical ordering issue is addressed. This leaves a single
issue: lexically, keys for the search requests will sort before a search space key that has a begin
range value equal to the key of the search request. In the best of all possible worlds, search
request keys would appear in the sorted output, after the search space key that opens the
range for the request.

The search space key may simply be the begin range and end range values, with a separa-
tor character. There are many simple tools for splitting strings based on a separator character.
This has the advantage that if a lexically larger character is used as a suffix for the search
request keys, the search request keys will sort after the search space key that defines the rel-
evant range. An example is shown in Table 9-3.

Table 9-3. Expected Sorting Order for Search Space and Search Request Keys Using a Separator
Character for the Space Range and a Suffix Character for the Request Keys

Address Key Type Encoded Key
220.255.7.213:220.255.7.217 Space dcffo7ds:dcffo7d9
220.255.7.217 Search dcff07d9;

This can be quickly tested by running a small sample dataset through a streaming job
to verify that the data compares the way we expect. A test dataset will be prepared from an
Apache log file, with the Perl command in Listing 9-1. The code in this section takes the first
field of the access log, commonly an IP address, and converts it to an unsigned integer, which
is then printed as an eight-character-wide hexadecimal number, with a semicolon (;), as a
suffix. A fake range is generated by printing that original value, without the semicolon, with a
number ten higher, with a colon (:) separating them. A few lines of the output are included.
Notice that the output ordering is exactly the reverse of what our application needs.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP

Note Listing 9-1 is structured to run from within the Cygwin environment, in the examples directory, on
a Windows installation. Adjust the paths and file names as needed for your local installation.

Listing 9-1. Generating a Sample Set of IP Addresses and Ranges from an Apache Log File

perl -MSocket -ne 'chomp; my @parts = split(/\s/, $); my $ip = $parts[o0]; =
my $val = inet aton($ip); my $num = unpack("N", $val); printf "%08x;\n", w=
$num; printf w"%08x:%08x\n", $num, $num+10;' < access log.txt | w=

sort -u > 'C:\tmp\dataset'

head /cygdrive/c/tmp/dataset

0c065a60:0c065a6a
0c0653a60;
0c067f4d:0c067157
0c067f4d;
0c06e9c7:0c06e9d1
0c06e9c7;
0co6ef2d:0co6ef37
0co6ef2d;
0c1e1694:0clel69e
0c1e1694;

In the command shown in Listing 9-1, a dataset was prepared with converted IP addresses
from an Apache log file. Listing 9-2 runs a streaming job to see how the records will actually be
sorted by the default comparator. As you can see from the Listing 9-2 output, the search space
records (0c065a60:0c065a6a) sort before a search request record that starts with the same
address (0c065a60;). Success—this is the pattern we were hoping to achieve.

Note Cygwin users are likely to always have an error message that starts with cygpath: cannot
create short name of c:\Documents and Settings\Jason\My Documents\Hadoop Source\
hadoop-0.19\1ogs. This error may be ignored. Listing 9-2 is structured to run from the Hadoop installation
directory.

Listing 9-2. Running a Streaming Job to Verify Comparator Ordering

bin/hadoop jar contrib/streaming/hadoop-0.19-streaming.jar -D =
mapred.job.tracker=local -D fs.default.name=file:/// -input 'C:\tmp\dataset' =
-output 'C:\tmp\sorted' -mapper 'C:\cygwin\bin\cat' -reducer 'C:\cygwin\bin\cat' =
-numReduceTasks 1;

www.it-ebooks.info

289

file:///-input
http://www.it-ebooks.info/

290 CHAPTER 9 SOLVING PROBLEMS WITH HADOOP

jvm.JvmMetrics: Initializing JVM Metrics with processName=JobTracker, sessionld=

mapred.JobClient: No job jar file set. User classes may not be found. =
See JobConf(Class) or JobConf#setJar(String).

mapred.FileInputFormat: Total input paths to process : 1
streaming.StreamJob: getlocalDirs(): [/tmp/hadoop-Jason/mapred/local]
streaming.StreamJob: Running job: job_local 0001
streaming.StreamJob: Job running in-process (local Hadoop)

mapred.FileInputFormat: Total input paths to process : 1

mapred.MapTask: numReduceTasks: 1

mapred.MapTask: io.sort.mb = 1

mapred.MapTask: data buffer = 796928/996160

mapred.MapTask: record buffer = 2620/3276

streaming.PipeMapRed: PipeMapRed exec [C:\cygwin\bin\cat]
streaming.PipeMapRed: R/W/S=1/0/0 in:NA [rec/s] out:NA [rec/s]
streaming.PipeMapRed: R/W/S=10/0/0 in:NA [rec/s] out:NA [rec/s]
streaming.PipeMapRed: R/W/S=100/0/0 in:NA [rec/s] out:NA [rec/s]
streaming.PipeMapRed: mapRedFinished

streaming.PipeMapRed: Records R/W=616/1

streaming.PipeMapRed: MRErrorThread done

streaming.PipeMapRed: MROutputThread done

mapred.MapTask: Starting flush of map output

mapred.MapTask: Finished spill 0

mapred.TaskRunner: Task:attempt local 0001 m 000000 0 is done. ‘=
And is in the process of commiting

mapred.LocalJobRunner: Records R/W=616/1

mapred.TaskRunner: Task 'attempt local 0001 m 000000 0' done.
streaming.PipeMapRed: PipeMapRed exec [C:\cygwin\bin\cat]

mapred.Merger: Merging 1 sorted segments

mapred.Merger: Down to the last merge-pass, with 1 segments =
left of total size: 10474 bytes

streaming.PipeMapRed: R/W/S=1/0/0 in:NA [rec/s] out:NA [rec/s]
streaming.PipeMapRed: R/W/S=10/0/0 in:NA [rec/s] out:NA [rec/s]
streaming.PipeMapRed: R/W/S=100/0/0 in:NA [rec/s] out:NA [rec/s]
streaming.PipeMapRed: mapRedFinished

streaming.PipeMapRed: MRErrorThread done

streaming.PipeMapRed: Records R/W=616/1

streaming.PipeMapRed: MROutputThread done

mapred.TaskRunner: Task:attempt local 0001 r 000000 0 is done. =
And is in the process of commiting

mapred.LocalJobRunner:

mapred.TaskRunner: Task attempt local 0001 r 000000 0 is allowed to commit now

mapred.FileOutputCommitter: Saved output of task =
"attempt_local 0001 _r 000000 0' to file:/C:/tmp/sorted

mapred.LocalJobRunner: Records R/W=616/1 > reduce

mapred.TaskRunner: Task 'attempt local 0001 r 000000 0' done.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP 291

streaming.StreamJob: map 100% reduce 100%
streaming.StreamJob: Job complete: job local 0001
streaming.StreamJob: Output: C:\tmp\sorted

head /cygdrive/c/tmp/sorted/part-00000

0c065a60:0c065a6a
0c0653a60;
0c067f4d:0c067f57
0c067f4d;
0c06e9c7:0c06e9d1
0c06e9c7;
0cO06ef2d:0co6ef37
0co6ef2d;
0c1e1694:0clel69e
0c1e1694;

A Helper Class for Keys

Key management is critical for this job, and to help avoid introducing errors later in the appli-
cation life cycle, a helper class for keys will be provided. The initial version needs to be able to
validate, pack, and unpack keys to and from the Text objects.

TASK-SPECIFIC CONFIGURATION PARAMETERS

The Hadoop framework creates a runtime environment for the tasks of the job. In the TaskTracker’s local
working area, the path set defined by the configuration key, mapred.local.dir, a directory tree is built
for the job, which contains the unpacked DistributedCache items, a file job.xml that contains the

job configuration, a shared directory for all tasks of the job, and a working directory for the task to be run.

An instance of the configuration date is created, and the per-task information modified by adding per-task
parameters and adjusting the paths of configuration parameters that have been unpacked into the job or task
working areas. The bulk of this localization process is handled by TaskTracker.localizeJob. The follow-
ing parameters are added or modified for a task as of Hadoop 0.19.0:

e job.local.dir: The directory that will be used as root of the local file system space allocated
for this job. JobConf.getJoblLocalDir () returns this directory. All tasks of this job running on a
TaskTracker node will share this directory. A Java system property of the same name is also set.

e mapred.local.dir: The root of the local file system space for this TaskTracker node.
e map.input.file: For the map task, the input file name, if the input split has a file name.

e map.input.start: For the map task, the starting offset in the map.input.file.

www.it-ebooks.info

http://www.it-ebooks.info/

292 CHAPTER 9 SOLVING PROBLEMS WITH HADOOP

e map.input.length: The amount of data to read from map. input.file, starting from map.input.
start.

® mapred.tip.id: The task ID for this task. All task attempts for this task will have the same value for
this key.

e mapred.task.id: The task ID for this attempt of this task. The framework will make multiple
attempts to complete a task. This value for this key holds the ID of the current attempt instance. In
Hadoop 0.19, the value stored under this key is very similar to mapred.tip.id, except that it will
have a prefix of attempt_. This is unique per task run.

* mapred.task.is.map: Setto true if this is a map task.

e mapred.task.partition: The partition number for this task, if known. For a map task, this is the
ordinal number of the task. For a reduce task, it is both the ordinal number of the reduce task and the
result of Partitioner.getPartition(K,V, numPartitions), which will be identical for all
key/value pairs passed to this reduce task.

e mapred.job.id: The ID of the job that this task is being run on behalf of.

e mapred.work.output.dir: The task-specific directory that output files will be created in by default.
FileOutput.getWorkOutputPath(JobConf conf) provides this value.

* mapred.map.tasks: In the reduce task, the actual number of map tasks that succeeded.

e hadoop.net.static.resolutions: Any hostname/IP address mappings that will override the nor-
mal lookup results.

e task.memory.mgmt.enabled: Set to true if the TaskTracker is enforcing memory utilization limits.

In our example, four classes are associated with key handling:

* Aninterface, KeyHelper<K>
¢ An abstract class, AbstractKeyHelper<K>
¢ Animplementation, TextKeyHelperWithSeparators, for Text-based keys

e Aunit test, TestTextKeyHelperhWithSeparators, to verify the expected behavior

These classes provide a way to extract the IP address from a key, shown in Listing 9-3,
and to pack IP addresses into a key, shown in Listing 9-4. Two configuration parameters are
available: examples.ch9.search.suffix.char, which defines the character to be used as a suffix
when encoding a search request IP address, and examples.ch9.range.separator.char, which
defines the character to be used to separate a pair of IP addresses in a search space key. These
parameters have default values of semicolon (;) and colon (:), respectively. They may be any
pair of characters, as long as the range separator character sorts first.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP

Listing 9-3. boolean TextKeyHelperWithSeparators.getFromRaw(Text raw)

public boolean getFromRaw(Text raw) {

isValid = false;

hasEndRange = false;

String rawText = raw.toString();

if (rawText.length()==(addressLen+1)
88 rawText.charAt(addresslLen)==searchRequestSuffix) {
String searchRequest = rawText.substring(0, addresslLen);
beginRangeOrKey = Long.valueOf(searchRequest,16);

} else if (rawText.length()==(addressLen*2+1)

88 rawText.charAt(addresslLen)==rangeSeparator) {

String beginRange = rawText.substring(0, addressLen);
beginRangeOrKey = Long.valueOf(beginRange,16);
endRange = Long.valueOf(rawText.substring(addressLen+1,addresslLen*2+1),16);

/** Verify that the begin range is less or equal to the end */
if (beginRangeOrKey>endRange) {
if (LOG.isDebugEnabled()) {
LOG.debug("key [" + rawText + "] length " + rawText.length() + " begin > end "
+ beginRangeOrKey + " " + endRange);

}

return false;

}
hasEndRange = true;

} else {
if (LOG.isDebugEnabled()) {

LOG.debug("key [" + rawText + "] length " + rawText.length() + " invalid");

}
/** length is wrong, or the separator or suffix is wrong. */
return false;

}

isValid = true;

return true;

}

In Listing 9-3, the key is converted to a String and examined to see if it is one of the two
patterns that are accepted. All IP addresses will be encoded as eight hexadecimal digits. If the
key is a search request, there will be one IP address and a trailing searchRequestSuffix charac-
ter only, forcing the string to be only nine characters in length. If the key is a search space item,
there will be two IP addresses, with a rangeSeparator character between them only, forcing the
string to be seventeen characters in length. The IP addresses are converted into long values via
Long.valueOf(address,16). The String.substring method is used for extracting the actual IP
address data from the raw string.

www.it-ebooks.info

293

http://www.it-ebooks.info/

294

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP

If a valid search request or search space definition is found, the helper object is marked
valid, isValid = true, and beginRangeOrKey is set to the first IP address found. If the key con-
tained a search space request, hasEndRange is set to true and endRange is set to the second IP
address.

The setToRaw method, in Listing 9-4, is used to create and store a value in a key object that
correctly encodes either a search request or a search space. If the helper object is not valid,
nothing is done, and no indication of this is made. This will open the door to missing errors.
Changing this behavior requires rearchitecting the application to provide a visible trace of this
error; logging it is not likely to be sufficient. A StringBuilder and Formatter are ThreadlLocal
instance variables, making this class thread-safe. This is done as a small efficiency and a pro-
tection against the day when the helper is used in a multithreaded map task.

Listing 9-4. void TextKeyHelperWithSeparators.setToRaw(Text raw)

public void setToRaw(Text raw) {
if (!isvalid) {
return;
}
Formatter fmt = keyFormatter.get();
fmt.flush();
StringBuilder sb = keyBuilder.get();
sb.setLength(0);

if(hasEndRange) {
fmt.format("%08x%c%08x", beginRangeOrKey, rangeSeparator, endRange);
} else {
fmt.format("%08x%c", beginRangeOrKey, searchRequestSuffix);
}
fmt.flush();
raw.set(sb.toString());

}

Note It is reasonable to assume that anything written to the log by a task will never have been seen by a
human being unless something is visibly wrong with the job. The volume of data is just too large.

The Mapper

With the plan for the comparator handled, it is time to design the mapper. This mapper must
handle two tasks:

» For the search requests, the mapper must accept Apache log files and extract a key
from the line in the key format, passing the rest of the line as the value.

¢ The search space items will be stored as straight text, with a tab (\t) separating the
range from the data. The mapper may distinguish between the two records either from
the input file name or by the length of the key.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP 295

As a demonstration of using chain mapping, our mapper is going to run a chain to process
the incoming values. The first element in the chain will take action only if the incoming record
does not look like a search request or search space key, but instead looks like an Apache log file
record. This mapper will transform the record into a search request. The next map in the chain
will perform validity checking on the keys.

Note In the next version, the example will use org.apache.hadoop.mapred.lib.MultipleInputs,
and have the search space dataset be in a SequenceFile. For simplicity of debugging, this version uses text
records only.

This example has two mapper classes: ApacheLogTransformMapper and KeyValidatingMap-
per. Listing 9-5 shows the mapper preamble in ApacheLogTransformMapper. This demonstrates
our standard practice of having a counter, named TOTAL INPUT. This provides a clear indica-
tion of how the job is going. The helper object parses a string that is either a search request
or a search space, returning true if the key was recognized. In this preamble, if the helper
can parse the key, it is just passed forward. As a general rule, we log per-key data only at level
debug, as the logging volume will be very large.

Listing 9-5. The Mapper Preamble, ApacheLogTransformMapper.java
reporter.incrCounter("ApachelLogTransformMapper"”, "TOTAL INPUT", 1);
if (helper.getFromRaw(key)) {

reporter.incrCounter("ApachelLogTransformMapper"”, "ALREADY PREPARED KEYS", 1);
if (LOG.isDebugEnabled())

LOG.debug("complete key passed forward untouched [" + key + "]");
}
output.collect(key, value);
return;

In Listing 9-6, the key was not recognized as a prepared key and is assumed to be an
Apache log line. If the input separator for the TextInputFormat happens to be a single space:

conf.get("key.value.separator.in.input.line", "\t");

then the key is assumed to be the IP address. The test keyValueSeparator.length()==1 8&
keyValueSeparator.charAt(0)==" " verifies this.

Note If the input format happens to not be KeyValueTextInputFormat, the configuration key changes
in KeyValueTextInputFormat, or the default value changes, this code will fail silently.

www.it-ebooks.info

http://www.it-ebooks.info/

296

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP

The method parseAddressIntoKey() will take the IP address and convert it into our estab-
lished format and pass the new key and the value to the output.

Lisitng 9-6. The Mapper Log Line Processing Part 1, ApacheLogTransformMapper.java

if (LOG.isDebugEnabled()) { LOG.debug("Working on [" + key + "]1"); }
reporter.incrCounter("ApachelLogTransformMapper"”, "LOG LINES", 1);
String logline = key.toString();
String keyValueSeparator = conf.get("key.value.separator.in.input.line", "\t");
String ipAddress;
/** The IP address in the standard log file entry is the first field,
* with a trailing space to separate it from the next field.
*/
if (keyValueSeparator.length()==1 &8 keyValueSeparator.charAt(0)==" ") {
/** The key and value are already parsed out. */
ipAddress = logline;
if (parseAddressIntoKey(ipAddress, outputKey, reporter)) {
reporter.incrCounter ("ApachelLogTransformMapper”, "VALID LOG LINES", 1);
if (LOG.isDebugEnabled()) {
LOG.debug("Key transforms from [

n n

+ key + "] to [" + outputKey + "]");

}
output.collect(outputKey, value);
return;

}

In Listing 9-7, the default case of a raw log line is handled. This code does make the
assumption that the keyValueSeparator computed in Listing 9-6, is correct. A complete line is
assembled in sb, and then parsed. The IP address is assumed to be the first text in the line and
to be terminated by an ASCII space character. This code accepts only IPv4 addresses in the
format of four dot-separated octets. Once the correct key and new value are produced, they
are output. The use of chain mapping actually reduces the efficiency of the task, but it is nice
to have a demonstration.

Listing 9-7. The Mapper Log Line Processing Part 2, ApacheLogTransformMapper.java

/** For paranoia sake, reassemble the log line and split it ourselves
* on the first space. */

sb.setLength(0);

sb.append(logline);

sb.append(keyValueSeparator);

sb.append(value.toString());

logline = sb.toString();

int indexOfSpace = loglLine.indexOf(' ');

if (indexOfSpace< 7 || indexOfSpace > 15) {
/XXX XXX XXX XXX = 15 chars, 1.1.1.1 = 7 chars */

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP

if (LOG.isDebugEnabled()) {

LOG.debug("Log line does not start with an ip address [" + logline + "]");
}
reporter.incrCounter ("ApachelLogTransformMapper”, "BAD LOG LINES", 1);
return;

}

ipAddress = logline.substring(0,index0OfSpace);
logline = logline.substring(indexOfSpace+1);

if (parseAddressIntoKey(ipAddress, outputKey, reporter)) {
outputValue.set(logline);
reporter.incrCounter ("ApachelLogTransformMapper”, "VALID LOG LINES", 1);
if (LOG.isDebugEnabled()) {
LOG.debug("Key transforms from [" + key + "] to [

+ outputKey + "1");
}

output.collect(outputKey, outputValue);

return;

The KeyValidatingMapper, shown in Listing 9-8, just checks the keys for the proper
shape—that they are valid IPv4 addresses—and swaps the search space begin and end range
values if begin is greater than end. At this point, all keys are assumed to be valid, and this map
verifies that. Several counters are kept to help with sort and long-term monitoring of the job.

Listing 9-8. KeyValidatingMapper.java

if ('helper.getFromRaw(key)) {
reporter.incrCounter("KeyvalidatingMapper"”, "INVALID KEYS", 1);
return;

}

if (helper.isSearchRequest()) {
reporter.incrCounter("KeyValidatingMapper", "TOTAL SEARCH", 1);

if (helper.getSearchRequest()<0 || helper.getSearchRequest()>4294967296L) {
if (LOG.isDebugEnabled()) {
LOG.debug("Search Key out of range [" + key + "]");

}

reporter.incrCounter("KeyValidatingMapper"”, "SEARCH OUT OF RANGE", 1);
return;

}

output.collect(key, value);
return;

} else {
reporter.incrCounter("KeyValidatingMapper", "TOTAL SPACE", 1);

www.it-ebooks.info

297

http://www.it-ebooks.info/

298 CHAPTER 9 SOLVING PROBLEMS WITH HADOOP

if (helper.getBeginRange()<0||helper.getBeginRange()>4294967296L) {
reporter.incrCounter("KeyValidatingMapper", "SPACE BEGIN OUT OF RANGE", 1);
return;

}

if (helper.getEndRange()<0||helper.getEndRange()>4294967296L) {
reporter.incrCounter("KeyValidatingMapper", "SPACE END OUT OF RANGE", 1);
return;

}

/** Verify the ordering of the search space item. */
if (helper.getBeginRange()<=helper.getEndRange()) {
output.collect(key, value);
return;

} else {
reporter.incrCounter("KeyValidatingMapper", "SPACE OUT OF ORDER", 1);
long tmp = helper.getBeginRange();
helper.setBeginRange(helper.getEndRange());
helper.setEndRange(tmp);
helper.setToRaw(outputKey);
output.collect(outputKey, value);
return;

The Combiner

The combiner is often one of the more complex pieces of a MapReduce job, and it’s usually
given the least thought. What is the correct behavior for encountering duplicate keys in the
map output? For simple aggregation jobs, this is straightforward. In our case, we have two dif-
ferent types of keys, and what to do for a duplicate in either case is unclear.

The first proposal would be to use a TextArrayWritable, and just keep all of values. This
doesn’t provide much of a space saving, compared to just not running a combiner. The second
proposal would be to discard duplicates. Neither choice is appealing. A combiner should pro-
vide either a significant reduction in I/O volume or a significant reduction in resource use for
the reduce phase. Neither of the preceding proposals can provide those. If a custom compara-
tor were written, a combiner might make sense.

In the type of MapReduce application we are working on here, a combiner that suppresses
duplicate key/value pairs could be helpful. In our constructed example, we know there are no
exact duplicates.

The Reducer

Each reducer task will need to receive a stream of key values, where the range statements will
be first in the sorting order. This forces the reducer class to maintain state information about
which ranges have been seen, and the value of those ranges. This prior range information is

bounded, and ranges may be flushed when the end range value is less than the current input

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP

key. As an added bonus, the reduce task is also run as a chain, with a postprocessing map that
converts the encoded key formats back into dot-separated octet format. The actual reduce task
is performed by ReducerForStandardComparator. java, shown in Listing 9-9.

Lisitng 9-9. ReducerForStandardComparator.java

reporter.incrCounter ("ReducerForStandardComparator”, "TOTAL KEYS", 1);

if ('helper.getFromRaw(key)) {
reporter.incrCounter("ReducerForStandardComparator”, "BAD KEYS", 1);
return;

}

if (helper.isSearchSpace()) {
reporter.incrCounter("ReducerForStandardComparator”, "SPACE KEYS", 1);

/** For simplicity, put all of the values in. */
while (values.hasNext()) {
final Text value = values.next();
reporter.incrCounter ("ReducerForStandardComparator"”, "SPACE VALUES", 1);
activeRanges.activate(reporter, "ReducerForStandardComparator”, w
helper.getBeginRange(), helper.getEndRange(), value.toString());
}

return;

}

if (helper.isSearchRequest()) {
/** First, lets prune the activeRanges. */
final long searchRequest = helper.getSearchRequest();
activeRanges.deactivate(searchRequest);

/** Because the ranges are removed when their end is less than end,
* and because keys are always sorted after the beginning of a range
* all active ranges are now 'hits' for this search request.

*/
int max = activeRanges.size();
while (values.hasNext()) {
final Text value = values.next();
for (int i = 0; 1 < max; i++) {
ActiveRanges.Range<String> hit = activeRanges.get(i);
handleHit(key, output, reporter, value, hit);

In Listing 9-9, our standard counters are in use. At this point, any invalid key is an indica-
tion that something has gone very wrong—data corruption at some level, given the level of
verification performed on the keys in earlier steps.

www.it-ebooks.info

299

http://www.it-ebooks.info/

300

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP

Our algorithm is very simple. We keep a queue of networks, ordered by the network end-
of-address range. If the current key is a search request and the current key is larger than the
end of a network’s address range, the network is removed from the active queue. The call
activeRanges.deactivate(searchRequest) clears any networks from the activeRanges queue
that can no longer be matched. If the current key is a search space key, it is added to the set of
active ranges, via the following:

activeRanges.activate(reporter, "ReducerForStandardComparator"”,
helper.getBeginRange(), helper.getEndRange(),
value.toString());

At this point, each network in activeRanges is a match. A network’s end range is guaran-
teed to be larger than the search request key, and due to our comparator’s ordering of the keys,
the network begin range must be less than or equal to our search request.

For each log line, while (values.hasNext()), an output record is generated for each net-
work, for (int i = 0; 1 < max; i++) {, viathe call to handleHit(key, output, reporter,
value, hit), which is shown in Listing 9-10.

Listing 9-10. ReducerForStandardComparator.handleHit

StringBuilder sb = new StringBuilder();
Formatter fmt = new Formatter(sb);

protected void handleHit(Text key,
OutputCollector<Text, Text> output, Reporter reporter,
Text value, Range<String> hit) throws IOException {

/** For this version we leave the end alone. */

sb.setLength(0);

fmt.format("%s\t%s", hit.getValue(), value.toString());

fmt.flush();

outputValue.set(sb.toString());

sb.setLength(0);

/** Lose the suffix */

fmt. format("%8.8s\t%08x\t%08x", key.toString(),
hit.getBegin(), hit.getEnd()); fmt.flush();

outputKey.set(sb.toString());

output.collect(outputKey, outputValue);

In Listing 9-10, a StringBuilder and Formatter are built. These are used to construct the
actual output key and output value. The key will be the original log record IP address, followed
by the network begin and end addresses. For ease of parsing, these will be separated by an
ASCII tab character. The value is simply the network name, ASCII tab, and the rest of the origi-
nal log line.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP

The Driver

The driver, shown in Listing 9-11, builds on our base class, utils/MainProgramShell. java,
and defines only a small number of methods. This example relies on there being only a single
reduce task, as the default partitioner will cause this job to fail. In our next design iteration, we
will write a custom partitioner.

All of the examples in this chapter are structured to run on small machines, so the reduce
sort space has been reduced from 100MB to 10MB, using the following line:

conf.setInt("io.sort.mb", 10);

The values for input and output are set by the use of the command-line flags --input and
--output, respectively. The setup follows the general rule for using the chain, and allocates
dummyConf to use as the private configuration object for the chained map and reduce tasks. The
framework serializes the contents in each call to the ChainMapper methods, making it safe to
clear dummyConf and reuse it.

Listing 9-11. The Job Setup, BruteForceMapReduceDriver.java

super.customSetup(conf);
conf.setJobName("BruteForceRangeMapReduce");
conf.setNumReduceTasks(1);
conf.setInt("io.sort.mb", 10);
conf.setInputFormat(KeyValueTextInputFormat.class);
for(String input : inputs) {

if (verbose) {

LOG.info("Adding input path " + input);

}

FileInputFormat.addInputPaths(conf, input);
}
if (verbose) {

LOG.info("Setting output path " + output);
}
FileOutputFormat.setOutputPath(conf, new Path(output));
conf.setOutputFormat(TextOutputFormat.class);

JobConf dummyConf = new JobConf(false);
ChainMapper.addMapper (conf, ApachelogTransformMapper.class,
Text.class, Text.class, Text.class, Text.class, false, dummyConf);
dummyConf.clear();
ChainMapper.addMapper (conf, KeyValidatingMapper.class, Text.class, Text.class,
Text.class, Text.class, false, dummyConf);

dummyConf.clear();
ChainReducer.setReducer(conf, ReducerForStandardComparator.class,
Text.class, Text.class, Text.class, Text.class, false, dummyConf);
dummyConf.clear();
ChainReducer.addMapper(conf, TranslateBackToIPMapper.class,
Text.class, Text.class, Text.class, Text.class, false, dummyConf);

www.it-ebooks.info

301

http://www.it-ebooks.info/

302

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP

The map and reduce methods used do not modify the passed-in key or value objects;
therefore, the chaining framework is being formed to pass keys and values by reference. The
second-to-last argument, false, in the ChainMapper.addMapper and ChainMapper.setReducer
methods forces this behavior.

All of the mappers and reducers expect Text objects for the input key and value, and out-
put Text. In an updated version of chaining, in which the key and value objects implement
WritableComparable and Writable, passing TextKeyHelperWithSeparators objects for the key
would probably be significantly more efficient.

The Pluses and Minuses of the Brute-Force Design

The biggest plus of this design is that it is simple and took about a day to put together. The
biggest disadvantages are that all of the data must pass through the mapper and be sorted,
and that only a single reduce task may be used. Given that the total number of networks is
relatively bounded, if the incoming log records are batched in smaller sizes, this job will run
reasonably well and reasonably fast. Without a custom partitioner, this job cannot be made
to run with multiple reduce tasks.

Design 2: Custom Partitioner for Segmenting the
Address Space

The biggest boost for the brute-force method would be to find a simple way to allow multiple
reduce tasks. The standard partitioner uses the hash value of the key, modulus the number of
partitions as the partition number. A simple strategy for this application might be to simply
segment the IP address range. There is no guarantee that the network ranges will fall cleanly
on these segments. There will need to be a mechanism to split search space keys into segment-
appropriate boundaries during the job, while putting the full range in the output record.
Perhaps simply modifying the format for the search space records to allow for an original
range to be part of the record will address this.

Note This partitioning method is still subject to uneven distributions of the key space resulting in a subset
of reduce tasks running much longer. To ameliorate this, the key space may be sampled and the partitioning
table built using the sample data, in @ manner similar to that done by the Hadoop terasort example.

The Simple IP Range Partitioner

The partitioner class for this example is SimpleIPRangePartitioner. The getPartition()
method, shown in Listing 9-12, simply takes the IP address of a search request key or the begin
range address of a search space key and returns the partition for that record.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP

A SCOPE REDUCTION IN THE PARTITIONER

The original design supported a configurable table to ensure that the records were partitioned approximately
evenly. This required a tool to scan the records to generate a distribution map and code to load that map into
the partitioner. During the process of actually writing the code, the decision was made that if that feature is
needed, it may be implemented later. Instead, each partition gets an approximately even number or span of
addresses out of the IPv4 space.

For a job with one reduce task, the span for partition 0 is from 0.0.0.0 t0 255.255.255.255. For
a job with two reduce tasks, partition 0 would span from 0.0.0.01t0 127.255.255.255, and partition 1
would span from 128.0.0.0t0 255.255.255.

This left a few artifacts in the SimpleIPRangePartitioner. A TreeSet is used instead of simply
maintaining an array of long values. The array of long values would be faster and would greatly reduce object
churn.

Listing 9-12. SimpleIPRangePartitioner.getPartition

@verride
public int getPartition(final Text key, final Text value, final int numPartitions) {
if (!(helper.getFromRaw(key) 8&& helper.isValid())) {
throw new IllegalArgumentException("key " + key +
" cannot be parsed as a network range set");
}
/** The IP address that effectively defines this range. */
final long begin;

if (helper.isSearchRequest()) {

begin = helper.getSearchRequest();
} else {

begin = helper.getBeginRange();
}

/** Find the bucket in ranges that is the lowest bucket
* that is valued higher than begin.
* That bucket's partition is the partition for this value.
*/e
final Entry<Long, Integer> partition = ranges.higherEntry(Long.valueOf(begin));
/** Stored as a variable for debugging ease */
final int realPartition = partition.getValue();

assert (helper.isSearchSpace() ? partition.getKey() >= helper.getEndRange() : true)
: String.format("search space range end %08x exceeds partition limit %0x8",

helper.getEndRange(), partition.getKey());

return realPartition;

www.it-ebooks.info

303

http://www.it-ebooks.info/

304

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP

The first step is to initialize the key helper and to determine if the key is actually a valid
search space or search request key:

if (!(helper.getFromRaw(key) && helper.isValid())) {

If the key is valid, the IP address of the search request record or the range begin address
of the search space record is stored in begin. Once begin is known, it may be looked up in the
table, ranges, that maps addresses to reduce partitions. The table is actually a TreeMap, and
entry keys are the ending IP address of the partition. The partition number is the entry value.
This data structure allows the following line to provide the entry of the partition that the key/
value pair must go to:

partition = ranges.ceilingEntry(Long.valueOf(begin));

The TreeMap method higherEntry returns the element in ranges where the entry key is
closest to begin, while not being less than begin. range end is larger than begin. The value of
that entry is the partition number for this key/value pair.

For debugging purposes, the entry is assigned to a local variable, partition. The entry
value could simply be returned at this point, but a little checking is done to verify that this key/
value pair is a search space record, where the end of the search space is also an address that
will be in this partition. No checking is made for the case where ranges.higherValue returns
null, as it is assumed that the ranges table spans the full IPv4 address space range.

The ranges table is constructed in the configure() method, shown in Listing 9-13, as this
is the first time the number of reduce tasks is known.

Listing 9-13. SimpleIPRangePartitioner.configure

public void configure(JobConf job) {

conf = job;
/** Now that we have a conf object we can initialize the

* helper and build ranges, using the number of reduces. */
helper = new PartitionedTextKeyHelperWithSeparators(conf);

final int numPartitions = conf.getNumReduceTasks();
ranges = new TreeMap<Long,Integer>();
long rangeSpan = 4294967296L / numPartitions;

/** The partition that ends at <code>spanned</code> */
int partition = 0;
/** The end of the address space already in ranges. */
long spanned;
/** The value stored is the end of the range, the range
* starts at the previous value + 0, or for the first value
*at 0.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP

* Note that the test is less than and not less than or equals,
* the ranges have to end at 2732-1 as we only have 32 bits.
*/
for (spanned= rangeSpan; spanned < 4294967296L; spanned += rangeSpan, partition++) {
ranges.put(spanned, partition);
}
/** First address is 0, last address is 2”32 - 1, make sure we cover
* all the way to the end of the range if
* the 2732/numPartitions is not an integer. The last partition may be a small */
if (spanned>4294967296L-1){
ranges.put(4294967296L -1, partition); /** The end range */
}

}

The first step is to save a copy of the JobConf object into conf, our standard practice. The
key helper for this example is PartitionedTextKeyHelperWithSeparators. This class delegates
to the TextKeyHelperWithSeparators class for any unrecognized input keys, and handles an
extended form for search space keys that provides a way of splitting a search space key across
multiple partitions and then assembling the resulting records later.

IPv4 addresses are simply unsigned 32-bit integer values, and the entire space runs from
0 through 4294967295 inclusive. Each partition will span approximately rangeSpan addresses,
defined as 4294967295L / numPartitions. The application uses long values to avoid issues with
sign extension, as Java does not provide an unsigned integer type.

The variable spanned contains the ending IPv4 address of the previous partition. Each pass
through the for loop adds rangeSpan to spanned defining the ending address of the next parti-
tion and increments the partition number:

for (spanned= rangeSpan; spanned < 4294967296L; spanned += rangeSpan, partition++) {
ranges.put(spanned, partition);

}

ranges.put(4294967296L -1, partition) stores the partition end address and partition
number in ranges. These are currently added in order, which is not optimal for a TreeMap, as
TreeMaps are stored as red-black trees and ordered insertion will result in an unbalanced tree.
Casting our gaze into the future, it seems unlikely that there may be more than small hundreds
of reduce tasks and a rewrite might be planned to eliminate the use of TreeMap and simply use
an array.

Search Space Keys for Each Reduce Task That May Contain
Matching Keys

The SimpleIPPartitioner also provides a method spanSpaceKeys, shown in Listing 9-14, which
is not part of the partitioner interface. Here, I took a design expedience step that perhaps was
not optimal given my later experience. I decided to use the BruteForceMapReduceDriver (List-
ing 9-11), and allow more than one reduce task. To achieve this, each search space record
must be replicated so that any partition that could have matching requests each gets a copy of

www.it-ebooks.info

305

http://www.it-ebooks.info/

306

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP

the search space record. The concept is that an addition map will, for each incoming search
space record, output a set of search space records such that each reduce partition that could
receive a matching search request will receive one of the output search space records. This
addition map, RangePartitionTransformingMapper (shown later in Listing 9-16), will be added
to the mapper chain.

Listing 9-14. SimpleIPRangePartitioner.spanSpaceKeys Preamble

public int spanSpaceKeys(PartitionedTextKeyHelperWithSeparators outsideHelper,
Text forConstructedKeys, final Text value,
final OutputCollector<Text, Text> output, Reporter reporter)
throws IOException {

/** If the key isn't valid bail. */

if (loutsideHelper.isValid()) {
reporter.incrCounter("KeySpanning”, "Invalid Keys", 1);
throw new IllegalArgumentException("Cannot span invalid keys");

}

/** This could just pass the key forward quietly. */
if (loutsideHelper.isSearchSpace()) {
reporter.incrCounter("KeySpanning", "Not Search Space", 1);
throw new IllegalArgumentException("Cannot span search request keys");

}

/** If the passed in key is a regular search space key,
* set the extended attributes for a spanning search space key. */
if (loutsideHelper.isHasRealRange()) {
outsideHelper.setRealRangeBegin(outsideHelper.getBeginRange());
outsideHelper.setRealRangeEnd(outsideHelper.getEndRange());

}

The first portion of Listing 9-14 handles the setup and validation. The calling con-
vention requires that the caller pass in an initialized key helper (outsideHelper) and the
value to output (OutputCollector). The Reporter object (reporter) is used to log metrics
and failures. The key helper is checked for validity (outsideHelper.isValid()) and that
it contains a search space request (outsideHelper.isSearchSpace()). If either constraint
check fails, an exception is thrown. The key helper class for these spanned keys has two
additional fields: the actual begin and end of the search space request. The begin and end
fields will now be fields for the address span of the partition for which the record is output.
outsideHelper.setRealRangeBegin(outsideHelper.getBeginRange()) and outsideHelper.
setRealRangeEnd(outsideHelper.getEndRange()) initialize the helper correctly if it is not
already set up.

As a quick recap, the search space key contains an IPv4 address range, represented as
a beginning and ending address. To enable multiple reduce tasks, the search space records
must be available in each reduce task that could receive search requests that would match
the search space record. This allows the search space requests to be mixed into the job input
with the search requests. Each search space key is split into a set of search space keys, such

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP

that each individual key contains that portion of the original range that fits within the range of
addresses that will be routed to a specific reduce task. Implicit is that each partition starts with
the address after the prior partition and there is no overlap in address space between parti-
tions. Partition 0 is assumed to start at address 0, (0.0.0.0), and the last partition is assumed to
end at 4294967295 (255.255.255.255).

The block of code in Listing 9-15 is the part of the spanSpaceKeys method that produces
the per-partition keys.

Listing 9-15. Producing Search Space Keys for the Required Reduce Partitions

NavigableMap<lLong, Integer> spannedRanges =
ranges.tailMap(outsideHelper.getRealRangeBegin(), true);

/** The loop below uses the the begin range of

* <code>outsideHelper</code> as the start point for the next

output record.

The end range value is used as a convenience and should not be used in test.
The real end and real beginning are always the actual

begin and end of the search space request.

* %X ¥ %

*/

helper.setBeginRange(outsideHelper.getRealRangeBegin());
helper.setRealRangeBegin(outsideHelper.getRealRangeBegin());
helper.setEndRange(outsideHelper.getRealRangeEnd());
helper.setRealRangeEnd(outsideHelper.getRealRangeEnd());

int count = 0;
/** The real ranges are untouched, and the begin range is moved up
* and the end range is just set in the loop.
* When end range <= the spankEnd no more ranges are spanned.
* the value of getEndRange() is never valid for use in tests.
*/
if (LOG.isDebugEnabled()) {
LOG.debug(String.format("Spanning key %x:%x %s", helper.getRealRangeBegin(),
helper.getRealRangeEnd(),value));
}
for(Map.Entry<Long, Integer> span : spannedRanges.entrySet()) {
final Long spanEnd = span.getKey();

/** If the newly adjusted begin range is past the end of our key's range,
* there will be no more keys output. so finish up */
if (helper.getBeginRange()>helper.getRealRangeEnd()) {
helper.isValid = false;
break; /** Done, no more ranges spanned. We could just
* return count from here, but this way there is only one
* valid exit point */

www.it-ebooks.info

307

http://www.it-ebooks.info/

308 CHAPTER 9 SOLVING PROBLEMS WITH HADOOP

/** This should never happen. */
if (spanknd.longValue() < helper.getBeginRange()) {
/** at least a partial span. */
throw new IOException(String.format(
"Constraint failure, the partition end %d %x is less than the key begin %d %x",
spanknd, spanknd, helper.getBeginRange(), helper.getBeginRange()));
}

/** The begin value for the current portion of <code>outsideHelper</code>
* is inside the span of this partition. We have to assume at this point
* that it is not before the start of the partition.
*
* If the spanEnd >= the getRealRangeEnd, this output key is contained entirely
* within this partition
*
*/

/** This case indicates that the end of this partition span is past the end of
* the real search space request.
* This is the last key that will be output, the output key end to be the real
* end and finish
*/
if (spanknd.longValue()>=helper.getRealRangeEnd()) {
/** The range of the key only extends to this partition. */
helper.setEndRange(helper.getRealRangeEnd());
if (LOG.isDebugEnabled()) {
LOG.debug(String.format(">= spanEnd %x %x of %x:%x %s",
spanknd, helper.getRealRangeEnd(), helper.getRealRangeBegin(),
helper.getRealRangeEnd(), value));

}

} else { // There will be at least one more output key after this one

/** In this case, the search space real end is past the end
* of this partition, output a record from the
* begin that was setup on the previous run through here or the initial
* condition and an end == to the span end
* and continue our loop
*/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP

// Has to be less than the real end range
helper.setEndRange(spanknd.longValue());
if (LOG.isDebugEnabled()) {
LOG.debug(String.format(" < spanEnd %x %x:%x %x:%x %s", spanknd,
helper.getBeginRange(), helper.getEndRange(),
helper.getRealRangeBegin(), helper.getRealRangeEnd(), value));

}

count++;

helper.setToRaw(forConstructedKeys);

output.collect(forConstructedKeys,value);
helper.setBeginRange(helper.getEndRange()+1); // One past the last record output
reporter.incrCounter ("KeySpanning", "Partition " + span.getValue(), 1);

}
reporter.incrCounter("KeySpanning", "OUTPUT KEYS", count);

return count;

The passed-in, parsed-input key is in outsideHelper, the working object is helper, and
the actual begin and end addresses for the network are stored in the real begin (helper.
getRealRangeBegin()) and real end (helper.getRealRangeEnd()) fields of helper.

The helper, a PartitionedTextKeyHelperWithSeparators object, holds both the actual
original search space key, using the realRangeBegin and realRangeEnd fields, and the begin and
end address of the range within a partition, in the begin and end fields. For each partition, the
begin helper.setBeginRange() and end helper.setEndRange() will be set to the address range
within that partition that this search space record will match, and the realRangeBegin and
realRangeEnd fields will be untouched.

The variable spannedRanges is a subset of ranges that contains only partitions that have
an end address larger or equal to the real begin range of the key, and equal to or less than the
real end range of the key. Put simply, spannedRanges contains the partitions that may contain
addresses that would match the passed-in search space record.

The following loop examines each of the candidate partitions in ascending order of the
partition end address:

for(Map.Entry<Long, Integer> span : spannedRanges.entrySet()) {

The variable spanEnd contains the ending address for the current partition. It is implicit in
the data structures used that spanEnd will be greater than or equal to helper.getBeginRange()
(the beginning address of the portion of the key that has not yet been output to a partition is
always available as helper.getBeginRange()).

When a per-partition key is to be output, the helper is set up with the correct end address
for that partition. The end address will either be the last address of the partition, spanEnd, or

www.it-ebooks.info

309

http://www.it-ebooks.info/

310

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP

the last address of the actual range, getRealRangeEnd(), whichever address is least. If the end
address of the output key is less than or equal to the end address of the current partition, no
more keys need to be output. The begin field of helper is set to the address after the end of the
previous output key, helper.setBeginRange(spanEnd.longValue()+1.

The core loop is run once for each potential partition that this key may need to have
arecord placed. The variable count keeps track of the number of records output, and span
contains the information about the current partition, in particular the end address and the
partition number. There are a couple checks: one to see if the partition end addresses are
not in ascending order (spanknd.longValue() < helper.getBeginRange()) and another to
see if the key has been fully spanned across the partitions (helper.getBeginRange()>helper.
getRealRangeEnd()).

There are two possible cases:

* The remaining portion of the key fits entirely in the current partition, span,
spankEnd.longValue()>=helper.getRealRangeEnd(). The range end of the helper is set to
the applicable end value in this case, helper.setEndRange(helper.getRealRangeEnd()).

¢ The key has address space that extends past the end of span. In this case,
helper.setEndRange(spanEnd.longValue()) is called.

The end of the loop actually builds the Text object with the appropriate data, helper.
setToRaw(forConstructedKeys), and resets begin to the address after the just output key,
helper.setBeginRange(helper.getEndRange()+1). Each input search space request now has a
record that will be placed by the partitioner into each partition that could have search requests
that match.

In RangePartitionTransformingMapper, shown in Listing 9-16, is a very simple map ()
method. It initializes the key helper from the passed-in key, helper.getFromRaw(key), and
for a valid search space key, calls the spanSpaceKeys method of SimpleIPPartitioner (search
requests are just passed through as output).

Listing 9-16. RangePartitionTransformingMapper

public void map(Text key, Text value,
OutputCollector<Text, Text> output, Reporter reporter)
throws IOException {
try {

reporter.incrCounter("RangePartitionTransformingMapper", "INPUT KEYS", 1);

if ('helper.getFromRaw(key)) {
reporter.incrCounter("RangePartitionTransformingMapper", "", 1);
return;

}

if (helper.isSearchRequest()) {
output.collect(key, value);
reporter.incrCounter(

"RangePartitionTransformingMapper"”, "Request Keys", 1);

return;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP

}

partitioner.spanSpaceKeys(helper, outputKey, value, output, reporter);
} catch(Throwable e) {
throwsIOExcepction(reporter, "RangePartitionTransformingMapper”, e);

}

The original concept was to take the search requests, feed them through the
RangePartitioningTransformingMapper using RangePartitionTransformingMapper as a driver
class, convert the search space records into a sorted and partitioned dataset, run another
MapReduce job over the incoming search requests, and then perform a map-side join on the
resulting datasets. After working with the data for a short time, I realized that the search space
was so small that it wasn’t worth the extra complexity or time to have an additional step for
presorting the search space records. I decided to simply add this mapper as part of the mapper
chain, and read the search space records as input with the search request records. The con-
figuration changes to BruteForceMapReduceDriver are shown in the next section.

Helper Class for Keys Modifications

The class PartitionedTextKeyHelperWithSeparators will be the new KeyHelper and will support
carrying the original key data, so that the output records can be provided with the actual net-
work range instead of that portion of the network range that fits in this partition. A new record
format needs to be designed that can carry the additional data. The key format for the search
space keys has been begin:end, where begin and end are the first and last addresses of the
network, each an eight-digit hexadecimal number. For example, 0.0.0.0 would be 00000000,
255.255.255.255 would be ffffffff, and the search space key representing the entire IPv4
address space would be 00000000: ffffffff. To allow partitioning, the search case keys must
match keys in a particular partition. My first idea on how to address this was to just have four
values instead of two, with the same separator between each. The full code for that version
is in com.apress.hadoopbook.examples.ch9.PartitionedTextKeyHelperWithSeparators.java,
available with the rest of the downloadable code for this book.

The code for the first design must be modified to examine a configuration
parameter, range.key.helper, and instantiate the value as a class, defaulting to the
TextKeyHelperWithSeparators class. Listing 9-17 provides an example of this from
ApachelogTransformMapper.

Listing 9-17. Modifications to Load a Key Helper Based on the Value of range.key.helper

public void configure(JobConf conf) {
super.configure(conf);
helper = ReflectionUtils.newInstance(conf.getClass("range.key.helper",
TextKeyHelperWithSeparators.class,
TextKeyHelperhWithSeparators.class),conf);

www.it-ebooks.info

311

http://www.it-ebooks.info/

312 CHAPTER 9 SOLVING PROBLEMS WITH HADOOP

The existing mapper and reducer classes are modified to instantiate their
KeyHelper class based on a configuration property, range.key.helper, defaulting to
TextKeyHelperWithSeparators. BruteForceMapReduceDriver is modified to set the range.key.
helper configuration parameter value to PartitionedTextKeyHelperWithSeparators when the
number of reduce tasks is more than one. This leaves the old behavior intact, while allowing
multiple reduce tasks.

In Listing 9-18, the configuration key range.key.helper is set to be our partitioning class
by conf.setClass("range.key.helper", PartitionedTextKeyHelperWithSeparators.class,
KeyHelper.class), and an additional map is placed in the chain, to span the search space keys:

ChainMapper.addMapper (conf, RangePartitionTransformingMapper.class, Text.class,
Text.class, Text.class, Text.class, false, dummyConf)

Listing 9-18. Modifications to the Setup Method in BruteForceMapReduceDriver.java

if (conf.getNumReduceTasks()!=1) {
/** If more that one reduce is to be run, the spanning partitioner must be used.
*/
conf.setClass("range.key.helper", PartitionedTextKeyHelperWithSeparators.class,
KeyHelper.class);

/** Add in the map that takes incoming search space records and spans them
* across the partitions */
ChainMapper.addMapper (conf, RangePartitionTransformingMapper.class,
Text.class, Text.class, Text.class, Text.class, false, dummyConf);
dummyConf.clear();

The reducer, ReducerForStandardComparator. java, does not need any changes, but the
ActiveRanges class, which provides the hit method, does. In Listing 9-19, we simplify it to
make it aware of the PartitionedTextKeyHelperWithSeparators class, and in that case, to use
the real begin and end ranges for a search space request, rather than the per-partition begin
and end ranges. If many types of keys are used, this method will quickly become excessively
complex. In this case, there is only one type of key, so we can defer that code cleanup to a
future that may not come.

Listing 9-19. Modifications to ActiveRanges.activate to Support the Partition Spanned Search
Space Keys

if (helper instanceof PartitionedTextKeyHelperWithSeparators) {
begin = ((PartitionedTextKeyHelperWithSeparators)helper).getRealRangeBegin();
end = ((PartitionedTextKeyHelperWithSeparators)helper).getRealRangeEnd();
} else {
begin = helper.getBeginRange();
end = helper.getEndRange();

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP

To provide a secondary sort of the final output, we have the classes DataJoinReduceOutput,
DataJoinMergeMapper, and IPv4TextComparator. This set of classes performs a map-side join on
all of the reduce output partitions of BruteForceMapReduceDriver, producing a single sorted file
as output. The output uses the network begin, end, and name values as secondary sort keys.
These also provide an example of how to perform a merge-sort of any reduce task output effi-
ciently using map-side joins.

Listing 9-20 shows the DataJoinReduceOutput method.

Listing 9-20. DatajoinReduceOutput.java, CustomSetup

Arraylist<String> tables = new Arraylist<String>();
for(String input : inputs) {
String []parts = input.split(":");
if (parts.length==2) {
Class<? extends InputFormat> candidateInputFormat =
conf.getClass(parts[0],null, InputFormat.class);
if (candidateInputFormat!=null) {
addFiles(conf,candidateInputFormat, parts[1], tables);
continue;
}
}
addFiles(conf, KeyValueTextInputFormat.class,input, tables);

}

FileOutputFormat.setOutputPath(conf, new Path(output));
conf.set("mapred.join.expr", "outer(" + StringUtils.join(tables, ",") + ")");
conf.setNumReduceTasks(0);
conf.setMapperClass(DataJoinMergeMapper.class);
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(Text.class);
conf.setInputFormat(CompositeInputFormat.class);
//conf.setOutputKeyComparatorClass(IPv4TextComparator.class);
conf.setClass("mapred.join.keycomparator", IPv4TextComparator.class,
WritableComparator.class);
conf.setJarByClass(DataJoinMergeMapper.class);

DataJoinReduceOutput accepts the standard command-line arguments, including the -i
path [, path, [path...]] -o output, to set the input datasets and the output path. Unlike a
traditional map-side join, where each path item in the input is a table and the matching part-
XXXXX files of each input path are joined, each individual part-XXXXX file is taken as a table,
and all of the part-XXXXX files are joined together. This causes the map-side join to perform a
streaming merge-sort on all of the input data files.

The customSetup () method examines each input in turn. If the input string has a colon (:),
itis split and the parts examined:

String[] parts = input.split(":");

www.it-ebooks.info

313

http://www.it-ebooks.info/

314 CHAPTER 9 SOLVING PROBLEMS WITH HADOOP

If there are exactly two parts and the first part is a class name that implements
InputFormat, that input format is used for loading the directory name in parts[1]. If there is
not exactly two parts, the original input is used with KeyValueTextInputFormat. Basically, the
input directory can be preceded by a class name and a colon, and the class will be used as the
input format for loading files from that input directory.

The addFiles method in shown in Listing 9-21.

Listing 9-21. DatajoinReducerOutput.addFiles

Path inputPath = new Path(path);

FileSystem fs = inputPath.getFileSystem(conf);

if (!fs.exists(inputPath)) {
System.err.println(String.format(

"Input item %s does not exist, ignoring", path));

return;

}

FileStatus status = fs.getFileStatus(inputPath);

if (!status.isDir()) {
String composed = CompositeInputFormat.compose(inputFormat, path);
if (verbose) { System.err.println("Adding input " + composed); }
tables.add(composed);

return;
}
FileStatus[] statai = fs.listStatus(inputPath, new PathFilter() {
@0verride
public boolean accept(Path path) {
if (path.getName().matches("*part-[0-9]+$")) {
return true;
}
return false;
}
}
)5

if (statai==null) {
System.err.println(
String.format("Input item %s does not contain any parts, ignoring", path));
return;
}
for(FileStatus statusi : statai) {
String composed = CompositeInputFormat.compose(inputFormat,
statusi.getPath().toString());
if (verbose) { System.err.println("Adding input " + composed); }
tables.add(composed);

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP

This method examines inputPath, constructed from that passed-in path element. If it
exists (fs.exists(inputPath)) and is a directory (status.isDir()), the method collects the
FileStatus information for each child:

FileStatus[] statai = fs.listStatus(inputPath,...

The PathFilter restricts the FileStatus entries returned to those that satisfy the accept()
method. In this case, the only items accepted have file names that match the regular expres-
sion "part-[0-9]+$, our standard reduce output file format. Rather than try to manage the
map-side join table format, the following call builds the table format for the input file:

String composed =
CompositeInputFormat.compose(inputFormat, statusi.getPath().toString());

All of the individual table entries are aggregated in the ArraylList tables.

The actual join command is built ("outer(" + StringUtils.join(tables, ",") + ")")
and stored in the configuration under the key mapred. join.expr. This by itself will merge-sort
all of the input data into a single output file. The new piece, the specialty sorting of the input
records before the map method, is triggered by the following line:

conf.setClass("mapred.join.keycomparator", IPv4TextComparator.class,
WritableComparator.class);

This tells the map-side join framework to use IPv4TextComparator (Listing 9-23) as the key
comparator when performing the merges.

The mapper, shown in Listing 9-22, provides a secondary sort by network for the matched
requests.

Listing 9-22. DatajoinMergeMapper.java

reporter.incrCounter("DataJoinReduceOutput”, "Input Keys", 1);
/** The number of tables in the join. */
final int size = value.size();
/** Allocate the values array if needed. a null indicates end,
* so one extra allocated */
if (values==null) {
values = new Text[size+1];
outputText = new Text[size];
/** Make some {@link Text} items, just in case. These probably aren't needed
* but are made only once. */
for (int i = 0; 1 < size; i++) {
outputText[i] = new Text();
}
}

/** For each table, check to see if it has a value for the key.

* If it does, store it in values, possibly converting it to a text object by
* calling {@link Text#set(String)} with the

* with the string conversion.

www.it-ebooks.info

315

http://www.it-ebooks.info/

316 CHAPTER 9 SOLVING PROBLEMS WITH HADOOP

*/
/** The current index to store into values. */
int valuesIndex = 0;
for (int i = 0; 1 < size; i++) {
if (value.has(i)) {
Writable outputValue = value.get(i);
if (outputValue instanceof Text) {
values[valuesIndex] = (Text) outputValue;
} else {
/** Force a text conversion to simplfy life later. */
outputText[valuesIndex].set(outputValue.toString());
values[valuesIndex] = outputText[valuesIndex];
}
valuesIndex++;
reporter.incrCounter("DataJoinReduceOutput”, "Output Keys", 1);

}
}

values[valuesIndex] = null;
if (valuesIndex>1) {
/** If only one, no reason to bother sorting. */
Arrays.sort(values, 0, valuesIndex, comparator);
}
for (int i = 0; i < valuesIndex; i++) {
if(LOG.isDebugEnabled()) {
LOG.debug(String.format("Output of %d of %d, %s %s",
i, size, key, values[i]));
}
output.collect(key, values[i]);

Each table is checked for a value (value.has(i)) and each table value (Writable
outputValue = value.get(i)) accumulated in the values array. Just as a safety check,
the values are converted to Text objects when needed (outputText[valuesIndex].
set(outputValue.toString())), and the converted value stored (values[valuesIndex] =
outputText[valuesIndex]).

If more than one table has a value for this key, the accumulated table values are sorted
via Arrays.sort(values, 0, valuesIndex, comparator), usingthe comparator
TabbedNetRangeComparator (shown later in Listing 9-24). Once any required sorting is com-
pleted, the records are output (output.collect(key, values[i])).

The actual input and output will be detailed in HADOOP_CLASSPATH=/tmp/commons-1lang-
2.4.jar hadoop jar /tmp/hadoopprobook.jar com.apress.hadoopbook.examples.ch9.
DataJoinReduceOutput -libjars /tmp/hadoopprobook.jar,/tmp/commons-lang-2.4.jar -jt
cloud9:8021 -fs hdfs://cloud9:8020 -v -del -i range join -o merged range join

The IPv4TextComparator, shown in Listing 9-23, provides a binary comparator that han-
dles keys that are IPv4 addresses in the standard dotted-octet format, such as 192.168.0.1. It
attempts to operate at the byte level and to minimize object allocation. This class is used in the

www.it-ebooks.info

hdfs://cloud9:8020
http://www.it-ebooks.info/

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP

map-side join to force the correct ordering of the input keys, as the lexical ordering is not what
is expected.

Listing 9-23. IPv4TextComparator.java

public IPv4TextComparator()
{
super(Text.class);
}
/** Compare the serialized form of two text objects containing IPv4 addresses
* of the form 0.0.0.0 through 255.255.255.255.
* @see org.apache.hadoop.io.RawComparatorttcompare(byte[], int, int, byte[],=
int, int)
*/
@0verride
public int compare(byte[] b1, int s1, int 11, byte[] b2, int s2, int 12) {
long a1 = unpack(b1, s1, 11);
long a2 = unpack(b2, s2, 12);
if (a1<a2) {
return -1;
}
if (atra2) {
return 1;
}
return 0;

}

/** Given a byte buffer that contains a standard decimal dotted octet IPv4 address
* (ie: 0.0.0.0 through 255.255.255.255), as a byte stream, return the long value
* of the ip address
*

* @param buf The byte buffer containing the bytes.
* @param s The start address in <code>buf</code>.
* @param 1 The length of data in <code>buf</code> to use.
* @return the numeric value of the address 0 -> 2732, or -1 for parse errors.
*/
public static long unpack(final byte []buf, int s, int 1) {
long result = 0;
long part = 0;
1 +=s;
for(; s < 1; s++) {
byte b = buf[s];
switch(b) {
case '.':
result <<= 8;
result += part;

www.it-ebooks.info

317

http://www.it-ebooks.info/

318 CHAPTER 9 SOLVING PROBLEMS WITH HADOOP

part = 0;

continue;
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':

part *= 10;
part += Character.getNumericValue((int)b);
continue;
default:
return -1;

}
}

result <<= 8;
result += part;
return result;

}

/* (non-Javadoc)
* @see org.apache.hadoop.io.WritableComparator#compare w
(org.apache.hadoop.io.WritableComparable, org.apache.hadoop.io.WritableComparable)
*/
@verride
public int compare(WritableComparable a, WritableComparable b) {
// TODO Auto-generated method stub
if (a instanceof Text &% b instanceof Text) {
return compare((Text)a, (Text)b);
}

return super.compare(a, b);

}

/** Compare to text objects that are IPv4 addresses in dotted octet notation.
* @see org.apache.hadoop.io.RawComparatorttcompare(Object, Object)
*/
@verride
public int compare(final Object a, final Object b) {

if (a instanceof Text &% b instanceof Text) {

return compare((Text)a, (Text)b);
}

return super.compare(a, b);

The comparator in Listing 9-24 expects input lines of the form:
IP tab IP tab Network Name tab other data

It will do a primary sort using the first IP address, secondary on the second IP address, and
tertiary on the network name. If at any point there is a parse failure, the element that the parse
failed on is considered greater. The parsing is deferred as long as possible in the hopes that it

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP

won’t be needed. This code tries very hard to work at the byte level and not convert items back
into strings.

Listing 9-24. DatajoinMergeMapper.TabbedNetRangeComparator

public static class TabbedNetRangeComparator implements Comparator<Text> {

/** The comparator from the {@link Text} class, used for comparing
* the network names. */
Text.Comparator comparator = new Text.Comparator();

/** This expects and requires the value to be IPv4TABIPv4TaBnetworkTABline.
* the the comparison order is addril, add2, network

*

* @param a Text value 1

* @param b Text value 2

* @return -1 1 or 0 less, greater or equal, the first item with
* a parse failure is considered greater.

*/
@verride

public int compare(Text a, Text b) {

if(LOG.isDebugEnabled()) {
LOG.debug(String.format("Comparing %s and %s", a, b));

}

/** Do the basic check on <code>a</code>, see if we find the first bit. */
final byte[] ab = a.getBytes();
final int al = a.getlength();
final int at1 = findTab(ab, 0, al);
if (at1==-1) {

if(LOG.isDebugEnabled()) {

LOG.debug(String.format("a %s failed to find first tab", a));
}

return 1;

}

/** Do the basic check on <code>b</code>, see if we find the first bit. */
final byte[] bb = b.getBytes();
final int bl = b.getlength();
final int bt1 = findTab(bb, 0, bl);
if (bt1==-1) {

if(LOG.isDebugEnabled()) {

LOG.debug(String.format("b %s failed to find first tab", b));
}

return -1;

www.it-ebooks.info

319

http://www.it-ebooks.info/

320 CHAPTER 9 SOLVING PROBLEMS WITH HADOOP

/** Get the first ip address from <code>a</code>. */
final long aipl = IPv4TextComparator.unpack(ab, 0, at1);
if (aip1==-1) {
if(LOG.isDebugEnabled()) {
LOG.debug(String.format("a %s failed to unpack %s",
a, new String(ab, 0, at1)));
}

return 1;

}

/** Get the first ip address from <code>b</code>. */
final long bipl = IPv4TextComparator.unpack(bb, 0, bt1);
if (bip1==-1) {

if(LOG.isDebugEnabled()) {

LOG.debug(String.format("b %s failed to unpack %s", b,
new String(bb, 0, bt1)));

}

return -1;
}
if(LOG.isDebugEnabled()) {

LOG.debug(String.format("a %x b%x", aip1, bip1));
}

/** Do the ip address comparison on the first IP,
* if they are different, this routine is done.
* Since we have longs and the result is int, a simple
* subtraction may not work as the result may not be an int.
*/
if (aipi<bip1) {
return -1;
}
if (aip1>bip1) {
return 1;

}

/** Check the second IP address in <code>a</code> and <code>b</code> */

final int at2 = findTab(ab, ati+1, al);
if (at2==-1) {
if(LOG.isDebugEnabled()) {
LOG.debug(String.format("a %s failed to find second tab", a));
}

return 1;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP

final long aip2 = IPv4TextComparator.unpack(ab, ati+1, at2);
if (aip2==-1) {
if(LOG.isDebugEnabled()) {
LOG.debug(String.format("a %s failed to unpack %s", a,
new String(ab, ati+1, at2)));
}

return 1;

}

final int bt2 = findTab(bb, bti+1, bl);
if (bt2==-1) {
if(LOG.isDebugEnabled()) {
LOG.debug(String.format("b %s failed to find second tab", b));
}
return -1;
}
final long bip2 = IPv4TextComparator.unpack(bb, bti+1, bt2);
if (bip2==-1) {
if(LOG.isDebugEnabled()) {
LOG.debug(String.format("b %s failed to unpack %s", b,
new String(bb, bti+1, bt2)));

}
return -1;

}

if (aip2<bip2) {
return -1;

}

if (aip2>bip2) {
return 1;

}

/** At this point both pairs of IP addresses are the same.
* Pass the network names off to Text, which knows how to compare
* utf-8 bytes. */
final int at3 = findTab(ab, at2+1, al);
if (at3==-1) {
if(LOG.isDebugEnabled()) {
LOG.debug(String.format("a %s failed to find third tab", a));
}

return 1;

}

final int bt3 = findTab(bb, bt2+1, al);
if (bt3==-1) {
if(LOG.isDebugEnabled()) {
LOG.debug(String.format("b %s failed to find second tab", b));

}

www.it-ebooks.info

321

http://www.it-ebooks.info/

322 CHAPTER 9 SOLVING PROBLEMS WITH HADOOP

return -1;
}
if(LOG.isDebugEnabled()) {
LOG.debug(String.format("a %s b %s",
new String(ab, at2+1, at3), new String(bb, bt2+1, bt3)));

}

return comparator.compare(ab, at2+1, at3, bb, bt2+1, bt3);
}
@0Override

public boolean equals(Object o) {

if (o==null) {
return false;

}

if (o==this) {
return true;

}

if (o instanceof TabbedNetRangeComparator) {
return true;

}

return false;

Listing 9-25 shows the commands used to generate the output. These commands use the
machine cloud9 on port 8021 for JobTracker services and cloud9 port 8020 for HDFS services.
Your local installation will be different.

Listing 9-25. The Commands Used to Generate the Output

hadoop jar /tmp/hadoopprobook.jar w
com.apress.hadoopbook.examples.ch9.BruteForceMapReduceDriver -jt cloud9:8021 w»
-fs hdfs://cloud9:8020 -libjars /tmp/hadoopprobook.jar =

-D mapred.reduce.tasks=10 -v --deleteOutput --input searchspace.txt =
access_log.txt -o range join

HADOOP_CLASSPATH=/tmp/commons-lang-2.4.jar hadoop jar /tmp/hadoopprobook.jar =
com.apress.hadoopbook.examples.ch9.DataJoinReduceOutput -libjars w»
/tmp/hadoopprobook. jar, /tmp/commons-lang-2.4.jar -jt cloud9:8021 =

-fs hdfs://cloud9:8020 -v -del -i range join -o merged range join

The first command runs the BruteForceMapReduceDriver, passing in the JAR file included
with the book examples, and specifies that ten reduce tasks are to be run:

-D mapred.reduce.tasks=10

Most of our later examples accept the arguments -v -deleteOutput, enabling verbose log-
ging and causing the job output directory to be deleted if the directory exists. The two input

www.it-ebooks.info

hdfs://cloud9:8020
hdfs://cloud9:8020
http://www.it-ebooks.info/

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP

files are a file of network ranges with names, searchspace.txt, shown in Listing 9-26, and some
Apress.com access log data, access_log.txt, shown in Listing 9-27. The first output directory
is range_join, which will be the input directory of the next command. The second line runs the
command DataJoinReduceOutput to take the ten partition files and produce a single file that is
sorted in IP address order, with secondary sorts on the network begin and end addresses and
the network name. The actual output is listed in Table 9-4.

Listing 9-26. searchspace.txt, Search Space Network Ranges

72810800:72810fff InTech Online
747d8000:747d8fFff HANANET INFRA
74480000: 744bffff HATHWAY NET
76000000: 760fffff OCN
77e€a0000:77eaffff SINGTELMOBILE
0c000000:0cffffff ATT
79100000:79f7ffff TATACOMM IN
79fec000:79feciff KIDC INFRA SERVERROOM DAUM
79080000: 790fffff CHINANET GD
796150c0:796150ct BAYAN_REDMAP AP
72a42000:7aa43fff ABTS TN DSL 9111 chn
7a2a70000:7aa77fff ABTS KK DSL 9102 blr
7aa98000:7aa9bfff ABTS AP DSL 9112 hyd
7aea0000:7aeaffff CHINANET ZJ HZ
7b644000:7b647FFf MAXNET NZ
7¢720000:7c73ffff CHINANET SN
7¢512a00:7c512aff CMTSBDG IM2 HFC ID
7d11abo0:7d11abff BTNL CHN DSL
80d20000:80d2ffff PURDUE CCNET
836b0000:836bffff MICROSOFT

Listing 9-27. First 20 access_log.txt Lines, with the lines truncated for clarity

116.125.47.43 - - [15/Nov/2008:22:07:47 -0800]...
116.125.162.223 - - [15/Nov/2008:22:07:47 -0800]...
193.238.120.192 - - [15/Nov/2008:22:23:13 -0800]...
193.238.192.10 - - [15/Nov/2008:22:23:13 -0800]...
193.238.186.77 - - [15/Nov/2008:22:23:14 -0800]...
193.238.83.101 - - [15/Nov/2008:22:23:14 -0800]...
193.47.137.43 - - [15/Nov/2008:22:25:34 -0800]...
193.47.58.78 - - [15/Nov/2008:22:25:34 -0800]...

193.252.4.14 - - [15/Nov/2008:22:56:05 -0800]...
193.252.144.172 - - [15/Nov/2008:22:56:05 -0800]...
208.80.221.10 - - [15/Nov/2008:23:07:05 -0800]...
208.80.179.99 - - [15/Nov/2008:23:07:05 -0800]...
208.80.168.223 - - [15/Nov/2008:23:14:49 -0800]...
208.80.57.128 - - [15/Nov/2008:23:14:49 -0800]...
66.233.41.9 - - [15/Nov/2008:23:29:13 -0800]...

www.it-ebooks.info

323

http://www.it-ebooks.info/

324 CHAPTER 9

SOLVING PROBLEMS WITH HADOOP

66.233.254.37 - - [15/Nov/2008:23:29:13 -0800]...
66.233.78.158 - - [15/Nov/2008:23:29:14 -0800]...
66.233.212.119 - - [15/Nov/2008:23:29:14 -0800]...
66.233.242.121 - - [15/Nov/2008:23:29:17 -0800]...
66.233.220.139 - - [15/Nov/2008:23:29:17 -0800]...

Table 9-4. The First 20 Job Output Lines

Log IP

Network Start

Network End

Network
Name

Log Line

12.6.90.96

12.6.127.77

12.6.233.199

12.6.239.45

12.30.22.148

12.30.31.111

12.30.136.50

12.30.180.46

12.0.0.0

12.0.0.0

12.0.0.0

12.0.0.0

12.0.0.0

12.0.0.0

12.0.0.0

12.0.0.0

12.255.255.255

12.

12.

12.

12.

12.

12.

12.

255.

255.

255.

255.

255.

255.

255.

255.

255.

255.

255.

255.

255.

255.

255

255

255

255

255

255

255

ATT

ATT

ATT

ATT

ATT

ATT

ATT

ATT

- - [19/Nov/2008:17:01:18 -0800] "GET /

HTTP/1.1" 404 293 "-" "Mozilla/4.0 (com-
patible; MSIE 6.0; Windows NT 5.1; SVi;

InfoPath.1; .NET CLR 1.1.4322; .NET CLR

2.0.50727; .NET CLR 3.0.04506.30)"

- - [19/Nov/2008:17:03:00 -0800] "GET

/ HTTP/1.1" 404 293 "http://www.
dtsearch.com/CS_Apress_SuperIndex.html"
"Mozilla/4.0 (compatible; MSIE 6.0;
Windows NT 5.1; SV1; InfoPath.1; .NET CLR
1.1.4322; .NET CLR 2.0.50727; .NET CLR
3.0.04506.30)"

- - [19/Nov/2008:17:03:00 -0800] "GET

/ HTTP/1.1" 404 293 "http://www.
dtsearch.com/CS_Apress_SuperIndex.html"
"Mozilla/4.0 (compatible; MSIE 6.0;
Windows NT 5.1; SVi; InfoPath.1; .NET CLR
1.1.4322; .NET CLR 2.0.50727; .NET CLR
3.0.04506.30)"

- - [19/Nov/2008:17:01:18 -0800] "GET /

HTTP/1.1" 404 293 "-" "Mozilla/4.0 (com-
patible; MSIE 6.0; Windows NT 5.1; SVi;

InfoPath.1; .NET CLR 1.1.4322; .NET CLR

2.0.50727; .NET CLR 3.0.04506.30)"

- - [19/Nov/2008:10:28:55 -0800] "GET
/favicon.ico HTTP/1.0" 404 304 "-"
"Mozilla/5.0 (Windows; U; Windows NT
5.1; en-US; 1v:1.9.0.4) Gecko/2008102920
Firefox/3.0.4"

- - [19/Nov/2008:10:28:55 -0800] "GET
/favicon.ico HTTP/1.0" 404 304 "-"
"Mozilla/5.0 (Windows; U; Windows NT
5.1; en-US; 1v:1.9.0.4) Gecko/2008102920
Firefox/3.0.4"

- - [19/Nov/2008:10:28:55 -0800] "GET
/ HTTP/1.0" 404 293 "-" "Mozilla/5.0
(Windows; U; Windows NT 5.1; en-US;
1v:1.9.0.4) Gecko/2008102920 Firefox/
3.0.4"

- - [19/Nov/2008:10:28:55 -0800] "GET
/ HTTP/1.0" 404 293 "-" "Mozilla/5.0
(Windows; U; Windows NT 5.1; en-US;
1v:1.9.0.4) Gecko/2008102920 Firefox/
3.0.4"

www.it-ebooks.info

http://www.dtsearch.com/CS_Apress_SuperIndex.html
http://www.dtsearch.com/CS_Apress_SuperIndex.html
http://www.dtsearch.com/CS_Apress_SuperIndex.html
http://www.dtsearch.com/CS_Apress_SuperIndex.html
http://www.it-ebooks.info/

CHAPTER 9

SOLVING PROBLEMS WITH HADOOP 325

Log IP

Network Start

Network End

Network
Name

Log Line

12.

12.

12.

12.

12.

12.

12.

12.

12.

69.76.145

69.85.24

69.130.223

69.229.167

167.105.82

167.179.22

216.40.118

216.48.187

229.67.237

12.0.0.0

12.0.0.0

12.0.0.0

12.0.0.0

12.0.0.0

12.0.0.0

12.0.0.0

12.0.0.0

12.0.0.0

12.255.255.255

12.

12.

12.

12.

12.

12.

12.

12.

255.

255.

255.

255.

255.

255.

255.

255.

255.

255.

255.

255.

255.

255.

255.

255.

255

255

255

255

255

255

255

255

ATT

ATT

ATT

ATT

ATT

ATT

ATT

ATT

ATT

www.it-ebooks.info

- - [18/Nov/2008:13:07:55 -0800] "GET

/ HTTP/1.1" 404 293 "-" "Mozilla/4.0
(compatible; MSIE 7.0; Windows NT 5.1;
.NET CLR 1.1.4322; .NET CLR 2.0.50727;
InfoPath.1; .NET CLR 3.0.04506.30; .NET
CLR 3.0.04506.648)"

- - [18/Nov/2008:13:07:30 -0800] "GET
/ HTTP/1.1" 404 293 "-" "Mozilla/4.0
(compatible; MSIE 7.0; Windows NT 5.1;
.NET CLR 1.1.4322; .NET CLR 2.0.50727;
InfoPath.1; .NET CLR 3.0.04506.30; .NET
CLR 3.0.04506.648)"

- - [18/Nov/2008:13:07:30 -0800] "GET

/ HTTP/1.1" 404 293 "-" "Mozilla/4.0
(compatible; MSIE 7.0; Windows NT 5.1;
.NET CLR 1.1.4322; .NET CLR 2.0.50727;
InfoPath.1; .NET CLR 3.0.04506.30; .NET
CLR 3.0.04506.648)"

- - [18/Nov/2008:13:07:55 -0800] "GET
/ HTTP/1.1" 404 293 "-" "Mozilla/4.0
(compatible; MSIE 7.0; Windows NT 5.1;
NET CLR 1.1.4322; .NET CLR 2.0.50727;
InfoPath.1; .NET CLR 3.0.04506.30; .NET
CLR 3.0.04506.648)"

- - [18/Nov/2008:08:21:28 -0800] "GET

/ HTTP/1.1" 404 293 "-" "Mozilla/4.0
(compatible; MSIE 7.0; Windows NT 6.0;
WOW64; SLCC1; .NET CLR 2.0.50727; .NET CLR
3.0.04506; .NET CLR 3.5.21022)"

- - [18/Nov/2008:08:21:28 -0800] "GET

/ HTTP/1.1" 404 293 "-" "Mozilla/4.0
(compatible; MSIE 7.0; Windows NT 6.0;
WOW64; SLCC1; .NET CLR 2.0.50727; .NET CLR
3.0.04506; .NET CLR 3.5.21022)"

- - [17/Nov/2008:11:37:59 -0800] "GET /
book/errataSubmit.html?bID=10187 HTTP/1.1"
404 311 "-" "Opera/7.23 (Windows 98; U)
[en]"

- - [17/Nov/2008:11:37:59 -0800] "GET /
book/errataSubmit.html?bID=10187 HTTP/1.1"
404 311 "-" "Opera/7.23 (Windows 98; U)
[en]"

- - [18/Nov/2008:14:08:59 -0800] "GET /
HTTP/1.1" 404 293 "-" "Mozilla/4.0 (com-
patible; MSIE 7.0; Windows NT 5.1; .NET
CLR 1.0.3705; .NET CLR 1.1.4322; Media

Center PC 4.0; .NET CLR 2.0.50727; .NET
CLR 3.0.4506.2152; .NET CLR 3.5.30729)"

Continued

http://www.it-ebooks.info/

326

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP

Table 9-4. Continued

Log IP

Network
Network Start Network End Name Log Line

12.229.91.253 12.0.0.0 12.255.255.255 ATT - - [18/Nov/2008:14:08:59 -0800] "GET /

HTTP/1.1" 404 293 "-" "Mozilla/4.0 (com-
patible; MSIE 7.0; Windows NT 5.1; .NET
CLR 1.0.3705; .NET CLR 1.1.4322; Media

Center PC 4.0; .NET CLR 2.0.50727; .NET
CLR 3.0.4506.2152; .NET CLR 3.5.30729)"

58.68.24.75 58.68.0.0 58.68.127.255 DWL NET - - [20/Nov/2008:00:47:53 -0800] "GET

/ HTTP/1.1" 302 315 "-" "Mozilla/4.0
(compatible; MSIE 8.0; Windows NT 5.1;
Trident/4.0; .NET CLR 2.0.50727; .NET CLR
3.0.04506.30; .NET CLR 3.0.04506.648; .NET
CLR 3.5.21022)"

59.92.23.105 59.88.0.0 59.99.255.255 BSNLNET - - [19/Nov/2008:12:38:42 -0800] "GET

/ HTTP/1.1" 302 309 "-" "Mozilla/5.0
(Windows; U; Windows NT 5.1; en-US;
1v:1.9.0.4) Gecko/2008102920 Firefox/
3.0.4"

Design 3: Future Possibilities

Two possibilities come to mind for this sample MapReduce job:

An indexed map file of search requests in the reduce task: For each search request key, the
configure() method will open the relevant search space map file—either the full map file
for the entire search space or a partitioned file—where the partition contains the networks
that keys in this reduce task partition could match. The MapFile.getClosest() method
would be used to find search space records that could match.

Map-side join of the presorted search requests and a presorted search space: This method
requires presorting the search request records and the search space records, and then
using the map-side join techniques discussed in Chapter 8 and the classes for working
with the IP address described in this chapter.

Both require that the search space records be presorted. Also, in both cases, the search
space records can either be partitioned as the search request records are partitioned, or the
entire search space be present in each task, in Google Bigtable style (see http://labs.google.
com/papers/bigtable.html).

There are trade-offs between prepartitioning versus full replicas. The partitioned case
reduces the data volume that must be scanned. Even with indexes, the amount of data that
needs to be fetched from disk will be smaller in the partitioned case. The downsides are that
search space needs to be repartitioned if the number of reduce tasks for the search requests
is changed, and there is additional (though small) code complexity to ensure that the correct
search space map file is opened in each search request reduce task.

Both techniques lose the data being local for at least the search space records, and neither
seem worth the bother at present, as it is not clear that there would be any performance gain.

www.it-ebooks.info

http://labs.google
http://www.it-ebooks.info/

CHAPTER 9 SOLVING PROBLEMS WITH HADOOP

They also require the search request records to be sorted, and the search space is expected to
be relatively small.

Summary

This chapter has walked you through the design and implementation of a nontrivial real-world
Hadoop application. In the process, you have seen a number of design decisions made that
become invalid as understanding arrives. The design and development process was deliber-
ately oriented to provide initial functionality quickly so that this understanding could arrive
sooner, rather than after a large and costly development cycle.

A number of the advanced features, such as chaining and map-side joins, were used in the
application, and a partitioner and several comparators were written.

The tight coupling between the custom partitioner and the comparator allowed the appli-
cation to perform range-based matching very efficiently using MapReduce techniques.

The techniques that you have learned will allow you to efficiently and effectively tackle
very complex problems that do not appear to fit the MapReduce framework, but in fact are
ideally suited for MapReduce.

Particularly in the rapidly evolving environment of today, you will never have time to
build the perfect application—just an application that works for yesterday’s goals. Someone
else will come along later and modify the application until it meets the new goals. Be kind
to that person by leaving comments, testing, and keeping it simple. The person doing those
future modifications may be you!

www.it-ebooks.info

327

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10

Projects Based On Hadoop
and Future Directions

People use Hadoop to solve many types of problems, and a number of teams have built pack-
ages on top of Hadoop Core to address an even larger scope of problems. This chapter will
walk through some of the many tools being built on top of Hadoop and one tool that can be
built into Hadoop. Hadoop Core is an evolving project: over the time of writing this edition of
the book, Hadoop 0.19.0 and Hadoop 0.19.1 came out, and Hadoop 0.20.0 became available in
May 2009. (You'll see a section on changes later in this chapter.)

Hadoop Core—Related Projects

The main web site for Hadoop Core, http://hadoop.apache.org/core, provides a list of related
projects and subprojects: HBase, Hive, Pig, Mahout, and Hama. The top-level Hadoop project,
http://hadoop.apache.org/, also includes ZooKeeper. This section will provide an overview of
them and, when feasible, show a quick example of how to set up and use them (as well as what
problems users might encounter).

DISCLAIMER

| have little to no experience with most of the projects listed in this chapter, so the information in this chapter
is gleaned from reading the project or company web site and/or trying the examples from a current release.

HBase: HDFS-Based Column-Oriented Table

The project description describes HBase as the Hadoop database an open source, column-
oriented structured datastore based on the Google BigTable paper, http://labs.google.com/
papers/bigtable.html. The earlier versions of HBase used the Hadoop MapFile as the under-
lying storage mechanism and managed updates by maintaining overlay MapFiles. When there
were sufficient updates, a merged file was reconstructed, and the overlays were discarded. To
speed access and distribute access, each individual MapFile is responsible for only a specific

www.it-ebooks.info

329

http://hadoop.apache.org/core
http://hadoop.apache.org/
http://labs.google.com/
http://www.it-ebooks.info/

330

CHAPTER 10 PROJECTS BASED ON HADOOP AND FUTURE DIRECTIONS

range of data in a table column, and if the MapFile grows past a specified size, it is split into
multiple MapFiles. More recent versions of HBase also provide a memcached-based interme-
diate layer between the user and the MapFiles (http://www.danga.com/memcached/).

Prior to the addition of the memcached layer, HBase suffered terrible performance for
random reads and writes, primarily because HDFS is not optimized for low latency random
access. Ordered reads and writes perform at near-HDFS speed.

HBase has a number of server processes, a single HBaseMaster that manages the HBase
cluster and a set of HRegionServers, each of which is responsible for a set of MapFiles contain-
ing column regions.

HBase suffers terribly from the inability of applications to flush file data to storage before
the file is closed, and a crash of any portion of the HBase servers or a service interrupting crash
of HDFS will result in data loss.

In prior chapters there was a discussion of problems caused by applications or server pro-
cesses attempting to exceed the system-imposed limit on the number of open files; HBase also
has this problem. The problem is substantially aggravated because each Hadoop MapFile is
actually two files and a directory in HDFS, and each HDFS file also has a hidden checksum file.
Setting the per-process open file count very large is a necessity for the HBase servers. A storage
file format, HFile, is under development and due for Hbase version 0.20.0, and is expected to
solve many of the performance and reliability issues.

HBase relies utterly on a smoothly performing HDFS for its operation; any stalls or
DataNode instability will show up as HBase errors. There are HDFS tuning parameters sug-
gested in the troubleshooting section on the HBase wiki: http://wiki.apache.org/hadoop/
Hbase/Troubleshooting. In particular, if the underlying HDFS cluster is experiencing a slow
block report problem, https://issues.apache.org/jira/browse/HADOOP-4584, HBase is not
recommended.

HBase servers, particularly the version using memcached, are memory intensive and gen-
erally require at least a gigabyte of real memory per server; any paging will drastically affect
performance. Java Virtual Machine (JVM) garbage collection thread stalls are also causing
HBase failures.

HBase generally provides downloadable release bundles that track the Hadoop Core dis-
tributions. HBase is not part of the Hadoop Core distribution.

Hive: The Data Warehouse that Facebook Built

Hive provides a rich set of tools in multiple languages to perform SQL-like data analysis on
data stored in HDFS. The wonderful people at Facebook have contributed Hive to the Apache
project. As of the publication of this book, Hive is undergoing active development. Compiled
versions of Hive are part of the contrib subtree of the Hadoop Core distribution.

Cloudera, discussed later in this chapter, provides online training for Hive.

Setting Up and Running Hive

The following four lines are required before attempting to start Hive (your installation might
already have the /tmp and /user/hive/warehouse directories present):

www.it-ebooks.info

http://www.danga.com/memcached/
http://wiki.apache.org/hadoop/
https://issues.apache.org/jira/browse/HADOOP-4584
http://www.it-ebooks.info/

CHAPTER 10 PROJECTS BASED ON HADOOP AND FUTURE DIRECTIONS

hadoop fs -mkdir /tmp
hadoop fs -mkdir /user/hive/warehouse
hadoop fs -chmod g+w /tmp
hadoop fs -chmod g+w /user/hive/warehouse

The only issue I encountered when running Hive was a problem with a missing JAR
because of an error I introduced into the conf/hadoop-env. sh file (see Listing 10-1).

Listing 10-1. Hive Configuration Error

jason@cloud9:~/src/hadoop-0.19/contrib/hive$ bin/hive

java.lang.NoClassDefFoundError: org/apache/hadoop/hive/conf/HiveConf

at java.lang.Class.forNameo(Native Method)

at java.lang.Class.forName(Class.java:247)

at org.apache.hadoop.util.RunJar.main(RunJar.java:158)

at org.apache.hadoop.mapred.JobShell.run(JobShell.java:54)

at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:65)

at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:79)

at org.apache.hadoop.mapred.JobShell.main(JobShell.java:68)
Caused by: java.lang.ClassNotFoundException: org.apache.hadoop.hive.conf.HiveConf

at java.net.URLClasslLoader$1.run(URLClassLoader.java:200)

at java.security.AccessController.doPrivileged(Native Method)

at java.net.URLClassloader.findClass(URLClassLoader.java:188)

at java.lang.Classloader.loadClass(ClassLoader.java:306)

at java.lang.Classloader.loadClass(ClassLoader.java:251)

at java.lang.Classloader.loadClassInternal(ClasslLoader.java:319)

. 7 more

I'modified the conf/hadoop-env.sh file to set the HADOOP_CLASSPATH (see Listing 10-2)
when I was testing the scheduler services in Chapter 8. The contrib/hive/bin/hive script sets
HADOOP_CLASSPATH with the set of JARs that Hive requires and then invokes the bin/hadoop
script to start the Hive command-line interpreter.

Listing 10-2. Incorrect Modification of the HADOOP_CLASSPATH Setting in conf/hadoop-env.sh

Extra Java CLASSPATH elements. Optional.
export HADOOP_CLASSPATH=${HADOOP HOME}/contrib/capacity-scheduler/w
hadoop-0.19-capacity-scheduler.jar

I corrected the error (see Listing 10-3), and Hive started correctly (see Listing 10-4).

Listing 10-3. Corrected Setting for HADOOP_CLASSPATH in conflhadoop-env.sh

Extra Java CLASSPATH elements. Optional.
export HADOOP_CLASSPATH=${HADOOP_HOME}/contrib/w»
capacity-scheduler/hadoop-0.19-capacity-scheduler.jar:${HADOOP CLASSPATH}

www.it-ebooks.info

331

http://www.it-ebooks.info/

332

CHAPTER 10 PROJECTS BASED ON HADOOP AND FUTURE DIRECTIONS

Listing 10-4. Hive Starts Correctly After Constructing the Required HDFS Path Elements with the
Correct Permissions

jason@cloud9:~/src/hadoop-0.19/contrib/hive$ bin/hive

hive>

The examples listed in the wiki page http://wiki.apache.org/hadoop/Hive/
GettingStarted did not work particularly well for me (they might be updated by the time you
read this chapter).

Pig, the Other Latin: A Scripting Language for Dataset Analysis

Pig provides a high-level language for writing SQL-like operations that apply to datasets.

The language is named Pig Latin, and the Pig project provides a compiler that produces
MapReduce jobs from a Pig Latin script. Pig is not distributed with Hadoop Core, and is
mature enough that the project has releases. At the time of writing, Pig 0.2.0 has been released.
Pig also provides grunt, an interactive shell, for running Pig Latin commands directly.
Cloudera, listed later in this chapter, provides online training for Pig.

The site http://www.apache.org/dyn/closer.cgi/hadoop/pig provides the main distribu-
tion page. At present, it appears that the stock Pig distribution requires the underlying cluster
to run Hadoop 0.17.0 or Hadoop 0.18.0.

The setup is as simple as unpacking the distribution and setting the environment variable
PIG_CLASSPATH to the directory that contains the hadoop-site.xml file that defines your cluster.
The following should work:

export PIG_CLASSPATH=${HADOOP_HOME}/conf

Mahout: Machine Learning Algorithms

The Mahout project aims to build scalable machine learning algorithms. Its plan is to build
libraries for the ten machine learning algorithms listed in http://www.cs.stanford.edu/
people/ang//papers/nips06-mapreducemulticore.pdf. As of the time of writing, the first
release, 0.1, has been made available for download. The Taste project (a recommendation
engine) has become a part of Mahout and is included in the 0.1 release. There is a tutorial
available at http://lucene.apache.org/mahout/taste.html.

Mahout requires Maven for operation, and it is not clear from the documentation how to
run the examples, including the Taste examples, without Maven.

Mahout also provides a number of distributed clustering algorithms, including k-means,
dirichlet, mean-shift, and canopy. There are also two Bayesian classifiers: the naive and the
complementary naive. An implementation of watchmaker is provided for building evolution-
ary algorithms and support for matrix and vector operations.

www.it-ebooks.info

http://wiki.apache.org/hadoop/Hive/
http://www.apache.org/dyn/closer.cgi/hadoop/pig
http://www.cs.stanford.edu/
http://lucene.apache.org/mahout/taste.html
http://www.it-ebooks.info/

CHAPTER 10 PROJECTS BASED ON HADOOP AND FUTURE DIRECTIONS

Hama: A Parallel Matrix Computation Framework

At the time of writing, Hama is an incubation project. It requires HBase as an underlying stor-
age framework. The project is intended to be used for large-scale numerical analyses and data
mining. The project will provide matrix-vector and matrix-matrix multiplication, linear equa-
tion solving, tools for working with graphs, data sorting, and methods of finding eigenvalues
and eigenvectors. The project is undergoing development and is pre-release 0.1.

ZooKeeper: A High-Performance Collaboration Service

ZooKeeper provides a framework for building high-performance collaborative services. Zoo-
Keeper maintains a shared namespace that looks very similar to a hierarchical file system.
Applications rendezvous on entries in the namespace. Each of these namespace entries may
have data associated with it. The entry data is accessed atomically, and changes are ordered.
In addition, ZooKeeper provides an ephemeral node, an entry that vanishes when the service
holding the entry open disconnects. The ephemeral nodes are used to establish service mas-
ters and sets of backup servers. Ephemeral nodes are used to support redundant servers with
hot failover.

ZooKeeper has been designed to be very reliable and very fast in environments in which
data is primarily read.

The examples at http://hadoop.apache.org/zookeeper/docs/current/recipes.html pro-
vide ZooKeeper recipes for two-phase commit, leader election, barriers, queues, and locks.

Lucene: The Open Source Search Engine

The Lucene project, http://lucene.apache.org/java/docs/, provides the standard open
source package used for search engines. The Lucene core provides the ability to take in
documents in a variety of formats and build inverted indexes out of the terms found in the
documents. Lucene also provides a query engine that takes incoming queries, searches the
indexes, and returns the documents that match.

Hadoop Core provides a contrib package that manages indexes that are stored in HDFS:
contrib/index/hadoop-<rel>-index.jar. The main class, org.apache.hadoop.contrib. index.
main.UpdateIndex, is specified in the JAR. The contrib package supports distributed indexes,
shards, and unified indexes.

SOLR: A Rich Set of Interfaces to Lucene

The SOLR project, http://lucene.apache.org/solr/, is a stand-alone, enterprise-grade search
service built on top of Lucene. SOLR provides XML/HTTP and JSON APIs.

Katta: A Distributed Lucene Index Server

The Katta project, http://katta.sourceforge.net/, describes itself as Lucene in the Cloud, a
scalable, fault-tolerant, distributed indexing system capable of serving large replicated Lucene
indexes at high loads. Katta uses ZooKeeper to coordinate among the individual servers of the
Katta cloud. Katta supports storing shards on the local server file system, HDFS, and in Ama-
zon’s S3. Katta also provides a distributed scoring service, allowing for the search results from
multiple indexes to be merged together.

www.it-ebooks.info

333

http://hadoop.apache.org/zookeeper/docs/current/recipes.html
http://lucene.apache.org/java/docs/
http://lucene.apache.org/solr/
http://katta.sourceforge.net/
http://www.it-ebooks.info/

334

CHAPTER 10 PROJECTS BASED ON HADOOP AND FUTURE DIRECTIONS

Thrift and Protocol Buffers

Thrift (http://incubator.apache.org/thrift/) and Protocol Buffers (http://code.google.
com/p/protobuf/) provide a mechanism for using arbitrarily complex data types as keys or
values within Hadoop. The core concept is that of defining a type in a text file and having a
tool generate per-language APIs for accessing the data structure and for serializing and dese-
rializing the data structure. As of Hadoop 0.17.0, the framework supports using any type that
provides serialization services as a key or a value.

Cascading: A Map Reduce Framework for Complex Flows

Cascading, http://www.cascading.org/, describes itself as a rich API for handling complex
scale-free workflows reliably on a MapReduce cluster. The Cascading package allows the rapid
wiring of components together into workflows that support flow control statements. Cascad-
ing’s metaphor is that the incoming data flows through a series of functions and filters that
allow the data to be split into multiple streams and then joined together again as needed. An
acyclic-directed graph is built by the framework, out of the functions and filters.

CloudStore: A Distributed File System

CloudStore, http://kosmosfs.sourceforge.net/ (formerly known as the Kosmos file sys-
tem), provides an alternative file system for use within a MapReduce cluster. Unlike HDEFS,
CloudStore is implemented in C++.

Hypertable: A Distributed Column-Oriented Database

The Hypertable project, http://www.hypertable.org/, provides a distributed database con-
ceptually similar to HBase and BigTable. The Hypertable site is clear that the projectis ata 0.9
release. Currently, the core servers for Hypertable, the Master server and Hyperspace server,
are single points of failure. Hypertable does not provide ready-to-run distributions and must
be built from source. There are build instructions for CentOS 5.1 and CentOs 5.2, Fedora
Core 8 32bit, Gentoo 2007.0, Ubunto 8.10 Intrepid Ibex 32-bit, Max OS X 10.5 Leopard, and
Mac OS X 10.4 Tiger.

Hypertable provides HQL, a SQL-like language for running queries.

Greenplum: An Analytic Engine with SQL

Greenplum, http://www.greenplum.com/, provides petabyte-scale, scalable database analyt-
ics. It provides a download link to allow you to try its software. It also provides an in-database
MapReduce that interoperates with SQL.

CloudBase: Data Warehousing

The CloudBase project, http://cloudbase.sourceforge.net/, provides a high-performance,
data warehousing system built on top of MapReduce, with an ANSI SQL API. The project is
developed by business.com to speed terabyte scale web log analysis. The current release ver-
sion is 1.3. CloudBase is released under GLP 2.0. The web site provides detailed instructions
for running CloudBase instances on Amazon’s elastic compute (EC2) service.

www.it-ebooks.info

http://incubator.apache.org/thrift/
http://code.google.com/p/protobuf/
http://code.google.com/p/protobuf/
http://www.cascading.org/
http://kosmosfs.sourceforge.net/
http://www.hypertable.org/
http://www.greenplum.com/
http://cloudbase.sourceforge.net/
http://www.it-ebooks.info/

CHAPTER 10 PROJECTS BASED ON HADOOP AND FUTURE DIRECTIONS

Hadoop in the Cloud

Sometimes you need additional compute resources for only a short time, you want to experi-
ment with particular configurations, or you just don’t want to manage your own hardware.
Cloud service vendors provide the ability to spin up clusters of almost arbitrary size and
capacities for short to long durations. The best-known cloud server provider at the time of
writing is Amazon, and there is direct support for running Hadoop in its cloud.

Amazon

Amazon, http://aws.amazon.com, provides a large set of cloud computing services:

e Its simple storage S3 service, http://aws.amazon.com/s3/, provides large persistent
data storage.

e Its EC2 service, http://aws.amazon.com/ec2/, provides on-demand computing clusters
built of virtual computers with a variety of capacities and operating systems.

e The SimpleDB, http://aws.amazon.com/simpledb/, provides a production-grade, dis-
tributed, column-oriented database.

 The Elastic Block Store (EBS), http://aws.amazon.com/ebs/, provides persistent storage
within EC2 and is ideal for longer-running HDFS clusters.

» The Elastic MapReduce service provides on-demand Hadoop clusters, using S3 as the
job input and output file system.

The one significant downside to Hadoop in the Amazon cloud is that there is no real data
locality something Hadoop works hard to achieve.

Caution Anything stored on an EC2 machine instance vanishes when the instance is shut down. Do not
use EC2 instances for valuable data. Use the EBS or S3 for persistent storage.

Cloudera

Cloudera, http://www.cloudera.com/, provides a supported Hadoop distribution. At the time
of writing, the base was Hadoop 0.18.3, with important fixes and features back ported from
later versions, including unreleased versions. This is an ideal distribution for production use
because it provides minimal API changes while providing bug fixes and some new features.

Training

Cloudera also provides a graduated series of training, from basic to advanced. It provides
free online basic Hadoop training at http://www.cloudera.com/hadoop-training-basic, Hive
training at http://www.cloudera.com/hadoop-training-hive-introduction, and Pig training
athttp://www.cloudera.com/hadoop-training-pig-introduction/. There is also a session on
using Eclipse with Hadoop at http://www.cloudera.com/blog/2009/04/20/configuring-
eclipse-for-hadoop-development-a-screencast/.

www.it-ebooks.info

335

http://aws.amazon.com
http://aws.amazon.com/s3/
http://aws.amazon.com/ec2/
http://aws.amazon.com/simpledb/
http://aws.amazon.com/ebs/
http://www.cloudera.com/
http://www.cloudera.com/hadoop-training-basic
http://www.cloudera.com/hadoop-training-hive-introduction
http://www.cloudera.com/hadoop-training-pig-introduction/
http://www.cloudera.com/blog/2009/04/20/configuring-eclipse-for-hadoop-development-a-screencast/
http://www.cloudera.com/blog/2009/04/20/configuring-eclipse-for-hadoop-development-a-screencast/
http://www.cloudera.com/blog/2009/04/20/configuring-eclipse-for-hadoop-development-a-screencast/
http://www.it-ebooks.info/

336

CHAPTER 10 PROJECTS BASED ON HADOOP AND FUTURE DIRECTIONS

Supported Distribution

Cloudera provides a freely downloadable version of its distribution at http://www.cloudera.
com/hadoop and a vmware image for training purposes at http://www.cloudera.com/hadoop-
training-virtual-machine. The virtual machine has an Eclipse installation set up for use with
its Hadoop distribution.

Note I used the Cloudera training virtual machine to work up some of the examples in this book.

Cloudera also provides ready-to-use Amazon EC2 machine images (AMIs) at http://
www. cloudera. com/hadoop-ec2. The EC2 image has Hive and Pig installed and ready to use.

Paid Support

Cloudera also provides support contracts for installations using its Hadoop distribution.

Scale Unlimited

Scale Unlimited, http://www.scaleunlimited.com/, provides Hadoop Core training and con-
sulting. The principals are the Cascading project lead and the Katta project lead. From http://
www.scaleunlimited.com/consulting:

Our consultants’ experience does not end with Map Reduce patterns and Hadoop Dis-
tributed File System deployment models; but also spans over a wide set of related open
source technologies like HBase, ZooKeeper, Cascading, Katta, Pig, Mahout, Casandra,
and CouchDB.

Scale Unlimited also sponsors a live CD image of a Solaris installation with a three-node
Hadoop cluster in zones (http://opensolaris.org/os/project/livehadoop/).

Note A live disk is a CD or DVD that boots as a running instance, not requiring any changes to the local
machine’s hard disk. An image is an . img file that most CD/DVD burner applications can burn directly to
writable media.

API Changes in Hadoop 0.20.0

Hadoop 0.20.0 introduces a number of new features and changes. At the time of writing, it is
becoming clear that it is not ready for production use. This section hopes to whet your appe-
tite for these new features and help you plan for their arrival.

www.it-ebooks.info

http://www.cloudera
http://www.cloudera.com/hadoop-training-virtual-machine
http://www.cloudera.com/hadoop-training-virtual-machine
http://www.cloudera.com/hadoop-training-virtual-machine
http://www.cloudera.com/hadoop-ec2
http://www.cloudera.com/hadoop-ec2
http://www.scaleunlimited.com/
http://www.scaleunlimited.com/consulting:
http://www.scaleunlimited.com/consulting:
http://opensolaris.org/os/project/livehadoop/
http://www.it-ebooks.info/

CHAPTER 10 PROJECTS BASED ON HADOOP AND FUTURE DIRECTIONS

Vaidya: A Rule-Based Performance Diagnostic Tool for
MapReduce Jobs

Vaidya processes the log file data of previously run jobs and provides suggestions on how to
improve performance.
At the time of writing, Vaidya checks the following:
* How evenly the data is partitioned between the reduce tasks

¢ Whether map task failure and re-executions are affecting the overall job performance

¢ Whether reduce task failure and re-executions are affecting the overall job
performance

e Whether the io.sort.space size is sufficient to prevent the map tasks outputs from
being spilled to disk during the map-side sort phase

e Whether substantial data, other than the key/value pairs, is being read from HDFS dur-
ing the map or reduce tasks

Service Level Authorization (SLA)

The SLA package provides the access control lists for the control APIs of the various Hadoop
Core servers, providing some assurance that any client connecting to a server with SLA
enabled is an authorized client.

Removal of LZO Compression Codecs and the API Glue

For licensing reasons, the LZO codec interface files were removed. There are plans to bring in
another LZO-like codec with a license the Apache Foundations will accept.

New MapReduce Context APIs and Deprecation of the
Old Parameter Passing APIs

The core of this change is that a Mapper or a Reducer Context object is passed to the Mapper and
Reducer classes, in place of the JobConf, to configure(), and the Reporter and OutputCollector
tomap() and reduce(). The Mapper and Reducer classes now have a setup(), cleanup(), and
run() method in place of the configure() and close()methods.

Additional Features in the Example Code

As an aid for my development of the example code in this book, I used a number of tools. This
section covers the tools I find most useful.

Zero-Configuration, Two-Node Virtual Cluster for Testing

The class com.apress.hadoopbook.RunVirtualCluster in test/src of the examples will start and
run a mini-Hadoop cluster that provides a near-full Hadoop Core installation. This is ideal for

www.it-ebooks.info

337

http://www.it-ebooks.info/

338

CHAPTER 10 PROJECTS BASED ON HADOOP AND FUTURE DIRECTIONS

use when developing and testing MapReduce jobs that need more than a single reduce task
and therefore cannot be run using the local JobTracker.

To run it, change to a directory that will be used as the virtual cluster local storage, and
run the following:

java -jar hadooppro.jar com.apress.hadoopbook.RunVirtualCluster=
saved_configuration.xml

The cluster will be started, information about the web GUI URLSs will be printed to
stdout, and a configuration file that defines the relevant parameters for this virtual clus-
ter will be written to the file saved_configuration.xml. Any Hadoop program that uses the
GenericOptionsParser may be passed a -conf saved configuration.xml argument, which will
cause the program to load the configuration parameters in saved_configuration.xml, and to
use the virtual cluster for MapReduce and HDFS services.

I find this particularly handy for debugging jobs when I am on the road because the HDFS
data persists after the debugger has exited, and I can examine the job status via the web GUIs.
The only problem I have is that the per-task log files are not available via the web GUI, and the
HDFS files are not available via the web GUI because of issues inside the Hadoop-supplied
MiniMRCluster code. The following command lists the files in the virtual HDFS:

bin/hadoop dfs -conf saved configuration.xml -1s

This came into being when I was trying to work on the unit tests while on the road, using
a machine with Windows XP as the host operating system. The virtual clusters would periodi-
cally not start, and I became very frustrated. I wrote this and after it started, it stayed running,
and I could use it reliably for multiple tests. The ability to examine the data files in HDFS and
to interact with the web interfaces was a pleasant discovery.

Eclipse Project for the Example Code

The example code was developed in Eclipse 3.4, and the project and class path files are part of
the download, enabling you to load up, experiment with, and run the example code.

Summary

Hadoop is powerful tool for large-scale data processing. Many people and organizations are
leveraging the power of Hadoop MapReduce and providing domain-specific package tools.
Distributed column-oriented databases are the current mantra of the scalable web services
community; and HBase and Hypertable provide them. Data mining, extracting, transforming,
and loading without having to write custom MapReduce jobs are provided with Hive and Pig.
Machine learning and recognition are provided by Mahout and Hama, and distributed search
is provided by the Katta project.

I am partial to the Cloudera Hadoop distribution because it has good support, back ported
fixes, training, is free, and is responsive to community needs. Try the various packages dis-
cussed in this chapter explore and enjoy.

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A

The JobConf Object in Detail

Everything in a job is controlled via the JobConf object; it is the center of the universe for a
MapReduce job. The framework will take the JobConf object and render it to XML; then all the
tasks will load that XML when they start. This section will cover all the relevant methods (as of
Hadoop Core 0.19.0) and provide some basic usage examples.

The JobConf class inherits from the Configuration class. Because the JobConf object is
the primary interface between the programmer and the framework, I'll detail all methods
available to the user of a JobConf without distinguishing which methods come from the
Configuration base class. I suggest that you create and use only JobConf objects. By default,
anew JobConf object loads and merges the hadoop-default.xml and hadoop-site.xml files, as
shown in Figure A-1.

The default files hadoop-default.xml and hadoop-site.xml, and any additional user-
specified XML resources specified by the AddResource () method, are found in the Java
Virtual Machine (JVM) classpath and merged into the configuration data in the order added.
Configuration values that are loaded as resources are stored separately from the values that
are set via setter calls. The values that were loaded via resources are removed by a call to
reloadConfiguration(), whereas all the values are removed by a call to clear(). When looking
for a value, a value set by a setter call takes precedence over a value loaded from a resource.
The lookup process is described in Figure A-1.

Each configuration item is a name and value pair with an optional final parameter. These
parameters tell the Hadoop framework code how to contact the cluster, are defaults for various
attributes, and allow for passing arbitrary values to the tasks. The conf/hadoop-default.xml file
has a list of most of the Hadoop Core framework parameters. Other parameters are found only
by reading the source code.

You can set arbitrary names for value pairs in the configuration, and these name-value
pairs are made available to MapReduce tasks. Values that are objects are serialized and then
deserialized by each MapReduce task when tasks start.

The naming convention for configuration parameters is usually area.subarea.specific
name. The parameters that configure the distributed file system start with dfs, and the param-
eters that configure the MapReduce framework start with mapred.

339

www.it-ebooks.info

http://www.it-ebooks.info/

340

APPENDIX A THE JOBCONF OBJECT IN DETAIL

JobConf Configuration Loading and Value Lookup

Look Up Key in Missing » Look Up Key in Missing Return Default
User Set Properties Merged Config Files or Null
Found |
A
If Value Contains any Resolved -
-) ${var} Constructs, Resolve P Return Value
¢ Resolve Variables
______________ [} I | P
: Look Up any ${var}in ' _Missing) : Look Up var in JobConf ' Missing) +” Return Exact .
| Java System Properties | Using Standard Rules < _Value forKey .’
Found]
Merged Configuration Files User Set Properties Java System
Defaults: hadoop—default.xml and Key Value Pairs Set by the Properties
hadoop-site.xml User through the Set Methods
A Final Tag Value of true Prevents
XML Resources Added Later from Key, Value
Modifying the Value
classpath:hadoop—default.xml | Key, Value
classpath:hadoop-site.xml
User called method
addResource(item)
In order of addition

Figure A-1. How configuration data is loaded into the JobConf object and resolved

JobConf Object in the Driver and Tasks

The JobConf object has two roles. In the job driver, the JobConf object is constructed with
all the parameters for the job. At job runtime, required data, the JobConf object, JAR files,
archives, and other resources are stored in the Hadoop Distributed File System (HDFS) in a
job-specific directory.

In the task, the JobConf object is reconstituted and localized, and it is given a set of direc-
tories between the paths defined in mapred.local.dir. Any items that must be referenced from
the local file system, such as the job JAR file or other items passed via the DistributedCache,
are unpacked into these local directories and the path references to items in the configuration
are adjusted to be the task local path. The classpath for the JVM that the task will run in is also
set up for the task to include the location on the local file system that the classpath resources
were unpacked into.

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A THE JOBCONF OBJECT IN DETAIL

JobConf Is a Properties Table

The JobConf instances maintain a table of key/value pairs for all the configuration parameters.
The values are all stored as String objects and are serialized if they are objects. At the lowest
level, operations get a value for a key or store a value for a key.

Variable Expansion

The JobConf object performs variable expansion on values when raw returned values have spe-
cial text embedded in them. The syntax is ${key}, which will be replaced by the value of key.

In the configuration files you will often see values in this form:
<value>${key}something</value>. If key exists in the System.properties or in the current con-
figuration, a get method will replace ${key} with the value of key.

Note in Listing A-1 that values with ${key} have the key resolved against
System.properties. If there is no value found, the value is resolved against the configuration
in the JobConf object. This expansion is recursive in that if the expansion contains another
${item} reference, the ${item} is expanded. This process continues until there are no items
that are candidates for expansion or there are no items that can be expanded.

Listing A-1. XML File Used in the Variable Expansion Example: variable-expansion-example.xml

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<property>
<name>no.expansion</name>
<value>no.expansion Value</value>
</property>
<property>
<name>expansion.from.configuration</name>
<value>The value of no.expansion is ${no.expansion}</value>
</property>
<property>
<name>java.io.tmpdir</name>
<value>failed attempt to override a System.properties value
for variable expansion</value>
</property>
<property>
<name>order.of.expansion</name>
<value>The value of java.io.tmpdir
from System.properties: ${java.io.tmpdir}</value>
</property>

www.it-ebooks.info

3

http://www.it-ebooks.info/

342 APPENDIX A THE JOBCONF OBJECT IN DETAIL

<property>
<name>expansion.from.JDK.properties</name>
<value>The value of java.io.tmpdir from

System.properties: ${java.io.tmpdir}</value>

</property>

<property>
<name>nested.variable.expansion</name>
<value>Will expansion.from.configuration's

value have substition: [${expansion.from.configuration}]</value>
</property>
</configuration>

The code example in Listing A-2 looks up keys defined in Listing A-1. The first key exam-
ined is no.expansion; in Listing A-1, the value is defined as no.expansion Value, which is the
result printed. The value of no.expansion is [no.expansion Value].

The next item demonstrating simple substitution is expansion.from.configuration,
which is given the value of The value of no.expansion is ${no.expansion} in Listing A-1.
The expanded result is The value of no.expansion isno.expansion Value, showing that the
${no.expansion} was replaced by the value of no.expansion in the configuration.

The item for expansion.from.JDK.properties demonstrates that the key/value pairs
in the System.properties are used for variable expansion. The value defined in Listing
A-1isThe value of java.io.tmpdir from System.properties: ${java.io.tmpdir}, and
the result of the expansion is The value of java.io.tmpdir from System.properties:
C:\DOCUME~1\Jason\LOCALS~1\Temp\]. Note that the actual system property value for
java.io.tmpdir is used, not the value stored in the configuration for java.io.tmpdir,
failed attempt to override a System.properties value for variable expansion

The final example demonstrates that the variable expansion results are candidates
for further expansion. The key nested.variable.expansion has a value of Will expansion.
from.configuration's value have substition: [${expansion.from.configuration}],
expansion.from.configuration has a value of The value of no.expansion is ${no.expansion},
and no.expansion has the value of no.expansion Value. As expected in Listing A-2, the
conf.get("expansion.from.configuration") returns The value of no.expansion is
no.expansion Value].

Listing A-2. Example of Variable Expansion: the Key is Defined in the JDK System Properties
VariableExpansion.java

package com.apress.hadoopbook.examples.jobconf;
import java.io.File;

import java.io.FileOutputStream;

import java.io.IOException;

import java.io.OutputStreamhWriter;

import java.io.Writer;

import org.apache.hadoop.mapred.JobConf;

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A THE JOBCONF OBJECT IN DETAIL

/** Simple class to demonstrate variable expansion
* within hadoop configuration values.
* This relies on the hadoop-core jar, and the
* hadoop-default.xml file being in the classpath.
*/
public class VariableExpansion {
public static void main(String [] args) throws IOException {
/** Get a local file system object, so that we can construct a local Path
* That will hold our demonstration configuration.
*/
/** Construct a JobConf object with our configuration data. */
JobConf conf = new JobConf("variable-expansion-example.xml");
System.out.println("The value of no.expansion is [" +
conf.get("no.expansion") + "1");
System.out.println("The value of expansion.from.configuration is [" +
conf.get("expansion.from.configuration") + "1");
System.out.println("The value of expansion.from.JDK.properties is ["
+ conf.get("expansion.from.JDK.properties") + "]");
System.out.println("The value of java.io.tmpdir is [" +
conf.get("java.io.tmpdir") + "1");
System.out.println("The value of order.of.expansion is [" +
conf.get("order.of.expansion”) + "]");
System.out.println("Nested variable expansion for nested." +
"variable.expansion is [" +
conf.get(“nested.variable.expansion”) +”]”);

}

The value of no.expansion is [no.expansion Value]

The value of expansion.from.configuration is =

[The value of no.expansion is no.expansion Value]

The value of expansion.from.JDK.properties is =

[The value of java.io.tmpdir from System.properties: =
C:\DOCUME~1\Jason\LOCALS~1\Temp\]

The value of java.io.tmpdir is =

[failed attempt to override a System.properties value for variable expansion]
The value of order.of.expansion is =

[The value of java.io.tmpdir from System.properties: w
C:\DOCUME~1\Jason\LOCALS~1\Temp\]

Nested variable expansion for nested.variable.expansion is w
[Will expansion.from.configuration's value have substition: w
[The value of no.expansion is no.expansion Value]]

www.it-ebooks.info

343

http://www.it-ebooks.info/

344

APPENDIX A THE JOBCONF OBJECT IN DETAIL

Final Values

The Hadoop Core framework gives you a way to mark some keys in a configuration file as
final. The stanza <final>true</final> prevents later configuration files from overriding

the value specified. The <final> tag does not prevent the user from overriding the value

via the set method. The example in Listing A-3 creates several XML files in the temporary
directory: the first file, finalFirst, contains the declaration of a configuration key, final.
first, which has the value first final value declared final via <final>true</final>. The
second file, finalSecond, also defines final.first with the value This should not override
the value of final.first. After loading the two resource files via JobConf conf = new
JobConf(finalFirst.toURI().toString()); and conf.addResource(finalSecond.toURI().
toString());, the value of the key final.first is gotten via conf.get("final.first") and
found to be first final value. The next example calls conf.set("final.first", "This will
override a final value, when applied by conf.set"); to demonstrate that the setter meth-
ods will override a value marked final.

Listing A-3. Sample Code Showing DemonstrationOfFinal.java

package com.apress.hadoopbook.examples.jobconf;

import java.io.File;

import java.io.FileOutputStream;
import java.io.IOException;
import java.io.OutputStreamhWriter;
import java.io.Writer;

import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.conf.Configuration;

/** Demonstrate how the final tag works for configuration files and is ignored
* by the {@link Configurationifset(java.lang.String,java.lang.String)} operator
* This relies on the hadoop-core jar, and the
* hadoop-default.xml file being in the classpath.

*/
public class DemonstrationOfFinal {
/** Save xml configuration data to a temporary file,
* that will be deleted on jvm exit
*
* @param configData The data to save to the file
* @param baseName The base name to use for the file, may be null
* @return The File object for the file with the data written to it.
* @throws IOException
*/

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A THE JOBCONF OBJECT IN DETAIL 345

static File saveTemporaryConfigFile(final String configData,
String baseName) throws IOException {
if (baseName==null) {
baseName = "temporaryConfig";
}
/** Make a temporary file using the JVM file utilities */
File tmpFile = File.createTempFile(baseName, ".xml");
tmpFile.deleteOnExit(); /** Ensure the file is deleted
* when this jvm exits. */
Writer ow = null;
/** Ensure that the output writer is closed even on errors. */
try {
ow = new OutputStreamWriter(new FileOutputStream(tmpFile), "utf-8");
ow.write(configData);
ow.close();
ow = null;
} finally {
if (ow!=null) {
try {
ow.close();
} catch (IOException e) {
// ignore, as we are already handling the real exception
}
}
}

return tmpFile;

}

public static void main(String [] args) throws IOException {
/** Get a local file system object, so that we can construct a local Path
* That will hold our demonstration configuration.
*/

File finalFirst = saveTemporaryConfigFile(
"<?xml version=\"1.0\"?>\n" +
"<?xml-stylesheet type=\"text/xsl\" =
href=\"configuration.xsI\"?>\n" +
"<configuration>\n" +
" <property>\n" +
<name>final.first</name>\n" +
<value>first final value.</value>\n" +
<final>true</final>\n" +
</property>\n" +
"</configuration>\n",
"finalFirst");

www.it-ebooks.info

http://www.it-ebooks.info/

346 APPENDIX A THE JOBCONF OBJECT IN DETAIL

File finalSecond = saveTemporaryConfigFile(

"<?xml version=\"1.0\"?>\n" +

"<?xml-stylesheet type=\"text/xsl\" w»
href=\"configuration.xsI\"?>\n" +

"<configuration>\n" +

" <property>\n" +
<name>final.first</name>\n" +
<value>This should not override the =
value of final.first.</value>\n" +

" </property>\n" +

"</configuration>\n",

"finalSecond");

/** Construct a JobConf object with our configuration data. */
JobConf conf = new JobConf(finalFirst.toURI().toString());
/** Add the additional file that will attempt to overwrite
* the final value of final.first. */
conf.addResource(finalSecond.toURI().toString());
System.out.println("The final tag in the first file will " +
"prevent the final.first value in the second configuration file
+”from inserting into the configuration”);
System.out.println("The value of final.first in the " +
"configuration is [" + conf.get("final.first") + "]");
/** Manually set the value of final.first to demonstrate
* it can be overridden. */
conf.set("final.first", "This will override a final value,=
when applied by conf.set");
System.out.println("The value of final.first in the configuration
+ " is [" + conf.get("final.first") + "]");

The final tag in the first file will prevent the final w=»

first value in the second configuration file from inserting into the configuration
The value of final.first in the configuration is [first final value.]

The value of final.first in the configuration is =

[This will override a final value when applied by conf.set]

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A THE JOBCONF OBJECT IN DETAIL

Constructors

All code that creates and launches a MapReduce job into a Hadoop cluster creates a JobConf
object. The framework provides several methods for creating the object.

public JobConf()

This is the default constructor. This constructor should not be used because it doesn’t provide
the framework with information about the JAR file that this class was loaded from.

public JobConf(Class exampleClass)

This common use case constructor is the constructor you should use. The archive that the
exampleClass was loaded from will be made available to the MapReduce tasks. The type

of exampleClass is arbitrary; exampleClass is used only to find the classpath resource that

the exampleClass was loaded from. The containing JAR file will be made available as a class-
path item for the job tasks. The JAR is actually passed via the DistributedCache as a classpath
archive. exampleClass is commonly the mapper or reducer class for the job, but it is not
required to be so.

Tip The task JVMs are run on different physical machines and do not have access to the classpath or
the classpath items of the JVM that submits the job. The only way to set the classpath of the task JVMs is to
either set the classpath in the conf/hadoop-env. sh script or pass the items via the DistributedCache.

public JobConf(Configuration conf)

This constructor is commonly used when your application already has constructed a JobConf
object and wants a copy to use for an alternate job. The configuration in conf is copied into the
new JobConf object.

It is very handy when unit testing because as the unit test can construct a standard
JobConf object, and each individual test can use it as a reference and change specific values.

If your driver launches multiple MapReduce jobs, each job should have its own JobConf
object, and the pattern described previously for unit tests is ideal to support this.

public JobConf(Configuration conf, Class exampleClass)

Construct a new JobConf object that inherits all the settings of the passed-in Configuration
object conf, and make the archive that exampleClass was loaded from available to the
MapReduce tasks.

Classes that launch jobs that may have unit tests or be called as part of a sequence of
Hadoop jobs should provide a run method that accepts a Configuration object and calls this
constructor to make the JobConf object for that class’s job. This way, the unit test or calling
code can preconfigure the configuration, and this class can customize its specific variables
and launch the job.

www.it-ebooks.info

347

http://www.it-ebooks.info/

348 APPENDIX A THE JOBCONF OBJECT IN DETAIL

Listing A-4. Sample Code Fragment of a Class run Method

/** Code Fragment to demonstrate a run method that can be called
*from a unit test, or from a driver that launches multiple

* Hadoop jobs.

*

* @param defaultConf The default configuration to use

* @return The running job object for the completed job.

* @throws IOException

*/
public RunningJob run(Configuration defaultConf) throws IOException
{
/** Construct the JobConf object from the passed-in object.
* Ensure that the archive that contains this class will be
* provided to the map and reduce tasks.
*/
JobConf conf = new JobConf(defaultConf, this.getClass());
/**
* Set job specific parameters on the conf object.
*
*/
conf.set("our.parameter", "our.value");
RunningJob job = JobClient.runJob(conf);
return job;
}

public JobConf(String config)

Construct a JobConf object with configuration data loaded from the file that config is a path to.

public JobConf(Path config)

Construct a JobConf object and load configuration values from the XML data found in the file
config. This constructor is used by the TaskTracker to construct the JobConf object from the
job-specific configuration file that was written out by the Hadoop framework.

public JobConf(boolean loadDefaults)

This method is identical to the no-argument constructor unless the loadDefaults value is
false. If loadDefaults is false, hadoop-site.xml and hadoop-default.xml are not loaded.

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A THE JOBCONF OBJECT IN DETAIL

Methods for Loading Additional
Configuration Resources

The methods described in this section load an XML configuration file resource and store it in
the JobConf parameter set. The order in which these methods are called is important because
the contents specified by the most recent call will override values supplied earlier.

If a specified resource cannot be loaded or parsed as valid configuration XML, a
RuntimeException will be thrown unless quiet mode is enabled via a call to setQuietMode
(true).

Each call to one of these methods results in the complete destruction of the configuration
data that resulted from the loading and merging of the XML resources. There are no changes
made to the configuration parameters that have been created via the set methods. The entire
set of XML resources is reparsed and merged on the next method call that reads or sets a con-
figuration parameter.

These resource items follow the same rules as with the hadoop-default.xml and
hadoop-site.xml files, and a parameter in a resource object can tag itself as final. In this case,
resource objects loaded later may not change the value of the parameter.

Listing A-5. Sample Final Parameter Declaration

<property>
<name>my.final.parameter</name>
<value>unchanging</value>
<final>true</final>

</property>

public void setQuietMode(boolean quietmode)

If quietmode is true, no log messages will be generated when loading the various resources into
the configuration. If a resource cannot be parsed, no exception will be thrown.

If quietmode is false, alog message will be generated for each resource loaded. If a
resource cannot be parsed, a RuntimeException will be thrown.

public void addResource(String name)

Load the contents of name. The parameter is loaded from the current classpath by the JDK
ClassLoader.getResource method. name can be a simple string or a URL.

The default configuration has two addResource(String name) calls: one for
hadoop-default.xml and the other for hadoop-site.xml.

Caution The first hadoop-default.xml file and the first hadoop-site.xml file in your classpath are
loaded. It is not uncommon for these files to accidentally be bundled into a JAR file and end up overriding the
cluster-specific configuration data in the conf directory. A problem often happens with jobs that are not run
through the bin/hadoop script and do not have a hadoop-default.xml or hadoop-site.xml file in their
classpath.

www.it-ebooks.info

349

http://www.it-ebooks.info/

350

APPENDIX A THE JOBCONF OBJECT IN DETAIL

public void addResource(URL url)

This method explicitly loads the contents of the passed-in URL, url, into the configuration.

public void addResource(Path file)

This method explicitly loads the contents of file into the configuration.

public void addResource(InputStream in)

Load the XML configuration data from the supplied InputStream in into the configuration.

public void reloadConfiguration()

Clear the current configuration, excluding any parameters set using the various set meth-
ods, and reload the configuration from the resources that have been specified. If the user has
not specified any resources, the default pair of hadoop-default.xml and hadoop-site.xml will
be used.

This method actually just clears the existing configuration, and the reload will happen on
the next get or set.

Basic Getters and Setters

The methods in this section get and set basic types:

e In general, if the framework cannot convert the value stored under a key into the spe-
cific type required, a RuntimeException will be thrown.

e If the value being retrieved is to be a numeric type, and the value cannot be converted
to the numeric type, a NumberFormatException will be thrown.

¢ For boolean types, a value of true is required for a true return. Any other value is con-
sidered false.

e For values that are class names, if the class cannot be instantiated, or the instantiated
class is not of the correct type, a RuntimeException will be thrown.

The framework stores sets of things as comma-separated lists. There is no mechanism
currently to escape a comma that must be a part of an individual item in a list.

Under the covers, all data is stored as a java String object. All items stored are serialized
into a String object, and all values retrieved are deserialized from a String object. The user is
required to convert objects into String representations to store arbitrary objects in the con-
figuration and is responsible for re-creating the object from the stored String when retrieving
the object.

public String get(String name)

This is the basic getter: it returns the String version of the value of name if name has a value or if
the method returns null. Variable expansion is completed on the returned value. If the value is
a serialized object, the results of the variable expansion may be incorrect.

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A THE JOBCONF OBJECT IN DETAIL

public String getRaw(String name)

Returns the raw String value for name if name exists in the configuration; otherwise returns
null. No variable expansion is done. This is the method to use to retrieve serialized objects.

public void set(String name, String value)

Stores the value under the key name in the configuration. Any prior value stored under name is
discarded, even if the key was marked final.

public String get(String name, String defaultValue)

This method behaves as the get() method does: it returns defaultValue if name does not have a
value in the configuration. This method is ideal to use for get() operations that must return a
value and there is a sensible default value.

public int getInt(String name, int defaultValue)

Many properties stored in the configuration are simple integers, such as the number of
reduces, mapred. reduce.tasks. If the underlying value for name is missing or not convertible to
an int, the defaultValue is returned. If the value starts with a leading 0x or 0X, the value will be
interpreted as a hexadecimal value.

public void setInt(String name, int value)

Stores the String representation of value in the configuration under the key name. Any prior
value associated with name will be lost.

public long getLong(String name, long defaultValue)

Many properties stored in the configuration are simple long values, such as the file system
block size dfs.block.size. If the underlying value for name is missing or not convertible to a
long, the defaultValue is returned. If the value starts with a leading 0x or 0X, the value will be
interpreted as a hexadecimal value.

public void setLong(String name, long value)

Stores the String representation of value in the configuration under the key name. Any prior
value associated with name will be lost.

public float getFloat(String name, float defaultValue)

Some properties stored in the configuration are simple floating-point values. You might want
to pass a float value to the mapper or reducer, which would use this method to get the float
value. If the underlying value for name is missing or not convertible to a float, the defaultValue
is returned.

www.it-ebooks.info

351

http://www.it-ebooks.info/

352

APPENDIX A THE JOBCONF OBJECT IN DETAIL

public boolean getBoolean(String name, boolean defaultValue)

Many properties stored in the configuration are simple boolean values, such as the controlling
speculative execution for map tasks, mapred.map.tasks.speculative.execution. If the underly-
ing value for name is missing or not convertible to a boolean value, the defaultValue is returned.
The only acceptable boolean values are true or false. The comparison is case sensitive, so a
value of True will fail to convert, and the defaultValue will be returned.

public void setBoolean(String name, boolean value)

Convert the boolean value to the String true or the String false and store it in the configura-
tion under the key name. Any prior value associated with name will be lost.

RANGES

The configuration supports storing basic types such as various numbers, boolean values, text, and class
names. The configuration also supports a type called a Range. It is two integer values, in which the second
integer is larger than the first. An individual range is specified by a String containing a -, a dash character
that can also have a leading and trailing integer.

If the leading integer is absent, the first range value takes the value 0. If the trailing integer is absent,
the second range value takes the value of Integer.MAX_VALUE.

The simplest range is -, which is the range 0 to Integer.MAX VALUE. The range -35 parses as O to
35. The range 40- parses as 40 to Integer.MAX_ VALUE. The range 40-50 parses as 40 to 50. Multiple
ranges may be separated by ,: a comma character such as 1-5,7-9,13-50.

public Configuration.IntegerRanges getRange(String name,
String defaultValue)

getRange is a relatively unusual method and obtains a named range. It is currently
not widely used. As of Hadoop 0.19.0 it is used only to determine which MapReduce
tasks to profile. As of Hadoop 0.19.0 there is no corresponding set method, and the base
set(String name, String value) is used to set a range The value has to be the valid String
representation of a range or later calls to the getRange method for name will result in an excep-
tion being thrown.

The defaultValue must be passed in as a valid range. String null may not be passed as the
default value, or else a NullPointerException will be thrown.

This method looks up the value of name in the configuration, and if there is no value, the
defaultValue will be used. The resulting value will then be parsed as an IntegerRanges object
and that result returned. If the parsing fails, an I1legalArgumentException will be thrown.

Note If there is a value for name in the configuration and it cannot be parsed as an IntegerRanges
object, the defaultValue will be ignored, and an I1legalArgumentException will be thrown.

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A THE JOBCONF OBJECT IN DETAIL

public Collection<String> getStringCollection(String name)

The JobConf and Configuration objects (atleast through Hadoop 0.19.0) handle parameters
that are sets of String objects by storing them internally as comma-separated lists in a single
String. There is no provision for escaping the commas.

getStringCollection will get the value associated with name in the configuration and split
the String on commas and return the resulting Collection.

Listing A-6. Sample Use of public Collection<String> getStringCollection(String name)

conf.set("path.set", "pathi,path2,path3,patha");
Collection<String> pathSet = conf.getStringCollection("path.set");
for(String path : pathSet) {

System.out.println(path);

}

path1
path2
path3
path4

public String|[] getStrings(String name)

The JobConf and Configuration objects (atleast through Hadoop 0.19.0) handle parameters
that are sets of String objects by storing them internally as comma-separated lists in a single
String. There is no provision for escaping the commas.

This method gets the value associated with name in the configuration, splits the String on
commas, and returns the resulting array (see Listing A-7).

Listing A-7. Sample Use of public String[] getStrings(String name)

conf.set("path.set", "pathi,path2,path3,patha");

String[] pathSet = conf.getStrings("path.set");

for(String path : pathSet) {
System.out.println(path);

}

path1
path2
path3
path4

www.it-ebooks.info

353

http://www.it-ebooks.info/

354

APPENDIX A THE JOBCONF OBJECT IN DETAIL

JAVA 1.5 AND BEYOND VARAGS SYNTAX

As of Java 1.5, variable argument lists are supported for method calls. The declaration of the last param-
eter may have an ellipsis between the type and the name, type. . .name. The caller can place an arbitrary
number of objects of type in the method call, and the member method will receive an array of type
with the elements from the caller’s call. For the method X(String strings), a call of the form
X("one", "two", "three") would result in the variable strings being a three-element array of String
objects containing "one", "two", "three".

For more details, please visit http://java.sun.com/j2se/1.5.0/docs/guide/language/
varargs.html.

public String|[] getStrings(String name, String... defaultValue)

The JobConf and Configuration objects (atleast through Hadoop 0.19.0) handle parameters
that are sets of String objects by storing them internally as comma-separated lists in a single
String. There is no provision for escaping the commas.

This method will get the value associated with name in the configuration and split the
String on commas and return the resulting array (see Listing A-8). If there is no value stored in
the configuration for name, the array built from the defaultValue parameters will be returned.

Listing A-8. Sample Use of public String[] getStrings(String name, String... defaultValue)

JobConf empty = new JobConf(false); /** Create an empty configuration to
* ensure the default value is used in our getStrings example.*/
String[] pathSet = conf.getStrings("path.set", "path1", "path2", "path3", patha");
for(String path : pathSet) {
System.out.println(path);
}

path1
path2
path3
path4

public void setStrings(String name, String... values)

Stores the set of Strings provided in values under the key name in the configuration, deleting
any prior value (see Listing A-9). The set of String objects defined by values is concatenated
using the comma (,) character as a separator, and the resulting String is stored in the configu-
ration under name.

www.it-ebooks.info

http://java.sun.com/j2se/1.5.0/docs/guide/language/
http://www.it-ebooks.info/

APPENDIX A THE JOBCONF OBJECT IN DETAIL

Listing A-9. Sample Use of public void setStrings(String name, String... values)

conf.setStrings("path.set", "path1", "path2, "path3", "path4");
String[] pathSet = conf.getStrings("path.set");
for(String path : pathSet) {

System.out.println(path);

}

path1
path2
path3
path4

public Class<?> getClassByName(String name) throws
ClassNotFoundException

It attempts to load a class called name by using the JobConf customized class loader. If the class
is not found, a ClassNotFoundException is thrown.

By default, the class loader used to load the class is the class loader for the thread that ini-
tialized the JobConf object. If that class loader is unavailable, the class loader used to load the
Configuration.class isused.

Note This method does not look up the value of name in the configuration; name is the value passed to
the class loader.

public Class<?>[] getClasses(String name, Class<?>...
defaultValue)

If name is present in the configuration, parses it as a comma-separated list of class names and
construct a class object for each entry in the list. If a class cannot be loaded for any entry in
the list, a RuntimeException is thrown. If name does not have a value in the configuration, this
method returns the array of classes passed in as the defaultValue.

By default, the class loader used to load the class is the class loader for the thread that ini-
tialized the JobConf object. If that class loader is unavailable, the class loader used to load the
Configuration.class is used.

public Class<?> getClass(String name, Class<?> defaultValue)

If name is present in the configuration, it attempts to load the value as a class using the configu-
ration’s class loader. If a value exists in the configuration and a class cannot be loaded for that
value, a RuntimeException is thrown. If name does not have a value, the class defaultValue is
returned.

www.it-ebooks.info

355

http://www.it-ebooks.info/

356

APPENDIX A THE JOBCONF OBJECT IN DETAIL

By default, the class loader used to load the class is the class loader for the thread that ini-
tialized the JobConf object. If that class loader is unavailable, the class loader used to load the
Configuration.class is used.

public <U> Class<? extends U> getClass(String name,
Class<? extends U> defaultValue, Class<U> xface)

If name is present in the configuration, attempts to load the value as a class using the configura-
tion’s class loader. If a value exists in the configuration, and a class cannot be loaded for that
value, a RuntimeException is thrown. The loaded class must derive from or implement xface,
or else a RuntimeException will be thrown. If no value is present for name in the configuration,
the defaultValue will be returned.

This getClass method returns the result of the call theClass.asSubclass(xface); where
theClass is the class constructed from the class name stored under name or the defaultValue if
there is no value stored under name.

By default, the class loader used to load the class is the class loader for the thread that ini-
tialized the JobConf object. If that class loader is unavailable, the class loader used to load the
Configuration.class is used.

public void setClass(String name, Class<?> theClass,
Class<?> xface)

The class name for theClass is stored in the configuration under the key name. If theClass does
not derive from or implement xface, a RuntimeException is thrown.

Note The name of the class, theClass.getName(), is stored, not a serialized version of the class.

Getters for Localized and Load Balanced Paths

The framework provides the capability for multiple local directories to be specified for task
temporary files. Multiple locations are allowed to load balance the I/0 over multiple devices.
The framework will attempt to select one location set either at random or in sequential order.
The ordering used will be given in the method description.

Each of the methods described in this section is called with a trailing path component that
includes a final file name. The return value will be the full path to the file; all the intermediate
directory components will be constructed if needed.

The first found complete path that can be created or exists will be returned by the method.
The intermediate directories may be constructed in locations that do not allow the complete
construction of the path. If so, those intermediate directories that have been created will not
be removed. If no path can be constructed, an I0Exception will be thrown.

These throwing IOException paths are explicitly constructed on the local (host) file sys-
tem. See Listing A-10.

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A THE JOBCONF OBJECT IN DETAIL

Listing A-10. Samples of public Path getLocalPath(String dirsProp, String path) Throwing
IOException

conf.setStrings("path.set", "dira/a/a/a/","dirb/b/b/b","dirc/c/c/c");
Path random = conf.getlocalPath("path.set", "trailing/path/file")

The path candidates are as follows:

e dira/a/a/a/trailing/path
e dirb/b/b/b/trailing/path
e dirc/c/c/c/trailing/path

A result in this example might be dirc/c/c/c/trailing/path/file.

Note This method leaves partial paths in place that were constructed during its operation. The pseudo-
random method does not guarantee that all possible path candidates will be tried; only that no more than the
count of path candidate elements will be tried (as of Hadoop 0.19.0). Also as of Hadoop 0.19.0, the method
does not fail if the path candidate is a file, not a directory.

public Path getLocalPath(String dirsProp, String pathTrailer)
throws IOException

Load balances access to a set of directories that reside on different devices. The goal is to
return a resultant path composed of pathTrailer as the trailing component and one element
out of the set of directories stored under dirsProp as the path leader. If dirsProp is unset, an
IOException is thrown. This method uses the Hadoop LocalFileSystem object for all path oper-
ations. The paths defined by dirsProp are searched in a pseudo-random order.

public File getFile(String dirsProp, String pathTrailer) throws
IOException

This method is used to load balance access to a set of directories that reside on different
devices. The goal is to return a resultant path composed of pathTrailer as the trailing compo-
nent and one element out of the set of directories stored under dirsProp as the path leader. If
dirsProp is unset, an I0Exception is thrown.

This method uses the java.io.File methods to create directory paths and test for direc-
tory existence. The paths defined by dirsProp are searched in a pseudo-random order.

public String|[] getLocalDirs() throws IOException

This method looks up the key mapred.local.dir in the configuration. The value is expected
to be a set of file system paths separated by commas. If present, the value is split on comma
characters and the resulting array of String objects is returned. If there is no value present,
anull is returned. This is used by the TaskTracker to find the set of directories to use for

www.it-ebooks.info

357

http://www.it-ebooks.info/

358

APPENDIX A THE JOBCONF OBJECT IN DETAIL

per-task local storage. The TaskTracker uses a round robin strategy to allocate a task direc-
tory for a new task.

Note The value stored in the configuration under the key mapred.local.dir is the set of local file sys-
tem locations to be used by MapReduce tasks for temporary file storage. This parameter is generally only
used directly by the framework.

public void deleteLocalFiles() throws IOException

This method deletes all the directory trees stored in the configuration under the key mapred.
local.dir. The value is parsed as a comma-separated list of paths. This is used by the framework
to clean up the local machine temporary areas on TaskTracker start and TaskTracker exit.

public void deleteLocalFiles(String subdir)throws IOException

This method deletes subdir from all the directories that are stored in the configuration under
the key mapred.local.dir. The value is parsed as a comma-separated list of paths. This is used
by the framework to clean up the local machine temporary files for a particular task.

public Path getLocalPath(String pathString) throws
IOException

This method looks up the key mapred.local.dir in the configuration and parses the value as

a comma-separated list of local file system paths. For each directory in the resulting list, an
attempt is made, in pseudo-random order, to create the path portion of pathString, including
any leading directory elements. If after this creation attempt that directory exists, the file name
portion of pathString is appended to the directory path and the resulting path is returned.

public String getJobLocalDir()

This method looks up the key job.local.dir in the configuration and returns the value. The
value will be the task-specific shared directory for each job on each TaskTracker. This param-
eter is set only in the JobConf object passed to each task.

The returned value will be the path fragment taskTracker/jobcache/JobId/work,
prefixed by one of the directories specified in the set of directories stored under the key
mapred.local.dir.

This is used by the framework when setting up the per-job task environment on a Task-
Tracker node. Tasks can use this method to find the path to the task-specific directory on the
local file system, which may be used for temporary file storage.

Note In Hadoop 0.19.0, each task for a job on the same TaskTracker may get a distinct local dir if mul-
tiple directories are specified in the mapred.local.dir value.

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A THE JOBCONF OBJECT IN DETAIL

Methods for Accessing Classpath Resources

The framework provides a way for tasks to access resources from the task-specific classpath
objects.

public URL getResource(String name)

Returns the URL for the resource name, found by searching the configuration’s class loader. If
the resource is not found, null is returned.

By default, the class loader used to load the class is the class loader for the thread that ini-
tialized the JobConf object. If that class loader is unavailable, the class loader used to load the
Configuration.class is used.

Note This method does not look up the value of name in the configuration; name is the value passed to
the class loader.

public InputStream getConfResourceAsInputStream
(String name)

Returns the java.io.InputStreamresulting from opening the URL for the resource name, found
by searching the configuration’s class loader. If the resource is not found, null is returned.

By default, the class loader used to load the class is the class loader for the thread that ini-
tialized the JobConf object. If that class loader is unavailable, the class loader used to load the
Configuration.class is used.

Caution This method does not look up the value of name in the configuration; name is the value passed
to the class loader.

public Reader getConfResourceAsReader(String name)

Returns the java.io.Reader resulting from opening the URL for the resource name, found by
searching the configuration’s class loader. If the resource is not found, null is returned.

By default, the class loader used to load the class is the class loader for the thread that ini-
tialized the JobConf object. If that class loader is unavailable, the class loader used to load the
Configuration.class isused.

This method does not look up the value of name in the configuration. The name is used
directly as a Java resource name. This is approximately equivalent to new InputStreamReader
(System.getClassLoader().getResourceAsInputStream(name)); with error checking and using
the ClassLoader member variable of the configuration.

www.it-ebooks.info

359

http://www.it-ebooks.info/

360

APPENDIX A THE JOBCONF OBJECT IN DETAIL

Caution getConfResourceAsReader does not look up the value of name in the configuration; name is
passed directly to the class loader.

Methods for Controlling the Task Classpath

These methods ensure that the objects referenced are distributed to the task nodes and made
available in the classpath of the tasks.

public String getJar()

This method is a shortcut for the call get("mapred. jar"). The key mapred. jar is the JAR to use
for the MapReduce job.

The mapred. jar key’s value is set by the setJar(String jar) method, the setJarByClass
(Class cls) method, and the JobConf constructors that take a Class value as a parameter.

If the mapred. jar key has been set in the configuration, the value will be returned.

public void setJar(String jar)

Stores the String jar, which should be the path to the JAR that contains the map and reduce
classes for this job into the configuration under the mapred. jar key. Any prior value stored
under the key mapred.jar will be discarded. This archive will be distributed to the task nodes
and placed in the classpath for the map and reduce tasks.

public void setJarByClass(Class cls)

Looks for the first JAR file in the classpath that contains class cls. If found, stores the path to
it under the mapred. jar key in the configuration. If no JAR file is found that contains cls, a
RuntimeException is thrown.

Note This method will look only in JAR files, not in zip files or in directory trees.

Methods for Controlling the Task Execution
Environment

These methods control the setup and cleanup of the individual task environment.
public String getUser()

This method returns the value stored in the configuration under the key user.name. This param-
eter is generally initialized to the name of the user that launched the job, but this is not enforced.

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A THE JOBCONF OBJECT IN DETAIL

Caution Usernames may be overwritten with a different username by any user. This is not a security
feature, and Hadoop permissions are not a security feature. Through at least Hadoop 0.19 any user may
claim to be any other Hadoop user and act fully as if they are that user, including the removal of files or the
scheduling of jobs. There is way to prevent this; you have to trust the users who have access to your cluster
because any user can override any Hadoop level permission restrictions placed on that user.

public void setUser(String user)

The value of user is stored in the configuration under the key user.name. This value is used for
HDEFS permission checking.

public void setKeepFailedTaskFiles(boolean keep)

Stores the value of keep in the configuration under the key keep.failed.task.files. This value
configures the framework to save or not save the intermediate output files of tasks that fail. It
is set to true to when the task output is needed to debug a failing job.

public boolean getKeepFailedTaskFiles()

Returns the value stored in the configuration under keep keep.failed.task.files converted
to aboolean. If no value is found, or the value is not exactly true or false, the value false is
returned.

public void setKeepTaskFilesPattern(String pattern)

Stores a Java regular expression String pattern into the configuration under the key keep.
task.files.pattern. If the task id of a task matches this regular expression, its temporary files
will not be removed The file names are written as * [mr] [jobid] [tasknumber].The job id is
0-padded on the left. The pattern * m_000027_5 would match the fifth map task of job 00027.
The pattern *_r_000027_5 would match the fifth reduce task of job 00027.

This is used to aid in debugging the framework.

public String getKeepTaskFilesPattern()

Returns the value stored in the configuration under the key keep.task.files.pattern. The
framework calls this in the TaskTracker before cleaning up temporary files after a task com-
pletes. If the task id matches the pattern, the temporary files are not removed. This is a
framework debugging aid.

public void setWorkingDirectory(Path dir)

This method builds a path by concatenating dir with the value of getWorkingDirectory() and
stores that value in the configuration under the key mapred.working.dir. The user calls it and if
it has not been called by job submission time, the JobClient object will initialize it to the cur-
rent working directory of the process submitting the job.

www.it-ebooks.info

361

http://www.it-ebooks.info/

362

APPENDIX A THE JOBCONF OBJECT IN DETAIL

Note If the working directory has not been initialized by the time this method is called, the default work-
ing directory for the default file system will be used. For HDFS, it is generally /user/USERNAME. The default
file system is the file system defined by the configuration key fs.default.name.

public Path getWorkingDirectory()

Returns the value stored in the configuration under mapred.working.dir. If this value is unset,
this method first sets the value for the key to the default working directory for the default file
system.

The default file system is defined by the configuration parameter fs.default.name; for
HDFEFS, the default working directory is /user/USERNAME.

public void setNumTasksToExecutePerJvm (int numTasks)

Prior to Hadoop 0.19.0, a new JVM was created for each task run by the TaskTracker. As of
Hadoop 0.19.0, the TaskTracker has the capability to reuse the task JVM for additional tasks.
The configuration key mapred. job.reuse.jvm.num.tasks’s value is the number of times

that a JVM may be reused. This method stores numTasks in the configuration under the key
mapred.job.reuse.jvm.num.tasks.

Note Calling setNumTasksToExecutePerJvm with a value that is <= 0 will result in erroneous behavior.

public int getNumTasksToExecutePerJvm()

Looks up the value of mapred. job.reuse.jvm.num. tasks in the configuration and converts the
value to an integer. If the value does not exist or if the value cannot be converted to an integer,
itreturns 1.

Prior to Hadoop 0.19.0, a new JVM was created for each task run by the TaskTracker. As of
Hadoop 0.19.0, the TaskTracker has the capability to reuse the task JVM for additional tasks.
The value stored in the configuration under mapred. job.reuse. jvm.num.tasks is the number of
times to use a JVM for a task.

Methods for Controlling the Input and Output
of the Job

The methods described in this section are used to configure how the jobs’ input and output
will be handled. This includes how the input is parsed and presented to the framework, the
compression of intermediate and final output, and how the output is written.

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A THE JOBCONF OBJECT IN DETAIL

public InputFormat getInputFormat()

This method looks up the value of the key mapred. input.format.class in the configuration
and instantiates a class of that name. If the value is missing, a TextInputFormat.class will be
returned. If the class name cannot be instantiated, or if the instantiated class is not an instance
of InputFormat, a RuntimeException will be thrown.

The returned class will be used by the framework to read the input data set for the job.
The key/value pairs that the class extracts from the input will be passed to the map method of
the mapper class in the map tasks. There will be one instance created per map task, and that
instance will receive the input split for that map task as input.

public void setinputFormat(Class<? extends InputFormat>
theClass)

This method stores the class name of theClass in the configuration under the key mapred.
input.format.class. An instance of this class will be instantiated in each map task to convert
the input split data into a set of key/value pairs for the map method of the mapper class. If
theClass does not implement the interface InputFormat, a RuntimeException will be thrown.

public OutputFormat getOutputFormat()

This method looks up the value of the key mapred.output.format.class in the configuration
and instantiates a class of that name. If the value is missing, a TextOutputFormat.class will be
returned. If the class name cannot be instantiated or if the instantiated class is not an instance
of OutputFormat, a RuntimeException will be thrown.

The returned class will be used by the framework to write each of the key/value pairs out-
put by the reduce() method of the reducer class, and if not explicitly configured, each of the
key/value pairs output by the map method of the mapper class.

There will be one instance of this class created for each reduce task. By default, one
instance of this class is created for each map task.

public void setOutputFormat(Class<? extends OutputFormat>
theClass)

This method stores the class name of theClass in the configuration under the key mapred.
output.format.class. This class transforms the key/value pairs passed to the output in the
reduce() method of the reducer into the output format. The default value is TextOutputFormat.
If theClass does not implement the OutputFormat interface, a RuntimeException will be thrown.

public OutputCommitter getOutputCommitter()

The framework provides a unique output directory for each task and stores this directory in
the per-task configuration under the key mapred.output.dir. As of Hadoop 0.18, this key is set
via the FileOutputFormat.setOutputPath static method.

As 0f 0.19.0, the OutputCommitter object is used to process the files in the per-task tem-
porary area on successful task completion, and is responsible for deciding which output files

www.it-ebooks.info

363

http://www.it-ebooks.info/

364

APPENDIX A THE JOBCONF OBJECT IN DETAIL

are moved to the actual output area. Prior to this, any files present were moved to the user-
specified output path.

This method retrieves the value stored in the configuration under the key mapred.
output.committer.class. If the retrieved value is null, the FileOutputCommitter class will be
returned. If the retrieved value is not null, the method will attempt to instantiate a class using
the value as the class name. If the class name cannot be instantiated or if the instantiated class
is not derived from the class OutputCommitter, a RuntimeException will be thrown.

public void setOutputCommitter(Class
<? extends OutputCommitter> theClass)

This method will store the class name of theClass in the configuration under the key
mapred.output.committer.class. If theClass does not implement the OutputCommitter inter-
face, a RuntimeException will be thrown. See getOutputCommitter for a description of what the
OutputCommitter is used for.

public void setCompressMapOutput(boolean compress)

This method stores the String equivalent of the value of compress in the configuration under
the key mapred.compress.map.output. If the stored value is true, the map output data that will
be consumed by the reduce phase will be compressed, using either the default compression
codec or the codec specified by the method setMapOutputCompressorClass.

MAP TASK OUTPUT COMPRESSION

During a Hadoop job that has a reduce phase, the map phase produces intermediate output that
will be further processed by the framework. This output will eventually become the input to the
reduce phase. This output may be compressed to reduce transitory disk space requirements and
network transfer requirements. The call setCompressMapOutput (true) will enable this com-
pression. To enable map output compression when the job will not have a reduce phase, the call
FileOutputFormat.setCompressOutput(conf, true) mustbe made.

Having the map output compressed can save substantial time because the amount of data that must
traverse the network between the map and the reduce phase may be substantially reduced.

Having the job output compressed may also save substantial time because the amount of data to be
stored in HDFS may be substantially reduced, greatly reducing the amount of network traffic for the replicas.

public boolean getCompressMapQOutput()

This method returns the value stored in the configuration under the key mapred. compress.
map.output. If the value is unset or is not one of true or false, the value false will be returned.
If this value is true, map task output that will be reduced will be compressed using the com-
pression defined for SequenceFiles.

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A THE JOBCONF OBJECT IN DETAIL

public void setMapOutputCompressorClass(Class
<? extends CompressionCodec> codecClass)

This method stores the class name of codecClass in the configuration under the key mapred.
map.output.compression.codec. An instance of this class will be used to compress the

map task output that is to be passed to the reduce tasks if the configuration key mapred.
compress.map.output has the value of true. This key may be set by the JobConf method
setCompressMapOutput (boolean). If codecClass does not implement the CompressionCodec
interface, a RuntimeException will be thrown.

public Class<? extends CompressionCodec> getMapOutp
utCompressorClass(Class<? extends CompressionCodec>
defaultValue)

This method looks at the value of the key mapred.output.compression.codec in the configura-
tion. If the value is not found, defaultValue is returned. If the value cannot be instantiated as a
class that is derived from CompressionCodec, a RuntimeException will be thrown.

OUTPUT KEY AND VALUE CLASSES

The Hadoop framework is responsible for loading the job input and converting that input into key/value pairs
that are passed to the map method of the mapper, passing the key/value pairs output by the map method of
the mapper to the reduce () method of the reducer, and taking the key/value pairs output by the reduce()
method of the reducer and writing them to the job output.

The class that loads and transforms the input into key/value pairs is derived from InputFormat
and requires that the type of the key and the type of the value be specified. The class that handles loading
the input is responsible for producing keys and values of the correct type. A commonly used class is the
KeyValueTextInput class, which parses the input as text files, with each record on a single line and the
key and value separated by the first tab character. The key type is org.apache.hadoop.io.Text, and the
value type is org.apache.hadoop.io.Text. If the job does not explicitly configure the map output class
as org.apache.hadoop.io.Text or the job output class as org.apache.hadoop.io. Text, the reduce
will fail with a key type mismatch error.

An InputFormat object has an associated RecordReader object. The RecordReader must provide
createKey and createValue objects. The types of these objects will be used to define the mapper class
input key and value types.

The class to receive and transform the output key/value pairs is derived from OutputFormat.

The default value for the key class is LongWritable, and the default value for the value class is org.
apache.hadoop.io.Text. The job may specify different classes via the setOutputKeyClass and
setOutputValueClass methods, respectively. By default, the expected map output types are the same as
the expected reduce input and output types.

www.it-ebooks.info

365

http://www.it-ebooks.info/

366

APPENDIX A THE JOBCONF OBJECT IN DETAIL

The job may specify that the map output key type and or the map output value type is different from
the job output key and value type. The setMapOutputKeyClass method allows the job to specify the
map output key class and the reduce input key class as being different from the job output key class. The
setMapOutputValueClass method allows the job to specify the map output value class and reduce input
value class as being different that the job output key class.

The class specified under the key map.sort.class in the configuration will
be used to sort the key objects if a reduce has been requested by the job. The default
value for this key is org.apache.hadoop.util.QuickSort, an implementation of
org.apache.hadoop.util.IndexedSorter.

The key and value classes can be any type as long as the framework is provided with serializer classes
and deserializer classes that implement org.apache.hadoop.io.serializer.Serializer and
org.apache.hadoop.io.serializer.Deserializer, and the class names are added to the list stored
in the configuration under the key io.serialization.

public void setMapOutputKeyClass(Class<?> theClass)

This method stores the class name of theClass in the configuration under the key mapred.
mapoutput.key.class. The type of this class will be used as the type of the map method
output keys and the Reducer.reduce() method input keys. This class must be serializable
and deserializable by a class defined in the list of serializers specified in the value of the
configuration key io.serializations. theClass must be sortable by the class returned by
getOutputKeyComparator().

public Class<?> getMapOutputKeyClass()

This method looks up the value of the key mapred.mapoutput.key.class in the configura-
tion. If the value is unset, null is returned. If the value cannot be instantiated as a class, a
RuntimeException is thrown. This class will also be the Reducer. reduce() method input key
class. The default class for this is the job output key class, getOutputKeyClass(), and the
default for it is LongWritable.

public Class<?> getMapOutputValueClass()

This method looks up the value of the key mapred.mapoutput.value.class in the configu-
ration. If the value is unset, the value of getOutputValueClass() is returned. If the value
cannot be instantiated as a class, a RuntimeException is returned. This class will also be
the reduce() method input value class. The default value for the output value class is
org.apache.hadoop.io.Text.

public void setMapOutputValueClass(Class<?> theClass)

This method stores the class name of theClass in the configuration under the key mapred.
mapoutput.value.class, which will be the class for the Mapper.map() value output and
the Reducer.reduce ()values. The default is the type used for the reduce output value,

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A THE JOBCONF OBJECT IN DETAIL

org.apache.hadoop.io.Text. This class must be serializable by a class defined in the list of seri-
alizers specified in the value of the configuration key io.serializations.

public Class<?> getOutputKeyClass()

This method looks up the key mapred.output.key.class in the configuration. If the value is
unset, the class object org.apache.hadoop.io.LongWritable will be returned. If the value is set
and a class of that name cannot be instantiated, a RuntimeException will be thrown. This class
is the key class that the Reducer.reduce() method will output.

public void setOutputKeyClass(Class<?> theClass)

This method stores the name of theClass in the configuration under the key mapred.output.
key. This will be the type of key output by the Reducer.reduce() method. Unless overridden
by setMapOutputKeyClass, theClass will also be the Mapper.map() output key. theClass must
be sortable by the class returned by getOutputKeyComparator () if it will also be used as the
Mapper.map() output key class. theClass class must be serializable by a class defined in the list
of serializers specified in the value of the configuration key io.serializations. The default
value is org.apache.hadoop.io.LongWritable.

public Class<?> getOutputValueClass()

This method looks up the value of the key mapred.output.value.class in the configuration.
If the value is unset, the class org.apache.hadoop.io.Text is returned. The value is instan-
tiated as a class, and the class is returned. If the value cannot be instantiated as a class, a
RuntimeException will be thrown.

public void setOutputValueClass(Class<?> theClass)

This method stores the name of theClass in the configuration under the key mapred.output.
value.class. This value will be used as the type of the Reducer.reduce() output value; if not
overridden by setMapOutputValueClass(), it will be the type of the Mapper.map() output value.
If this class is used as a map output value, it must be serializable by a class defined in the list of
serializers specified in the value of the configuration key io.serializations.

Methods for Controlling Output Partitioning and
Sorting for the Reduce

The partitioner determines which key/value pair is sent to which reduce task. The compara-
tor, the class returned by getOutputKeyComparator (), determines the ordering of the key/
value pairs, and the class returned by getOutputValueGroupingComparator() determines
which adjacently sorted keys are considered equal for producing a value group to pass to the
Reducer.reduce() method. Classes used as comparators must implement the RawComparator
interface.

www.it-ebooks.info

367

http://www.it-ebooks.info/

368

APPENDIX A THE JOBCONF OBJECT IN DETAIL

DEFINING OPTIMIZED COMPARATORS

A class used as a key object in Hadoop may define an optimized comparator class. The comparator has to
implement the org.apache.hadoop.io.WritableComparable interface. The comparator must be reg-
istered with the framework by calling org.apache.hadoop.io.WritableComparator.define(Key.
class, ComparatorInstance). The common key class org.apache.hadoop.io.Text defines a
custom comparator that does a byte-wise comparison of the actual serialized text. This avoids having to
deserialize the Text object and then run String comparisons on the data in the reconstituted objects.

public RawComparator getOutputKeyComparator()

This method looks up the value of the key mapred.output.key.comparator.class in the con-
figuration. If the value is unset, the class org.apache.hadoop.io.WritableComparable
WritableComparator will be returned. If the value cannot be instantiated as a class that is an
instance of org.apache.hadoop.io.RawComparator, a RuntimeException will be thrown.

public void setOutputKeyComparatorClass(Class
<? extends RawComparator> theClass)

This method stores the class name of theClass in the configuration under the key mapred.
output.key.comparator.class. theClass will be used to order the keys being presented to the
Reducer.reduce() method. The default class is the comparator for the Mapper.map() key output
class. If theClass does not implement the RawComparator interface, a RuntimeException will be
thrown.

public void setKeyFieldComparatorOptions(String keySpec)

This method stores the String keySpec in the configuration under the key mapred. text.
key.comparator.options. This method also changes the OutputKeyComparatorClass (key
mapred.output.key.comparator.class) to the class org.apache.hadoop.mapred.lib.
KeyFieldBasedComparator.

The key fields are separated by the character that is the value of the configuration key
map.output.key.field.separator. If there is no value set for the key map.output.key.field.
separator, the separator character will be the ASCII tab character.

The key will be split on map.output.key.field.separarator characters into pieces. These
pieces are numbered from 1.

The keySpec String is composed of one or more space-separated groups. Each group
defines the following items:

¢ The piece number to start the comparison region.

e The character number in the piece to start the comparison. The first character is 1; the
last character is 0. This is optional and defaults to position 1.

¢ How to sort, either numerically via the n option or in reverse order via the r option.
This is optional and defaults to the standard String comparison ordering.

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A THE JOBCONF OBJECT IN DETAIL

¢ The piece number to end the comparison region. This is optional and defaults to the
starting piece number.

¢ The character number in the piece to end the comparison. This is optional and defaults
to the last character in the String: 0.

The specification -k1.5nr specifies numeric reverse-order sorting using the characters
from position 5 through the end of the first piece of the key.

The specification -k2.2, 3. 4r specifies reverse String comparison using the characters
from character 2 in key 2 through to character 4 in piece 3.

Given the line 01234 6789, key piece 1 would be 01234, and key piece 2 would be 6789.
The key spec -k1.2,2.3 would provide a comparison segment of 1234 678. There is a test class
for these key fields in the examples that can be run by giving it three arguments: the key, the
key spec for the combiner, and the key spec for the partitioner. The field separator is hard
coded as a space: bin/hadoop jar '\Documents and Settings\Jason\My Documents\Hadoop
Source\hadoop-0.19.0\hadoopprobook.jar" com.apress.hadoopbook.examples.jobconf.
KeyFieldDemonstrator "01234 6789 abcd" "-K1,2" "-k3,3". The summarized output is
Partitioner[key: (abc)] Comparator[key: (01234 6789 abcd), key: (01234 6789 abcd)].

Note Changing the output key comparator class via setOutputKeyComparatorClass disables
field-based key comparisons. The output key comparator class must be org.apache.hadoop.mapred.
1ib.KeyFieldBasedPartitioner or a functional equivalent.

public String getKeyFieldComparatorOption()

This method looks up the value of the key mapred. text.key.comparator.options and returns
the value. Please see setKeyFieldComparatorOption for a discussion of the appropriate values.

PARTITIONING

When a job is configured to have a reduce phase, the output will be split into partitions (one partition per
reduce task). The framework has a default partitioning strategy of using the hash code of the key, modulus
the number of partitions, key.hashCode() % conf. getNumReduceTasks (). If your job has three
reduces specified, the default partition for a key will be key.hashCode() % 3. The user is free to specify
a custom partitioning class. The framework provides three partitioning classes:

e org.apache.hadoop.mapred.lib.HashPartitioner: default partition based on the key’s hash code

e org.apache.hadoop.mapred.lib.KeyFieldBasedPartitioner: partition based on a segment
of the key

e org.apache.hadoop.mapred.lib.TotalOrderPartitioner: partition by absolute range of the keys

A custom partitioning class must implement the interface org.apache.hadoop.mapred.
Partitioner.

www.it-ebooks.info

369

http://www.it-ebooks.info/

370

APPENDIX A THE JOBCONF OBJECT IN DETAIL

public Class<? extends Partitioner> getPartitionerClass()

This method looks up the value of the key mapred.partitioner.class in the configuration. If
the value is unset, the class org.apache.hadoop.mapred.lib.HashPartitioner is returned. If the
value is set, it is instantiated as a class that must be an instance of org.apache.hadoop.mapred.
Partitioner.class. If the value cannot be instantiated or is not an instance of the Paritioner
class, a RuntimeException will be thrown. HashPartitioner simply uses the hash value of the
key, modulus the number of reduce tasks, to determine which reduce will receive any given
key/value pair.

public void setPartitionerClass(Class<? extends Partitioner>
theClass)

This method stores the class name of theClass in the configuration under the key mapred.
partitioner.class. An instance of this class will be created for each map task and used to
determine which reduce will receive which key/value pair that the Mapper.map() method out-
puts. If theClass does not implement the org.apache.hadoop.mapred.Partitioner interface,
RuntimeException will be thrown.

public void setKeyFieldPartitionerOptions(String keySpec)

This method stores the String keySpec in the configuration under the key mapred.text.key.
partitioner.options. The output partitioning class will also be set to org.apache.hadoop.
mapred.lib.KeyFieldBasedPartitioner via a call to the setPartitionerClass() method.
The portion of the key selected will be hashed, and that hash modulus the number of
reduces will be the partition number.
The keySpec String is composed of one or more space-separated groups. Each group
defines the following items:

¢ The piece number to start the comparison region.

e The character number in the piece to start the comparison: 1 is the first character; 0 is
the last character. This is optional and defaults to position 1.

¢ How to sort, either numerically via the n option and or in reverse order via the r option.
This is optional and defaults to the standard String comparison ordering.

¢ The piece number to end the comparison region. This is optional and defaults to the
starting piece number.

¢ The character number in the piece to end the comparison. This is optional and defaults
to the last character in the String: 0.

Note The key parser (at least through Hadoop 0.19.0) has an issue: it doesn’t understand
that the last piece of the key might not have a separator character after it. If your job generates
ArrayIndexOutOfBounds exceptions, explicitly end the key piece selection for the second key piece: -k2.
2 explicitly ends the piece at the last character; -k2 includes the second key piece and the separator after
piece 2.

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A THE JOBCONF OBJECT IN DETAIL

The specification -k1.5nr specifies numeric reverse order sorting using the characters
from position 5 through the end of the first piece of the key.

The specification -k2.2,3.4r specifies reverse String comparison using the characters
from character 2 in key 2 to character 4 in piece 3.

Given the line 01234 6789, key piece 1 would be 01234, and key piece 2 would be 6789.
The key spec -k1.2,2,3 would provide a comparison segment of 234 678.

public String getKeyFieldPartitionerOption()

This looks up the key mapred.text.key.partitioner.options in the configuration and returns
the value. For this value to have an effect, the output partitioner class must be org.apache.
hadoop.mapred.lib.KeyFieldBasedPartitioner. See setKeyFieldPartionerOptions for a
description of the returned value.

OUTPUT VALUE GROUPING

It is often the case that there is a requirement for grouping output data. Hadoop Core provides a way to group
output values that acts very much like a secondary sort on the key data. For this to work in the manner that
the user expects, the output partitioner, the output comparator, and the output grouping comparator have to
cooperate.

The outputKeyComparator must order the keys using the primary and secondary sort. Because
keys that must group together may not be equal in this method, the outputPartitioner has to be able
to place keys that must group together into the same partition. The outputValueGroupingComparator
must return equality only for those keys that are equal in the primary sort. This will result in a call to the
Reduce.reducer method for each group of keys.

public RawComparator getOutputValueGroupingComparator()

This method looks up the value of the key mapred.output.value.groupfn.class in the con-
figuration and attempts to instantiate a class that is an instance of org.apache.hadoop.
io.RawComparator. If the value is unset, the comparator class for the Map key class is returned. If
the value cannot be instantiated or the resulting class does not implement org.apache.hadoop.
io.RawComparator, a RuntimeException is thrown.

public void setOutputValueGroupingComparator(Class
<? extends RawComparator> theClass)

This method stores the class name of theClass in the configuration under the key mapred.
output.value.groupfn.class. If theClass does not implement the org.apache.hadoop.
io.RawComparator interface, a RuntimeException will be thrown.

The use of this method enables a grouping operator on keys and a secondary sort. The
user must set both a partitioner and a comparator that cooperate for this to be used. It is com-
mon for the default output comparator to be used to force complete sorting of the keys output

www.it-ebooks.info

3N

http://www.it-ebooks.info/

372

APPENDIX A THE JOBCONF OBJECT IN DETAIL

by the Mapper.map() method. The output comparator must compare keys so all keys that are to
be grouped together are adjacent in the sort. The partitioner must ensure that all keys that are
to be grouped together are sent to the same partition.

The Reducer.reduce() method will receive the first key in the group, and the values will be
the values from all adjacent keys that the output value grouping comparator considers equal.
If keys are of the form item rank and the values are of the form data, the partitioner must use
only item to partition. The standard output comparator will sort lexically on item rank. The
output value grouping operator will use only item for comparing keys. The Reducer. reduce()
method will receive all keys that share item, and the values will be lexically sorted by rank.

The keys are composed of item rank, where the itemis one of Keyl or Key2, and the rank
is one of 00, 01, 02. The partitioner would use the item for partitioning. The output comparator
would fully sort the keys by item rank. The output value grouping comparator would use only
item for comparing keys. (See Table A-1 and Table A-2.)

Table A-1. Sample Input

Key Value Partitioner Value QOutput Comparator Sort
Keyl 00 00 Keyl Keyl 00
Keyl 01 01 Keyl Keyl 01
Keyl 02 02 Keyl Keyl 02
Key2 00 00 Key2 Key2 00
Key2 01 01 Key2 Key2 01
Key2 02 02 Key2 Key2 02

Table A-2. Reducer.reduce Calls

Key Values
Keyl 00 00 01 02
Key2 00 00 01 02

Methods that Control Map and Reduce Tasks

These methods actually specify the class that provides the Mapper.map() and Reducer.reduce()
methods. They specify if the map methods may be run from multiple threads or in a single
thread.

They specify if the framework will attempt to run multiple instances of a task to see if one
will run faster, and when to consider a task completely failed and a job completely failed.

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A THE JOBCONF OBJECT IN DETAIL

SINGLE THREADED OR MULTI-THREADED MAPPERS

The framework creates an instance of the mapper class in each map task. By default, a single-threaded map
runner is used, and the key/value pairs are passed to the Mapper.map () method serially. The user may
inform the framework that multiple threads are to run the Mapper.map () method. There will be multiple
simultaneous calls to the map () method of the single instance of the Mapper class, running in the JVM that
hosts the map task. The input of key/value pairs are treated as a queue, being serviced by a thread pool,
which invokes the Mapper .map () method on each pair pulled from the queue.

The user specifies this behavior by setting the map runner class to
org.apache.hadoop.mapred.lib.MultithreadedMapRunner and by storing the number of threads to
run in the configuration under the key mapred.map.multithreadedrunner.threads.

public Class<? extends Mapper> getMapperClass()

This method looks up the value of the key mapred.mapper.class in the configuration and
attempts to instantiate the value as a class of type org.apache.hadoop.mapred.Mapper. If the
value is unset, the class org.apache.hadoop.mapred.1ib.IdentityMapper is returned. If the
value cannot be instantiated as a class of the correct type, a RuntimeException is thrown.

The returned class will provide the map method that all the input data will be passed
through.

public void setMapperClass(Class<? extends Mapper> theClass)

This method stores the name of theClass class in the configuration under the key mapred.
mapper.class. An instance of this class will be created in each map task, and each input
key/value pair will be passed to theClass map method. If theClass does not implement the
org.apache.hadoop.mapred Mapper interface, a RuntimeException will be thrown.

public Class<? extends MapRunnable> getMapRunnerClass()

This method looks up the key mapred.map.runner.class in the configuration and instantiates
the value as a class of type org.apache.hadoop.mapred.MapRunnable. If the value is unset, the
class org.apache.hadoop.mapred.lib.MapRunnable is returned.

public void setMapRunnerClass(Class<? extends
MapRunnable> theClass)

This method stores the name of theClass in the configuration under the key mapred.map.
runner.class. This is commonly used when the Mapper.map() method is to be threaded,
and theClass in this case is org.apache.hadoop.mapred.lib.MultithreadedMapRunner.class.
When this is done, there is usually a setInt("mapred.map.multithreadedrunner.threads",
threadCount) call.

The multithreaded map runner is very handy when the map method is not blocked wait-
ing on local CPU or IO, such as when the map method is used to fetch URLs.

www.it-ebooks.info

373

http://www.it-ebooks.info/

374 APPENDIX A THE JOBCONF OBJECT IN DETAIL

public Class<? extends Reducer> getReducerClass()

This method looks up the key mapred.reducer.class in the configuration and instantiates
the value as a class of type org.apache.hadoop.mapred.Reducer. If the value is unset, the class
org.apache.hadoop.mapred.lib.IdentityReducer is returned. If the value cannot be instanti-
ated as a class of the correct type, a RuntimeException will be thrown.

public void setReducerClass(Class<? extends Reducer>
theClass)

This method stores the name of theClass in the configuration under the key mapred.reducer.
class. If theClass does not implement the Reducer interface, a RuntimeException will be
thrown.

One instance of this class will be created in each reduce task. Each unique key will be
passed to one instance of the Reducer.reduce() method of theClass, with all the values that
share that key.

COMBINERS: A WAY TO REDUCE INTERMEDIATE DATA

A combiner class is a minireducer that is run in the context of the map task to pregroup key/value pairs that
share a key.

Combiners can greatly minimize the amount of output that has to pass between the map and reduce
tasks and speed up the job.

The class used for combining must implement the Reducer interface, and the class’s reduce ()
method will be called to combine map output values that share a key.

If the job’s reducer class is being used as a combiner, reduce () must not have side effects because
there is no constraint on the number of times the reduce () method will be called in as a map output com-
biner. In particular, if the same class is used for combing and reducing, unless care is taken to change the
counter names, the counts displayed at job end will be the sum of the combiner and reducer counts. Please
see com.apress.hadoopbook.examples.chs.CounterExamplesWithCombiner, and look at the
NaiveReducer counter values and compare them against the reducer and combiner counter values.

public Class<? extends Reducer> getCombinerClass()

This method looks up the key mapred.combiner.class in the configuration and instanti-
ates the value as a class implementing the Reducer interface. If the value is unset, null is
returned. If the value cannot be instantiated as a class implementing the Reducer interface,
aRuntimeException is thrown.

public void setCombinerClass(Class<? extends Reducer>
theClass)

This method stores the name of theClass in the configuration under the key mapred. combiner.
class. If theClass does not implement the Reducer interface, a RuntimeException is thrown.

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A THE JOBCONF OBJECT IN DETAIL

SPECULATIVE EXECUTION: FRIEND AND FOE

Hadoop has its roots in clusters of heterogeneous machines. In this environment, the amount of wall clock
time for any given machine to execute a map or reduce task could vary widely because of differing machine
capabilities. In addition, there is no guarantee that any given InputSplit will take the same amount of wall
clock time to execute.

Speculative execution informs the cluster that any unused task slots may be used to run duplicate
instances of an already running task. The first of these duplicates to complete has its results used, and the
other task has its output discarded.

If your tasks do not have side effects that Hadoop cannot undo, do not consume resources with some
real costs or load your machines so that other tasks run slower. Speculative execution is your friend.

Note Hadoop only knows how to discard task output that is in the form of job counters or output that is
placed in the per-task output directory. Ensure that speculative execution is disabled if your tasks have out-
put that Hadoop cannot discard or side effects that Hadoop cannot undo.

public boolean getSpeculativeExecution()

This method returns true if either getMapSpeculativeExecution() or
getReduceSpeculativeExecution() is true. The default Hadoop configuration has speculative
execution enabled for map tasks and for reduce tasks.

public void setSpeculativeExecution
(boolean speculativeExecution)

This method calls setMapSpeculativeExecution(speculativeExecution) and
setReduceSpeculativeExecution(speculativeExecution). If speculativeExecution is true,
speculative execution will be enabled for both map and reduce tasks. If speculativeExecution
is false, speculative execution will be disabled for both map and reduce tasks.

public boolean getMapSpeculativeExecution()

This method looks up the value of the key mapred.map.tasks.speculative.execution in the
configuration and converts that value to a boolean value, which is then returned. If the value
is unset, true is returned. If the value is not the String true, false is returned.

public void setMapSpeculativeExecution
(boolean speculativeExecution)

This method stores the String value of the boolean speculativeExecution in the configuration
under the key map.tasks.speculative.execution.

www.it-ebooks.info

375

http://www.it-ebooks.info/

376

APPENDIX A THE JOBCONF OBJECT IN DETAIL

public boolean getReduceSpeculativeExecution()

This method looks up the value of the key mapred.reduce.tasks.speculative.execution in the
configuration and converts that value to a boolean value, which is then returned. If the value is
unset, true is returned. If the value is not the String true, false is returned.

public void setReduceSpeculativeExecution
(boolean speculativeExecution)

This method stores the String value of the boolean speculativeExecution in the configuration
under the key mapred.reduce.tasks.speculative.execution.

public int getNumMapTasks()

This method looks up the value of the key mapred.map.tasks in the configuration and returns
the value converted to an int. If the value is unset, 1 is returned. If the value cannot be con-
verted to an int, a NumberFormatException is thrown. This value is the suggested number

of map tasks to run. The actual number of map tasks will be determined by the number of
InputSplits that the framework constructs from the input data. In general, there is at least one
InputSplit for each input file. The input format might be able to make multiple InputSplits
from a single file. The FileInputFormat set of input formats will split uncompressed files on
HDEFS block boundaries, which by default are 64MB. Many installations increase this size to
128MB or higher.

public void setNumMapTasks(int n)

This stores the String representation of n in the configuration under the key mapred.map.tasks.
The input format will attempt to ensure that this is the maximum number of map tasks, but
may not be able to do so if there are more individual files that this in the input directory. In
general, tuning this and the split size setInt("mapred.min.split.size ", NUMBER), so map
tasks take more than a minute to run is considered optimal.

public int getNumReduceTasks()

This method looks up the value of the key mapred.reduce.tasks in the configuration and
returns the value converted to an int. If the value is unset, 1 is returned. If the value cannot be
converted to an int, a NumberFormatException is thrown.

Unlike the number of map tasks, this is exactly the number of reduce tasks that will be run.

public void setNumReduceTasks(int n)

This method stores the String representation of n in the configuration under the key mapred.
reduce.tasks. Exactly this number of reduce tasks will be run by the framework. If this number
is 0, no reduce tasks will be run, and no output partitioning or sorting will be done. There will
be one output file per map task, written to the output directory configured for the job.

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A THE JOBCONF OBJECT IN DETAIL

public int getMaxMapAttempts()

This method looks up the value of the key mapred.map.max.attempts in the configuration and
returns the value converted to an int. If the value is unset, the value 4 is returned. If the value
cannot be converted to an int, a NumberFormatException is thrown.

The framework will attempt to reschedule map tasks that fail up to getMaxMapAttempts()
times before the job is considered failed.

public void setMaxMapAttempts(int n)

This method stores the String representation of n in the configuration under the key mapred.
map.max.attempts. This is rarely changed by the user other than to set it to 0 to disable the
retrying of failed jobs.

The framework will attempt to reschedule map tasks that fail up to getMaxMapAttempts()
times before the job is considered failed.

public int getMaxReduceAttempts()

This method looks up the value of key mapred.reduce.max.attempts in the configuration and
returns the value converted to an int. If the value is unset, the value 4 is returned. If the value
cannot be converted to an int, a NumberFormatException is thrown.

The framework will attempt to reschedule reduce tasks that fail up to this value times
before the job is considered failed.

public void setMaxReduceAttempts(int n)

This method stores the String representation of n in the configuration under the key mapred.
reduce.max.attempts. This is rarely changed by the user other than to set it to 0 to disable the
retrying of failed jobs.

The framework will attempt to reschedule reduce tasks that fail up to this value times
before the job is considered failed.

public void setMaxTaskFailuresPerTracker(int noFailures)

This method stores the String representation of noFailures in the configuration under the key
mapred.max.tracker.failures. This value is the number of tasks for this job that may fail on a
specific TaskTracker before that TaskTracker is considered failed for this job.

public int getMaxTaskFailuresPerTracker()

This method looks up the value of the key mapred.max.tracker.failures in the configuration
and returns the value converted to an int. If the value is unset, the value 4 is returned. If the
value cannot be converted to an int, a NumberFormatException will be thrown. This value is the
number of tasks for this job that may fail on a specific TaskTracker before that TaskTracker is
considered, failed, for this job.

www.it-ebooks.info

377

http://www.it-ebooks.info/

378

APPENDIX A THE JOBCONF OBJECT IN DETAIL

public int getMaxMapTaskFailuresPercent()

This method looks up the value of the key mapred.max.map.failures.percent in the con-
figuration. If the value is unset, 0 is returned. If the value cannot be converted to an int, a
NumberFormatException is thrown.

If this value is not zero, a job may succeed if less than this value as a percentage of the
map tasks cannot be successfully completed. So if the job has 100 map tasks, and this returns
1, only 99 of the map tasks have to complete successfully for the job to be considered a
success.

Map tasks that do not succeed are retried up to getMaxMapAttempts() times before being
considered failed.

public void setMaxMapTaskFailuresPercent(int percent)

This method stores the String representation of percent in the configuration under the key
mapred.max.map.failures.percent. This is the percentage of map tasks that can fail without
the job being marked as a failure. The default value for this parameter is 0.

A map task that does not succeed is retried getMaxMapAttempts() times, which defaults to
4, before being that task is considered failed.

public int getMaxReduceTaskFailuresPercent()

This method looks up the value of the key mapred.max.reduce.failures.percent in the con-
figuration. If the value is unset, 0 is returned. If the value cannot be converted to an int, a
NumberFormatException is thrown.

If this value is not zero, a job may succeed if less than this value as a percentage of the
reduce tasks cannot be completed successfully. So if the job has 10 reduce tasks, and this
returns 10, only 9 of the reduce tasks have to complete successfully for the job to be considered
a success.

Map tasks that do not succeed are retried up to getMaxReduceAttempts() times before
being considered failed.

public void setMaxReduceTaskFailuresPercent(int percent)

This method stores the String representation of percentage in the configuration under the key
mapred.max.reduce.failures.percent. This is the percentage of reduce tasks that can fail with-
out the job being marked as a failure. The default value for this parameter is 0.

A reduce task that does not succeed is retried getMaxReduceAttempts() times, which
defaults to 4 before being that task is considered failed.

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A THE JOBCONF OBJECT IN DETAIL

Methods Providing Control Over Job Execution
and Naming

These methods provide a way to specify a job name and a session identifier as well as to
specify a priority for a job. The naming is also helpful for distinguishing jobs in the reporting
frameworks.

They also provide a way to enable profiling of specific tasks and of running a debugging
script on failed tasks.

public String getJobName()

This method looks up the value of the key mapred. job.name in the configuration and returns
the result. If the value is unset, an empty String is returned.
This is the name that the job will be identified by to the user.

public void setJobName(String name)

This method stores name in the configuration under the key mapred. job.name. name will be used
to identify the job in user-reporting mechanisms.

HADOOP ON DEMAND

Hadoop On Demand (HOD) is a package that provides virtual map/red clusters on top of a larger HDFS
installation. It is used extensively inside of Yahoo. The use of HOD requires an understanding of torque:
http://www.clusterresources.com/pages/products/torque-resource-manager.php. The
author and the team the author was working with found it too complex for the benefits provided and discon-
tinued using it.

HOD is described on the Hadoop site: http://hadoop.apache.org/core/docs/r0.19.1/
hod_user guide.html. HOD has probably improved significantly because the author used it last with
Hadoop 0.16.1. The author recommends avoiding HOD unless there is a local torque expert to handle the
torque installation and day-to-day operation.

public String getSessionld()

This method looks up the value of the key session.id in the configuration and returns it. If
the value is unset, an empty String is returned. This is primarily used by HOD to distinguish
different virtual clusters. The session name may also help distinguish this job in the metrics
reporting framework.

www.it-ebooks.info

379

http://www.clusterresources.com/pages/products/torque-resource-manager.php
http://hadoop.apache.org/core/docs/r0.19.1/
http://www.it-ebooks.info/

380

APPENDIX A THE JOBCONF OBJECT IN DETAIL

public void setSessionld(String sessionId)

This method stores sessionld in the configuration under the key session.id. This value will
be used as a token in the name used to identify any metrics that are reported by this job. This
method is primarily intended for use by HOD.

public JobPriority getJobPriority()

This method looks up the value of the key mapred. job.priority in the configuration. If the
value is unset, JobPriority.NORMAL is returned. If the value cannot be parsed as a JobPriority,
an IllegalArgumentException is thrown. (Hadoop versions prior to 0.19 had only this simple
mechanism for handling multiple running jobs on a cluster.)

A job with a higher priority has first right of refusal for any map or reduce task slot avail-
able on the cluster. If jobs have equal priority, the first requester gets the open task slots. There
is no preemption of executing tasks.

Caution Queuing multiple jobs into a cluster with this mechanism can result in a cluster deadlock in
which no job can complete.

Hadoop 0.19 also provides a queuing mechanism that provides rich control over how task
slots are allocated between multiple competing jobs. (Refer to Chapter 8.)

public void setJobPriority(JobPriority prio)

Store the String representation of prio in the configuration under the key mapred.
job.priority.

Jobs with a higher priority have first choice of available task slots when executing in
an environment in which multiple jobs are queued into a cluster.

public boolean getProfileEnabled()

This method looks up the value of the key mapred.task.profile in the configuration. If the
value is unset or not the String, true, false is returned; otherwise, true is returned.

If this is true, the framework may profile specific tasks by using the results of
getProfileTaskRange() to select individual tasks to profile. Profiling is performed on both map
tasks and reduce tasks if enabled. If only profiling on maps is required, the user must specify a
range of reduce values that is not available to the setProfileTaskRange() method, with false
as the first argument. If the number of reduces is 10, the reduces will be 0 through 9, and call-
ing setProfileTaskRange(false, "10") would effectively disable profiling for reduces. It is
harder to absolutely know the number of map tasks, but the same technique applies.

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A THE JOBCONF OBJECT IN DETAIL

public void setProfileEnabled (boolean newValue)

This method stores the String value of newValue in the configuration under the key mapred.
task.profile. If newValue is true, profiling information will be collected for tasks that match
the getProfileTaskRange() method.

public String getProfileParams|()
This method looks up the value of the key mapred.task.profile.params in the configuration,
returning that value. If the value is unset, the following String is returned:

-agentlib:hprof=cpu=samples,heap=sites,force=n,thread=y,verbose=n,file=%s

This String is passed to the JVM to control how the profiling is performed for the task to
be profiled. At runtime, for a profiled task a single %s will be substituted in the value with the
name of the task-specific profile.out file.

public void setProfileParams(String value)

This method stores value in the configuration under the key mapred.task.profile.params.
This value, with a single %s substituted with the name of the task-specific profile output file, is
passed to the JVM of a task to be profiled.

public Configuration.IntegerRanges getProfileTaskRange
(boolean isMap)

This method looks up the value of the key mapred.task.profile.maps if isMap is true,

or the value of the key mapred.task.profile.reduces if isMap is false. If the value is

unset, the range 0-2 is constructed. If the value cannot be parsed as a set of ranges, an
I1legalArgumentException is thrown. Ranges are specified as a set of comma-separated values,
in which each value is a single positive integer or two positive integers separated by a dash.
Some valid ranges include the following:

e 0-2:tasks 0, 1, and 2
e 2:task 2 only
e 0-2,5-7:tasks0, 1, 2,5,6,and 7

e -7,0,6-11:tasks0, 5,6, 7,8,9, 10, and 11 (ordering is not needed, and overlap is
allowed)

e 0-3, 9-11,13:tasks0,1,2,3,9,10, 11, and 13

No checking is performed to ensure that the individual ranges in a comma-separated set
do not overlap and ordering is not required. A linear search through the list in the order sup-
plied is performed for each task when profiling is enabled.

www.it-ebooks.info

381

http://www.it-ebooks.info/

382

APPENDIX A THE JOBCONF OBJECT IN DETAIL

public void setProfileTaskRange(boolean isMap, String
newValue)

This method stores newValue under the key mapred.task.profile.maps if isMap is true, or the
key mapred.task.profile.reduces if isMap is false. The value must be a comma-separated list
of ranges composed of positive integers. During task setup, the TaskRunner will get this value
via getProfileTaskRange(), if the value stored in the key is not a valid range, an exception will
be thrown and the task will be aborted. (See Configuration.IntegerRanges getRange(), earlier
in this chapter, for a discussion of range formats.)

Some valid ranges include the following:

e 0-2:tasks0, 1,and 2
e 2:task 2 only
e 0-2,5-7:tasks0,1,2,5,6,and 7

* 5-7,0,6-11:tasks 0, 5, 6,7, 8,9, 10, and 11 (ordering is not needed, and overlap is
allowed)

e 0-3, 9-11,13:tasks0, 1, 2,3,9,10, 11, and 13

No checking is performed to ensure that the individual ranges in a comma-separated set
do not overlap and ordering is not required. A linear search through the list in the order sup-
plied is performed for each task, when profiling is enabled.

public String getMapDebugScript()

This method returns the value of the key mapred.map.task.debug.script from the configu-
ration. If the value is unset, null is returned. This script will be run for a map task that the
framework is going to mark as failed or about to kill.

The value is the script and script arguments to be used to debug failed tasks. The value
will be split into tokens using the space character as a separator. Five additional arguments are
added:

¢ The path to the task standard output file
e The path to the task standard error file
¢ The path to the task syslog output file

¢ The path to the file containing the XML representation of the JobConf object for
the task

¢ The program name if this is a pipes job or empty String

All the tokens are passed to the shell to be executed as a command. The input of the com-
mand will be connected to /dev/null, and the standard and error output collected in a single
stream.

The script is run with the current working directory as the task local directory. If the script
is not resident on all the TaskTracker nodes and normally executable, it must be distributed
via the DistributedCache and symlinked.

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A THE JOBCONF OBJECT IN DETAIL

The following code fragment arranges for the executable program that is on the local file
system at LocalFileSystemPathToDebugScript to be distributed to all tasks and made available
for execution as . /MyDebugScript. In Listing A-11, the URI fragment #MyDebugScript informs
the framework to create a symbolic link named MyDebugScript between the task local copy of
LocalFileSystemPathToDebugScript and the current working directory of the task.

Listing A-11. Adding a Debug Script to the DistributedCache

Job. setMapDebugScript("./MyDebugScript map argument2 argument3");
DistributedCache.createSymlink(job);
DistributedCache.addFile("HDFSFileSystemPathToDebugScript#MyDebugScript");

The script will be invoked in the task local directory via the following shell command:

./MyDebugScript map argumentl argument2 argument3 taskStdoutFile taskStderrFilews
taskSyslogFile taskJobConfXmlFile pipesProgramNamews
< /dev/null 2>81 > ./debugout

The user can specify how many lines to keep from the output by setting an int value on
the key mapred.debug.out.lines. The default value -1 keeps all the output lines. The value
specified is the number of lines from the tail of the file to keep. If the value is 10, the last 10
lines of the output file are saved.

This information is made available via the JobTracker web interface in the task detail
output.

Caution Having shell metacharacters in the value of mapred.map.task.debug.script may lead to
unpredictable results.

public void setMapDebugScript(String mDbgScript)

This method stores mDbgScript in the configuration under the key mapred.map.task.debug.
script. (See getMapDebugScript () for details on the format and use of mDbgScript.)

public String getReduceDebugScript()

This method return the value stored under the key mapred.reduce.task.debug.script. If the
value is unset, null is returned. The usage is the same as the usage of getMapDebugScript(),
except it reduces tasks.

public void setReduceDebugScript(String rDbgScript)

This method stores rDbgScript in the configuration under the key mapred.reduce.task.
debug.script. (See getMapDebugScript() for details on the format and use of rDbgScript.) This
script will be used for failed or about to be killed reduce tasks.

www.it-ebooks.info

383

http://www.it-ebooks.info/

384

APPENDIX A THE JOBCONF OBJECT IN DETAIL

JOB END NOTIFICATION

If a URL is stored in the configuration under the key job.end.notification.url orvia
setJobEndNotification(), an HTTP GET will be made on this URL when the job finishes.

The text $jobId and $jobStatus, if present in the URL, is replaced with the job id and the job status,
respectively. The job status will be either SUCCEEDED or FAILED.

The parameter job.end.retry.attempts controls the number of retry attempts that will be made if
the HTTP GET does not return the numeric status code of 200. The default is O retries.

The parameter job.end.retry.interval controls the delay between retry attempts, with a default
value of 30,000 msec.

If either parameter is set and the value cannot be converted to an int, a NumberFormatException
will be thrown in the context of the JobTracker, which may cause the JobTracker to abort or otherwise
behave unpredictably.

public String getJobEndNotificationURI()

This method looks up the value of the key job.end.notification.url in the configuration and
returns that value. If the value is unset, null is returned. The value will be used as a URL in an
HTTP GET.

public void setJobEndNotificationURI(String uri)

This method stores uri in the configuration under the key job.end.notification.url.

public String getQueueName()

This method looks up the key mapred. job.queue.name in the configuration and returns the
value. If the value is unset, default is returned.

Queues, which are new to Hadoop 0.19.0, provide a mechanism to allow multiple jobs to
share cluster resources in a specified manner (refer to Chapter 8).

public void setQueueName(String queueName)

This method stores queueName in the configuration under the key mapred. job.queue.name. If
queueName is not a valid queue name, the JobTracker behavior is unpredictable.

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A THE JOBCONF OBJECT IN DETAIL

MEMORY LIMITS FOR TASKS AND THEIR CHILDREN

Hadoop provides a mechanism to control the limit of virtual memory that an individual task and the task’s
children use.

The user can specify the maximum amount of memory, in kilobytes, in the configuration under
the key mapred. task.maxmemory; the method setMaxVirtualMemoryForTask(vmem) can
also be used. The overall default can be specified by storing the value in kilobytes under the key
mapred.task.default.maxmemory.

When the virtual memory consumption of a task and its children exceed this value, the task is killed by
the framework, and marked as failed. This is predicated on the system reporting virtual memory usage for
processes in kilobytes.

The default value for mapred. task.maxmemory is -1. The value of -1 tells the framework to use the
framework limit, which is stored under the key mapred. task.default.maxmemory. The default value for
this key is 536,870,912 kilobytes (roughly one-half terabyte).

long getMaxVirtualMemoryForTask() {

This method looks up the value of the key mapred.task.maxmemory and returns it as a
long. If the value is unset, -1 is returned. If the value cannot be converted to along, a
NumberFormatException will be thrown.

void setMaxVirtualMemoryForTask(long vimem) {

This method stores the String version of vmem in the configuration under the key mapred.
task.maxmemory. If a task and its children’s virtual memory usage exceed this value, the task
will be killed by the framework.

Convenience Methods

These methods provide convenience functions for accessing the configuration data.

public int size()

This method returns the number of keys in the configuration.

public void clear()

This method completely clears all keys and values from the configuration.

public Iterator<Map.Entry<String,String>> iterator()

This method returns an integrator for to the key/value pairs stored in the configuration.

www.it-ebooks.info

385

http://www.it-ebooks.info/

386

APPENDIX A THE JOBCONF OBJECT IN DETAIL

public void writeXml(OutputStream out) throws IOException

This method serializes the key/value pairs in the configuration to XML in the standard con-
figuration file format and writes the data to out.

The destination for this output data can be used as input to the addResource () method.
This method is used by the framework to serialize the job configuration and store it in HDFS
so that the individual tasks load the job configuration at task start.

public ClassLoader getClassLoader()

This method returns the class loader that is used to search for resources that are added via the
addResource() methods and to instantiate classes when a class is being returned.

public void setClassLoader(ClassLoader classLoader)

This method sets the class loader to be used for locating resources and instantiating classes to
classloader.

This is primarily used by the framework when preparing map and reduce tasks to include
the DistributedCache classpath items in the classpath.

public String toString()

This returns a String composed of the names of all the resources that were loaded into
this configuration. This method does not return the key/value pairs that are stored in the
configuration.

Methods Used to Pass Configurations Through
SequenceFiles

The configuration class implements the Writable interface, which allows the framework to
serialize and deserialize the configuration. These two methods are required for the Writable
interface. It is not clear that these methods are used by the framework at the current time.

public void readFields(Datalnput in) throws IOException

This method will deserialize the configuration key/value pairs. The key value pairs will be read
from the DataInput stream in.

public void write(DataOutput out) throws IOException

This method serializes the configuration into a form that is suitable for use in SequenceFiles.
The serialized data is written to the DataOutput stream out.

www.it-ebooks.info

http://www.it-ebooks.info/

Index

Symbols
@AfterClass annotation (JUnit 4), 217
@BeforeClass annotation (JUnit 4), 217
@Test annotation (JUnit 4), 218-219
; (semicolon) as separator character, 24

A
@AfterClass annotation JUnit 4), 217
accessing
DistributedCache object data, 133-135
HDFS, methods for
fuse_dfs, 251-256
libhdfs, 249-251
access_log.txt, 323
ActiveRanges.activate, modifications to, to
support partition spanned search
space keys, 312
addMapper() method
ChainMapper class, 259-261
ChainReducer class, 261-263
administration scripts for clusters, 73-74
aggregation
side effect files and, 279
specifying ValueAggregatorDescriptor class
via configuration parameters, 278
using Java classes, 277-278
using streaming, 275-277
aggregation services, predefined, 274-275
agile programming model, and unit testing,
207
Amazon cloud computing services, 335
Apache Foundation, log4j package for logging,
20
Apache log file, generating sample set of IP
addresses and ranges from, 289
ApacheLogTransformMapper class
log line processing Part 1, 296
log line processing Part 2, 296
preamble, 295
archives
distributing to tasks, 133
finding in localized cache, 134
looking up, 134
autowiring mapper class with Spring, 145-147

B
@BeforeClass annotation (JUnit 4), 217
Balancer service
role of, 73
storage allocations and, 115
/bin/cat, as map executable, 240-243
bin/hadoop jar command, 128
bin/hadoop script for managing job setup,
128-130
bin/slaves.sh command, 108
bin/start-dfs.sh command, 104
BLOCK compression, 173
block-level compression, 172, 203
block service threads, 112-113
block size of HDFS, 183
BruteForceMapReduceDriver.java
command to run, 322
job setup, 301
modifications to setup method in, 312
brute-force MapReduce pattern
combiner, 298
driver, 301-302
helper class for keys, 291-294
key contents and comparators, 288-291
mapper, 294-298
overview of, 287
pluses and minuses of, 302
reducer, 298-300
single reduce task, 287
building map-side joins, 270-271

c

Capacity Scheduler, enabling, 281-284
cascading package, 128
Cascading project, 334
chaining
close() method and, 259
configuring for, 258
configuring mapper tasks to be chains,
259-261
configuring reducer tasks to be chains,
261-265
description of, 128, 257
JobConf object and, 259

www.it-ebooks.info

387

http://www.it-ebooks.info/

388

INDEX

passing key/value pairs by value or by
reference, 258
type checking for chained keys and values,
258
ChainMapper class, 259-261
ChainMappingExample, event ordering in,
264-265
ChainReducer class, 261-263
check_basic_env.sh script, 13-17
Chukwa, 196
class declaration for mapper, 142-143
classes
ApacheLogTransformMapper
log line processing Part 1, 296
log line processing Part 2, 296
preamble, 295
ChainMapper, 259-261
ChainReducer, 261-263
ClusterMapReduceDelegate
core methods of, 214-215
core parameters of, 215-216
ClusterMapReduceTestCase
description of, 207
Hadoop Core JAR missing or malformed,
211-212
Jetty and, 209-211
requirements for using, 208-209
virtual cluster failed to start, 212-214
CompositeInputFormat, 269-270
Configuration, and JobConf object, 339
DFSClient, 111
FileOutputCommitter, 180, 279
HashPartitioner, 149
InputFormat, 266-267, 365
InputSampler, 150, 161
Java, aggregation using, 277-278
KeyFieldBasedPartitioner, 151-153
KeyValidatingMapper, 297-298
KeyValueTextInput, 365
KeyValueTextInputFormat, 45-46, 167
MapReduceBase, 66-67
MapReducelntroConfig, 47
MapReducelntroLongWritable, 56
MapReducelntroLongWritableCorrect, 57
MapRunner, 180
MergeValuesToCSVReducer, 64, 66-67
MultithreadedMapRunner, 180
OutputFormat, 365
PiEstimator
creating run configuration for, in
Eclipse, 224
stopped in map task, in Eclipse, 228
test case that launches MapReduce job,
220-223

RunningJob, 53
RunVirtualCluster, 337
SampleMapperRunner.java class
class and member variable declarations,
142-143
close method, 140-141
configure method, 138-139
description of, 137
SimpleIPRangePartitioner
configure() method, 304-305
getPartition() method, 302
spanSpaceKeys() method, 305-306
StreamXMLRecordReader, 246-248
TestAggregates, 278
Text, 47
TextKeyHelperWithSeparators
getFromRaw(Text raw), 293
getToRaw(Text raw), 294
TotalOrderPartitioner
building range table, 150-151
configuration settings, 151
overview of, 149
TransformKeysToLongMapper
description of, 57
MapReduceBase class and, 66-67
reporter object in, 58-59
TupleWritable, 271-274
ValueAggregatorDescriptor, 277-278
classpath
default, 91
setting for applications, 128
close() method, 67, 259
CloudBase project, 334
cloud computing, 1
Cloudera cloud computing services, 25,
335-336
cloud service vendors
Amazon, 335
Cloudera, 335-336
Scale Unlimited, 336
CloudStore project, 334
cluster execution slots, 52
cluster, high-availability, 1
cluster-level tunable parameters
core job-level task, 189-192
file system, 188
HDFS, 183, 185
JobTracker, 185-188
server-level, 182-183
TaskTracker, 187-188
ClusterMapReduceDelegate class
core methods of, 214-215
core parameters of, 215-216

www.it-ebooks.info

http://www.it-ebooks.info/

ClusterMapReduceTestCase class
description of, 207
Hadoop Core JAR missing or malformed,
211-212
Jetty and, 209-211
requirements for using, 208-209
virtual cluster failed to start, 212-214
clusters
administration tools, 73-74
configuring cluster Information, 135-136
configuration files
Hadoop, 75
Hadoop Core server, 76-80
overview of, 74
sample clusters, 82-86
correcting errors, 91
debugging task running on, 230-234
distributing configuration, 86-87
formatting HDFS, 88-89
installing HDFS for
building configuration, 98-101
distributing installation data, 101-102
formatting, 102-104
starting, 104-105
verifying HDFS is running, 105-111
makeup of, 71-73
MapReduce-specific configuration for each
machine in, 130-131
MapReduce, starting, 92-94
monitoring framework for
Chukwa, 196
FailMon, 196
Ganglia, 193-196
JMX, 192
Nagios, 192-193
overview of, 177, 192
NameNode web interface, 92
recovery from failure
of DataNode server, 120-122
deleted file recovery, 122
of NameNode server, 120
overview of, 119
sample configuration
hadoop-metrics.properties file, 85-86
hadoop-site.xml file, 82-84
machine configuration requirements, 82
network requirements, 80
slaves and masters files, 85
support for multihomed machines, 82
starting HDFS, 89-91
test jobs, running on, 94-95

INDEX

troubleshooting HDFS failures
DataNode pauses, 125
NameNode, 123-125
overview of, 122
tunable items for, 177-178
tuning factors
block service threads, 112-113
disk1/0, 115-118
file descriptors, 111-112
NameNode threads, 113
networkI/0, 119
overview of, 111
reserved disk space, 114
server pending connections, 114
storage allocations, 115
verifying configuration, 87-88
virtual
ClusterMapReduceTestCase and,
212-214
reduction in logging level for, 220
starting and stopping, 217
codec specification, 171
code, downloadable, for examples, 33
collaboration service, 333
column-oriented database
HBase, 329-330
Hypertable, 334
combiners
for brute-force MapReduce pattern, 298
description of, 163, 374
limitations of, 166
WordCount example of, 164-165
command-line arguments
for FUSE, 255
for fuse_dfs, 254
standard, 129
for streaming
overview of, 243-246
StreamXMLRecordReader class, 246-248
ValueAggregatorJob.createValueAggrega-
torJob() method, 277
command-line tools, dfsadmin -report,
110-111
commands
bin/hadoop jar, 128
bin/slaves.sh, 108
bin/start-dfs.sh, 104
format, 107
hadoop-daemon.sh start datanode, 121
hadoop jar, 129
jps, 106
rsync, 86
start-balancer.sh, 115

www.it-ebooks.info

389

http://www.it-ebooks.info/

390

INDEX

start-mapred.sh, 92
stop-balancer.sh, 115
comparator cases, 287
comparator ordering, running streaming job
to verify, 289-291
comparators, 367
complex scale-free workflows, framework for,
334
CompositeInputFormat class, 269-270
compressed files, splitting, 179
compression
codec specification, 171
JAR, zip, and tar files, 174
map task output, 172-174
overview of, 171
reducing size of map output files with, 203
of sequence files, 172
timing for compression codecs, 172
compression format, changing, 242-243
compression of map task output, 364
conf/hadoop-env.sh file, customizing, 99-101
conf/hadoop-metrics.properties file for
Ganglia, 194
conf/hadoop-site.xml file, generating, 99
configuration
distributing for sample clusters, 86-87
HDEFS
conf/hadoop-env.sh file, 99-101
conf/hadoop-site.xml file, 99
conf/slaves and conf/masters files, 99
overview of, 98
of MapReduce for each machine in cluster,
130-131
optimal vs. required by IT departments,
97-98
TotalOrderPartitioner class, 151
verifying for sample clusters, 87-88
Configuration class, and JobConf object, 339
configuration files
for clusters
Hadoop, 75
Hadoop Core server, 76-80
overview of, 74
for sample clusters
hadoop-metrics.properties, 85-86
hadoop-site.xml, 82-84
slaves and masters files, 85
configuration of sample cluster
machine configuration requirements, 82
network requirements, 80
support for multihomed machines, 82
configuration parameters, task-specific,
291-292

configure() method, 66, 138-140
configuring
cluster information
default file system URI, setting, 135
JobTracker location, setting, 136
job
overview of, 36, 44-45
reduce phase, 51-53
setting output parameters, 47-51
specifying input formats, 45-47
mapper tasks to be chains, 259-261
map phase of job, 45
reducer tasks to be chains, 261-265
constructors, JobConf object, 347-348
correcting errors in clusters, 91
counters
description of, 59-62
in streaming and pipes jobs
overview of, 248
reporter:counter:group,counter,increme
nt command, 249
reporter:status:message command, 249
Cygwin bash shell, 12

DataJoinMergeMapper.java, 315-316
DataJoinMergeMapper.TabbedNetRange-
Comparator, 318-322
DataJoinReduceOutput.addFiles, 314-315
DataJoinReduceOutput.java, 313
DataNode
checking to verify HDFS is running,
108-111
diskI/0 and, 115
HDFS write and, 181-182
high availability of, 97
parameters, 183-185
pauses, troubleshooting, 125
role of, 73
DataNode disk I/0 tuning, 117-118
DataNode process, 6
DataNode server
decommissioning, 121-122
recovery from failure of, 120-121
dataset analysis, scripting language for, 332
datasets
changing compression format, 242-243
definition of, 266
duplicate keys in, 269
producing line counts of distinct lines from
input set, 240-242
sorting input records of, 239-240
used in map-side joins, 266-267

www.it-ebooks.info

http://www.it-ebooks.info/

data warehousing system, 334
debugger, and MapReduce jobs
cluster, debugging task running on,
230-234
overview of, 223
rerunning failed task, 234-237
running entire job in single JVM, 223-230
decommissioning DataNode, 121-122
default classpath, 91
default file system
JobTracker location for, setting, 136
specifying, 135
URI for, setting, 135
default partitioning strategy, 369
default ports used by Hadoop Core, 81
defining
join operators, 268
optimized comparators, 368
deleted file recovery, 122
design goals, range query sample, 285-286
dfsadmin -report command-line tool, 110-111
dfs.balance.bandwidthPerSec parameter, 115
dfs.block.size parameter, 118
DFSClient class, 111
dfs.data.dir.count parameter, 118
dfs.data.dir parameter, 77, 118
dfs.datanode.dns.interface parameter, 82, 119
dfs.datanode.dns.nameserver parameter, 82,
119
dfs.datanode.du.pct parameter, 114
dfs.datanode.du.reserved parameter, 114-116
dfs.datanode.handler.count parameter, 112,
118
dfs.name.dir parameter, 117
dfs.name.edits.dir parameter, 117
dfs.namenode.handler.count parameter, 113
dfs.replication parameter, 118
dirty data, 279
diskI/0
DataNode tuning, 117-118
NameNode tuning, 117
overview of, 115-116
secondary NameNode tuning, 116-117
disk performance vs. network performance,
98
DistributedCache.
addArchiveToClassPath(Path archive,
Configuration conf) method, 132
DistributedCache.addCacheArchive(URI uri,
Configuration conf) method, 133
DistributedCache.addCacheFile(URI uri,
Configuration conf) method, 133

INDEX

DistributedCache.addFileToClassPath(Path
file, Configuration conf) method, 132
DistributedCache object
for adding files or archives to runtime
classpath, 128
MapReduce jobs and
accessing data, 133-135
distributing archives to tasks, 133
distributing files to tasks, 133
paths and URIs for, 131
resources, adding to task classpath, 132
methods for working with, 135
for passing shared library, 130
distributed file system
CloudStore, 334
dfs parameters and, 339
distributing
archives to tasks, 133
configuration, sample cluster, 86-87
files to tasks, 133
HDFS installation data, 101-102
downloading Hadoop, 13
driver for brute-force MapReduce pattern,
301-302
duplicate suppression with custom reducer,
63-66

E

Eclipse framework
configuring
classpath, 224
command-line arguments, 226
source path, 224
connected to IsolationRunner, 237
creating run configuration for PiEstimator
in, 224
example code and, 338
PiEstimator stopped in map task, 228
setting up for remote debugging session,
231
setup to connect to port 54990 on specified
host, 236
unit testing and, 214
enabling Capacity Scheduler, 281-284
environment, checking after installing
Hadoop, 13-17
environment variables
fuse_dfs required, 252
HADOOP_CLASSPATH, 128
for Hadoop processes, 99-101
JAVA_HOME, 102
troubleshooting and, 24

www.it-ebooks.info

http://www.it-ebooks.info/

392

INDEX

error messages

file descriptor limit and, 183

no live node contains block, 124

RAM and, 24
errors

correcting in clusters, 91

reduce task fails with exception of form, 53
exceptions thrown during key transformation,

60-61

F
Facebook, 330
failed task, rerunning, 234-237
FailMon, 196
failure rates
overview of, 279-280
skipping bad records, 280-281
task failure, dealing with, 280
failure. See recovery from failure
Fedora torrents, 7
file descriptor limit, 183
file descriptors, 111-112
FileInputFormat.getSplits() method, 179
FileOutputCommitter class, 180, 279
FileOutputFormat.setCompressOutput(conf,
true) call, 364
files
distributing to tasks, 133
finding in localized cache, 134
looking up, 134
file system
See also distributed file system; HDFS
journaled, 116
tunable parameters, 188
Filesystem in Userspace. See fuse_dfs
file types for MapReduce jobs
map files, 169-170
sequence files, 168-169
text files, 166-168
final values, and JobConf object, 344-347
format command, 107
formatting HDFS, 88-89, 102-104
framework
See also Eclipse framework; MapReduce
framework; monitoring framework
for large clusters; Spring Framework,
initializing mapper with
map task submission and execution,
179-180
merge-sorting, 180-181
on job submission, 178-179
parallel matrix computation, 333
reduce phase, 181
writing to HDFS, 181-182

fs.checkpoint.dir parameter, 116
fs.checkpoint.edits.dir parameter, 116
fs.checkpoint.period parameter, 116
fs.default.name parameter, 78
fs.trash.interval parameter, 122
fuse_dfs
mounting HDFS file system using, 252-256
overview of, 251-252

G

Ganglia

description of, 193-196

report from, 200
garbage collection, 200
goals of design, 285-286
Google, and MapReduce model, 3
Greenplum project, 334
grouping output data, 371

H

Hadoop
installing
checking environment, 13-17
downloading and, 13
on Linux system, 7-11
prerequisites for, 7
on Windows system, 11-13
sample programs, pi estimator, 18-22
tests, 23-24
hadoop-0.18.2-examples.jar, examples in, 18
hadoop-0.18.2_test.jar, tests in, 23-24
Hadoop 0.20.0 features and changes, 336-337
HADOOP_CLASSPATH environment variable,
128
Hadoop Core
configuration files, 75
configuration of, optimal vs. required by
IT departments, 97-98
default classpath, 91
default ports used by, 81
server processes, verifying termination of
before restarting, 92
Hadoop Core JAR, and ClusterMapReduce
TestCase, 211-212
Hadoop Core project
file systems supported by, 5
MapReduce framework, 5-6
overview of, 4
hadoop-daemon.sh start datanode command,
121
hadoop-default.xml file
description of, 75
fs.default.name parameter, 78

www.it-ebooks.info

http://www.it-ebooks.info/

hadoop.tmp.dir parameter, 77-78, 115

mapred.child.java.opts parameter, 79

mapred.job.tracker parameter, 78

mapred.tasktracker.map.tasks.maximum
parameter, 78-79

mapred.tasktracker.reduce.tasks.maximum

parameter, 79
parameters, 76

webinterface.private.actions parameter, 80

Hadoop Distributed File System. See HDFS
hadoop-env.sh file, 75
hadoop-env.sh script, and MapReduce-
specific configuration, 131
HADOOP_HOME environment variable, 24
hadoop jar command, 129
hadoop-metrics.properties file, 75, 85-86
Hadoop On Demand package, 379
Hadoop project, 4
hadoop-site.xml file
description of, 75
for sample cluster, 82-84
specification for map output level com-
pression, 173
HADOOP_TASKTRACKER_OPTS environ-
mental variable, 131
hadoop.tmp.dir parameter, 77-78, 115
Hama project, 333
HashPartitioner class, 149
HBase project, 329-330
HDEFS (Hadoop Distributed File System)
description of, 4-6
formatting, 88-89, 102-104
HBase and, 330
methods for accessing
fuse_dfs, 251-256
libhdfs, 249-251
number of files opened, minimizing, 168
overview of, 4-6
recovery from failure
of DataNode server, 120-122
deleted file recovery, 122
of NameNode server, 120
overview of, 119
starting, 89-91
troubleshooting failures
DataNode pauses, 125
NameNode, 123-125
overview of, 122
tuning factors
block service threads, 112-113
disk1/0, 115-118
file descriptors, 111-112
NameNode threads, 113

INDEX

network 1/0, 119
overview of, 111
reserved disk space, 114
server pending connections, 114
storage allocations, 115
verifying running of
DataNode, checking, 108-111
NameNode, checking, 106-108
writing to, 181-182
DFS installation
formatting, 102-104
starting, 104-105
HDFS tunable parameters, 183-185
Hive project, 330-332
Hypertable project, 334

|
IdentityMapper, 31-33
IdentityReducer, 34-36, 153
initializing mapper with Spring
application context, creating, 144-145
autowiring mapper class, 145-147
overview of, 143-144
inner joins, 268
input files, splitting, 179
InputFormat class, 266-267, 365
input formats, specifying, 45-47
-inputreader command-line flag, 246-248
input records of dataset
changing compression format, 242-243
producing line counts of distinct lines
from, 240-242
sorting, 239-240
InputSampler class, 150, 161
input splits, 21, 31
installing
Hadoop
checking environment, 13-17
downloading and, 13
on Linux system, 7-11
prerequisites for, 7
on Windows system, 11-13
HDEFS for multimachine clusters
building configuration, 98-101
distributing installation data, 101-102
formatting, 102-104
starting, 104-105
verifying HDFS is running, 105-111
interprocess communications, parameters

for, 82
ipc.server.listen.queue.size parameter, 114,
203

IPV4TextC_omparat0r.j ava, 316-318

www.it-ebooks.info

393

http://www.it-ebooks.info/

394

INDEX

IsolationRunner
candidate tasks to be run via, 235
description of, 234
running job with keep pattern and debug-
ging via, 235-237
IT departments, configurations required by,
97-98

J
JAR files
compression of, 174
included with Hadoop distribution, 208
Java 1.5, and variable argument lists, 354
Java classes, aggregation using, 277-278
JAVA_HOME environment variable, 24, 102
Java Management Extensions (JMX), 192
Java Platform Debugger Architecture (JPDA),
parameters for, 230-231
Jetty, and ClusterMapReduceTestCase,
209-211
job
See also MapReduce jobs
configuring, 36, 44-45
custom mapper, setting up
accurate determination of success, 62-63
counters and exceptions, 59-62
overview of, 56-57
reporter object, 57-59
RunningJob object, 61
custom partitioner, creating, 67-69
custom reducer, creating, 63-66
IdentityMapper, 31-33
IdentityReducer, 34-36
input splitting, 31
map phase of, 45
parts of, 27-28
reduce phase, configuring, 51-53
running, 53
setting output parameters, 47-51
specifying input formats, 45-47
JobClient object, and launching MapReduce
jobs, 128
jobclient.output.filter parameter, 222
JobConf.getOutputKeyComparator() method,
148
JobConfigurable interface, 68-69
JobConf object
See also methods (JobConf object)
chaining and, 259
Configuration class and, 339
configure() method and, 66
constructors, 347-348
creating, 44

description of, 36, 339
extracting resource file names from,
144-145
final values, 344-347
getters and setters, 350
instances of, 341
launching MapReduce jobs and, 128
lookup process, 339
roles of, 340
setting output compression via, 174
setting up for class tested, 222
specifying default file system
JobTracker location for, setting, 136
URI for, setting, 135
variable expansion, 341-344
WordCount example and, 164-165
JobConf.setJarByClass(Class cls) method, 132
JobConf.setJar(String jar) method, 132
JobConf.setPartitionerClass(Class<? extends
Partitioner> theClass) method, 205
job driver, and JobConf object, 340
job end notification, 384
job-level task parameters, 189-192
job start, speeding up, 196-198
job tail, 205
JobTracker
counter values and, 59
high availability of, 97
location, setting, 136
MapReduce jobs and, 127
map task execution slots of, 179
overview of, 6
role of, 71, 72
tunable parameters, 185-188
web interface for monitoring and control,
80
with two queues enabled, 283
join specification, 269-270
journaled file systems, 116
JPDA (Java Platform Debugger Architecture),
parameters for, 230-231
jps command, 106
JUnit 3 test base, and ClusterMapReduceTest-
Case, 207
JUnit4
@AfterClass annotation, 217
@BeforeClass annotation, 217
@Test annotation, 218-219
ClusterMapReduceTestCase and, 208
JVM, running entire MapReduce job in single,
223-230
Jython Project, 243

www.it-ebooks.info

http://www.it-ebooks.info/

K

Katta project, 333
KeyFieldBasedPartitioner class, 151-153
keys

common mappers and, 33

common reducers and, 35
KeyValidatingMapper class, 297-298
key/value pairs

duplicate, in dataset, 269

output, 365-366

passing by value or by reference, 258
split and joined in streaming job, 246
KeyValueTextInput class, 365
KeyValueTextInputFormat class, 45-46, 167

L
launching MapReduce jobs, 128-130
libhdfs, 249-251
limits.conf file, 112
Linux system, installing Hadoop on, 7-11
listings
access_log.txt, 323
ActiveRanges.activate, modification to,
to support partition spanned search
space keys, 312
AggregateWordCount
generateKeyValuePairs() method, 277
launching, 277
ApacheLogTransformMapper class
log line processing Part 1, 296
log line processing Part 2, 296
preamble, 295
bean resource file for Spring-initialized
task, 143
boolean TextKeyHelperWithSeparators.
getFromRaw(Text raw), 292-293
BruteForceMapReduceDriver.java
job setup, 301
modifications to setup method in, 312
candidate mount line for /etc/fstab to
mount HDFS file system, 256
Capacity Scheduler
enabling, 281
XML block for each queue to be defined,
282-283
ChainMapper.addMapper() method
declaration with JavaDoc, 260-261
check_basic_env.sh script, 13-17
Class run method code fragment, 347-348
commands used to generate output, 322
conf/hadoop-metrics.properties file for
Ganglia, 194
DataJoinMergeMapper.java, 315-316

INDEX

DataJoinMergeMapper.TabbedNetRange-
Comparator, 318-322
DataJoinReduceOutput.addFiles, 314-315
DataJoinReduceOutput.java, 313
DataNode log file excerpt
failure to connect to NameNode,
109-110
failure to start due to permissions
problems, 108
debug script, adding to DistributedCache,
383
DemonstrationOfFinal.java, 344-347
Did NameNode format fail due to insuf-
ficient permissions?, 106
exception resulting from unrecognized
aggregator service id, 276
extracting resource file names from
JobConf object, 144-145
failed format due to directory permissions,
107-108
final parameter declaration, 349
fuse_dfs, computing correct environment
variables for, 252-254
generating sample set of IP addresses and
ranges from Apache log file, 289
HADOOP_CLASSPATH setting in conf/
hadoop-env.sh, 331
hadoop-env.sh, default settings for servers
to enable JMX, 192
hadoop-site.xml specification for map
output level compression, 173
HashCode partitioner, 149
Hive
configuration error, 331
starting after constructing HDFS path
elements with correct permissions,
332
IdentityMapper.java code, 32-33
Identity reducer, 153
IdentityReducer.java code, 34-35
InputSampler, running, 161
IPv4TextComparator.java, 316-318
JobConf object, setting output compres-
sion via, 174
KeyValidatingMapper class, 297-298
log lines
both DataNodes are running, 212-213
Eclipse lost state and needs to be
restarted, 214
hadoop-default.xml file is missing or
malformed, 211
hadoop.log.dir Java system property is
unset, 211

www.it-ebooks.info

395

http://www.it-ebooks.info/

INDEX

jetty-ext/commons-el.jar not in unit test
classpath, 210
jetty-ext/jasper-compiler.jar not in unit
test classpath, 211
jetty-ext/jasper-runtime.jar not in unit
test classpath, 210
jetty-ext/jsp-api.jar not in unit test
classpath, 211
no Jetty JAR in unit test classpath, 210
TaskTracker is running, 213
unit test is in progress, 211
LongLongTextInputFormat, RecordReader.
next method, 160
MapReducelntroConfig.java code, 36-44
MapReducelntro.java, 28-31
MapReducelntro.java, response to, 53-55
minimal hadoop-site.xml for HFS cluster,
99
modifications to load key helper based on
value of range.key.helper, 311
MultipleTextOutputFormat output file
name generator, 168
Partitioner interface, 68-69, 148
Perl streaming mapper, 275
PiEstimator, 222
pi program output, 19-20
producing search space keys for required
reduce partitions, 307-309
public String|[] getStrings(String name), 353
public String|[] getStrings(String name,
String... default Value), 354
public void setStrings(String name, String...
values), 354
RangePartitionTransformingMapper, 310
ReducerForStandardComparator.handle-
Hit, 300
ReducerForStandardComparator.java, 299
reporter object in TransformKeysToLong-
Mapper mapper, 58-59
running streaming job to verify comparator
ordering, 289-291
SampleMapperRunner.java
class and member variable declarations,
142-143
close method, 140-141
configure method, 138-139
searchspace.txt, 323
setting up JobConf object for class tested,
222
SimpleIPRangePartitioner class
getPartition() method, 303
spanSpaceKeys() method, 306

SimpleReduceTransformingReducer.java,
154-156
SimpleUnitTest.java
actual test code, 218-219
class declaration, 216
cluster start method, 217
cluster stop method, 217
Spring task initialization method, 146-147
streaming command to invoke LongSum.
pl, 276
StreamRecordReader
input, 247
output, 247
use of, 246
synthetic example of configuring join map
job, 270
synthetic example of configuring join map
job using compose helper, 271
Tasktracker error log message due to TCP
port unavailability, 93-94
TestAggregates class to define custom
aggregator service, 278
test member preamble with debugging
information, 221
TotalOrderPartition setup, 160-161
TupleWritable class methods, 272-274
update_env.sh script, 8-11
variable expansion example, 342-344
virtual cluster
reduction in logging level for, 220
server process has crashed, 213
void TextKeyHelperWithSeparators.
getToRaw(Text raw), 294
WordCount.java
map() method, 165
reduce() method, 165
run() method, 164
WritableComparable.java code, 48-49
Writable.java code, 49-51
XML file used in variable expansion
example, 341-342
loading shared libraries manually, 130
log4j package for logging, 20
long getMaxVirtualMemoryForTask() {
method, 385
LongLongTextInputFormat, RecordReader.
next method, 160
looking up
archives and files, 134
names, 133
lookup process, and JobConf object, 339
Lucerne project, 333
LZO compression, 173, 203

www.it-ebooks.info

http://www.it-ebooks.info/

machine configuration requirements, sample
cluster configuration, 82
machine learning algorithms, 332
Mahout project, 332
map files for MapReduce jobs, 169-170
map functions
IdentityMapper, 31-33
threading for, 47
map() method
code efficiency and, 59
object churn in, 59
reduce() method compared to, 153
WordCount.java, 165
Mapper interface, 33
Mapper.map() method, 373
mappers
for brute-force MapReduce pattern,
294-298
class declaration and member fields,
142-143
common, 33
custom, sorting numerically with
accurate determination of success, 62-63
counters and exceptions, 59-62
overview of, 56-57
reporter object, 57-59
RunningJob object, 61
description of, 136-137
as extending MapReduceBase class, 66-67
initializing with Spring
application context, creating, 144-145
autowiring mapper class, 145-147
overview of, 143-144
methods
close(), 140-141
configure(), 138-140
map(), 140
reducers compared to, 153
mapper tasks, configuring to be chains,
259-261
map phase
configuring, 45
optimizing, 198-201
mapred.child.java.opts parameter, 79, 129
mapred.job.tracker parameter, 78
mapred.local.dir.minspacekill parameter, 114
mapred.local.dir.minspacestart parameter,
114
mapred.reduce.parallel.copies parameter, 203
mapred.reduce.tasks parameter, 52
mapred.tasktracker.map.tasks.maximum
parameter, 52, 78-79

INDEX

mapred.tasktracker.reduce.tasks.maximum
parameter, 52, 79
MapReduceBase class, extending, 66-67
MapReduce framework
in clusters, starting, 92-94
mapred parameters and, 339
MapReducelntroConfig class, 47
MapReducelntroConfig.java code, 36-44
MapReducelntro.java, 28-31, 53-55
MapReducelntroLongWritable class, 56
MapReducelntroLongWritableCorrect class,
57
MapReduce jobs
See also JobConf object; mappers; reducers;
reduce tasks; streaming
configuration requirements for each
machine in cluster, 130-131
configuring, 36, 44-45
custom mapper, setting up
accurate determination of success, 62-63
counters and exceptions, 59-62
overview of, 56-57
reporter object, 57-59
RunningJob object, 61
custom partitioner, creating, 67-69
custom reducer, creating, 63-66
debugger and
cluster, debugging task running on,
230-234
overview of, 223
rerunning failed task, 234-237
running entire job in single JVM,
223-230
description of traditional, 239
DistributedCache object and
accessing data, 133-135
distributing archives to tasks, 133
distributing files to tasks, 133
overview of, 131
resources, adding to task classpath, 132
file types for
map, 169-170
sequence, 168-169
text, 166-168
framework and
map task submission and execution,
179-180
merge-sorting, 180-181
on job submission, 178-179
reduce phase, 181
writing to HDFS, 181-182
IdentityMapper, 31-33

www.it-ebooks.info

397

http://www.it-ebooks.info/

398 INDEX

IdentityReducer, 34-36

input splitting, 31

launching, 128-130

map phase of, 45

parts of, 27-28

reduce phase, configuring, 51-53
requirements for successful, 127
running, 53

setting output parameters, 47-51
shared libraries, using, 130
specifying input formats, 45-47
timeout length, increasing, 223
tunable items for, 177-178

memory limits
child JVM, increasing, 201
for tasks and their children, 385
merge-sorting, 180-181
MergeValuesToCSVReducer class
description of, 64
MapReduceBase class and, 66-67
methods
addMapper()
ChainMapper class, 259-261
ChainReducer class, 261-263
close(), 67, 259
of ClusterMapReduceDelegate class,

unit testing 214-215
ClusterMapReduceDelegate, 214-216 for CompositeInputFormat class, 269-270
ClusterMapReduceTestCase, 208-214 configure(), 66
overview of, 207-208 DistributedCache.
SimpleUnitTest test case, 216-220 addArchiveToClassPath(Path archive,
test case that launches MapReduce job, Configuration conf), 132
220-223 DistributedCache.addCacheArchive(URI
MapReduce model uri, Configuration conf), 133

Google and, 3
Hadoop Core and, 5-6
overview of, 1-2
web crawler example, 2-3
MapRunner class, 180
map-side joins
building and running, 270-271
constraints on, 266
datasets used in, 266-267
duplicate keys in dataset for, 269
inner, 268
join specification, 269-270
operators, defining, 268
outer, 268
override, 268
overview of, 265-268
TupleWritable class, 271-274

DistributedCache.addCacheFile(URI uri,
Configuration conf), 133
DistributedCache.addFileToClassPath(Path
file, Configuration conf), 132
JobConf.getOutputKeyComparator(), 148
JobConf.setJarByClass(Class cls), 132
JobConf.setJar(String jar), 132
JobConf.setPartitionerClass(Class<?
extends Partitioner> theClass), 205
map(), 59, 153, 165
map files, 170
mapper
close(), 140-141
configure(), 138-140
map(), 140
provided by libhdfs, 249-250
RecordReader.next, 160

types of, 268 reduce(), 153, 156, 163, 165
map task outputs, compression of, 172-174, run(), 164
364 runjob(), 53
map tasks setReducer(), 261-263
parameters controlling number of, 178 setupTestClass(), 217

partitioners and, 148
steps for, 199

teardownTestCase(), 218
TupleWritable class, 271-274

submission and execution, 179-180 URIJobConf.getResource(name), 133

masters file

description of, 75

generating for HDFS, 99

for sample cluster, 85
member fields, mapper, 142-143

Utils.makeRelativeName(), 134

ValueAggregatorJob.createValueAggrega-
torJob(), 277

void close(), 140-141

void JobConfigurable.configure(JobConf
job), 138-140

www.it-ebooks.info

http://www.it-ebooks.info/

void map(K1 key, V1 value,
OutputCollector<K2,V2> out-
put, Reporter reporter) throws
IOException, 140
for working with DistributedCache object,
135
methods (JobConf object)
for accessing classpath resources, 359-360
for accessing HDFS
fuse_dfs, 251-256
libhdfs, 249-251
constructors, 347-348
for controlling input and output of job,
362-367
for controlling job execution and naming,
379-385
for controlling map and reduce tasks,
372-378
for controlling output partitioning and
sorting for reduce, 367-372
for controlling task classpath, 360
for controlling task execution environment,
360-362
convenience, 385-386
getters and setters, 350-356
getters for localized and load balanced
paths, 356-358
for loading additional configuration
resources, 349-350
for passing configurations through
SequenceFiles, 386
monitoring framework for large clusters
Chukwa, 196
FailMon, 196
Ganglia, 193-196
JMX, 192
Nagios, 192-193
overview of, 177, 192
mounting HDEFS file system using fuse_dfs,
252-256
MultiFileInputFormat, 167
multimachine clusters. See clusters
MultipleTextOutputFormat, 167-168
multi-threaded mappers, 373
MultithreadedMapRunner class, 180

N
Nagios, 192-193
NameNode
checking to verify HDFS is running,
106-108
diskI/0 and, 115

INDEX

formatting, 102
high availability of, 97
parameters, 183-185
real-time backup of data of, 73
reformatting, 103
role of, 71, 73
troubleshooting failures
data loss or corruption, 123-124
no live node contains block error, 124
out-of-memory problems, 123
pauses, 125
write failed, 125
web interface, 92
web interface for monitoring and control,
80
NameNode disk I/0 tuning, 117
NameNode process, 6
NameNode server, recovery from failure of,
120
NameNode threads, 113
naming convention for parameters, 339
network I/0 tuning, 119
network performance vs. disk performance,
98
network requirements, sample cluster
configuration, 80
network saturation, 204
NLinelnputFormat, 167
no live node contains block error message,
124

0

object churn in map methods, 59

on job submission, 178-179

optimization. See performance, improving

outer joins, 268

OutputFormat class, 365

output parameters, setting, 47-51

output, partitioning with custom partitioner,
67-69

output value grouping, 371

override joins, 268

P

parallel matrix computation framework, 333
parameters
See also specific parameters
affecting reduce task, 203
ChainMapper.addMapper, 259
ChainReducer.addMapper, 263
ChainReducer.setReducer, 261
cluster-level tunable

www.it-ebooks.info

399

http://www.it-ebooks.info/

400

INDEX

core job-level task parameters, 189-192
file system, 188
HDFS, 183-185
JobTracker, 185-188
server-level, 182-183
TaskTracker, 187-188
of ClusterMapReduceDelegate class,
215-216
for controlling number of map tasks for
job, 178
for controlling shuffle and merge, 203
dfs.balance.bandwidthPerSec, 115
dfs.block.size, 118
dfs.data.dir, 77
dfs.data.dir.count, 118
dfs.datanode.dns.interface, 119
dfs.datanode.dns.nameserver, 119
dfs.datanode.du.pct, 114
dfs.datanode.du.reserved, 114-116
dfs.datanode.handler.count, 112, 118
dfs.name.dir, 117
dfs.name.edits.dir, 117
dfs.namenode.handler.count, 113
dfs.replication.count, 118
fs.checkpoint.dir, 116
fs.checkpoint.edits.dir, 116
fs.checkpoint.period, 116
fs.default.name, 78
fs.trash.interval, 122
for Hadoop Ganglia reporting configura-
tion, 194
hadoop.tmp.dir, 77-78, 115
for interprocess communications, 82
ipc.server.listen.queue.size, 114, 203
for Java Platform Debugger Architecture,
230-231
jobclient.output.filter, 222
mapred.child.java.opts, 79, 129
mapred.job.tracker, 78
mapred.local.dir.minspacekill, 114
mapred.local.dir.minspacestart, 114
mapred.reduce.parallel.copies, 203
mapred.reduce.tasks, 52
mapred.tasktracker.map.tasks.maximum,
52, 78-79
mapred.tasktracker.reduce.tasks.maxi-
mum, 52, 79
for merge-sorting, 181
naming convention for, 339
output, setting, 47-51
specifying ValueAggregatorDescriptor class
via, 278
of StreamXMLRecordReader class, 247

task-specific configuration, 291-292
tasktracker.http.threads, 203
webinterface.private.actions, 80
Partitioner interface, 148
partitioners
custom, creating, 67-69
custom, for segmenting address space
helper class for keys modifications,
311-318, 322, 326
searching space keys for each reduce
task containing matching keys,
305-311
SimpleIPRangePartitioner class, 302-305
HashPartitioner class, 149
KeyFieldBasedPartitioner class, 151-153
overview of, 147-149, 367
TotalOrderPartitioner class
building range table, 150-151
configuration settings, 151
overview of, 149
partitioning strategy, default, 369
partitions, reducer using, 159-163
passing key/value pairs by value or by refer-
ence, 258
PATH environment variable, 24
performance, improving
job-level issues, 205
map phase, optimizing, 198-201
reduce task setup, 201-204
speeding job and task start, 196-198
per-process runtime environment, 75
pi estimator
output, examining, 19-22
running, 18-19
PiEstimator class
creating run configuration for, in Eclipse,
224
stopped in map task, in Eclipse, 228
test case that launches MapReduce job,
220-223
Pig project, 332
pipes
counters and
overview of, 248
reporter:counter:group,counter,increme
nt command, 249
reporter:status:message command, 249
streaming and, 248
ports, default, used by Hadoop Core, 81
preamble, test member, 221
projects based on Hadoop
Cascading, 334
CloudBase, 334

www.it-ebooks.info

http://www.it-ebooks.info/

CloudStore, 334
Greenplum, 334
Hama, 333
HBase, 329-330
Hive, 330-332
Hypertable, 334
Lucerne, 333
Mahout, 332
overview of, 329
Pig, 332
Protocol Buffers, 334
Thrift, 334
ZooKeeper, 333
properties, and XML parser, 210
Protocol Buffers project, 334
public boolean getBoolean(String name,
boolean defaultValue) method, 352
public boolean getCompressMapOutput()
method, 364
public boolean getKeepFailedTaskFiles()
method, 361
public boolean getMapSpeculativeExecution()
method, 375
public boolean getProfileEnabled() method,
380
public boolean getReduceSpeculative
Execution() method, 376
public boolean getSpeculativeExecution()
method, 375
public Class<? extends CompressionCodec>
getMapOutputCompressorClass(Cl
ass<? extends CompressionCodec>
defaultValue) method, 365
public Class<? extends Mapper>
getMapperClass() method, 373
public Class<? extends MapRunnable>
getMapRunnerClass() method, 373
public Class<? extends Partitioner>
getPartitionerClass() method, 370
public Class<? extends Reducer>
getCombinerClass() method, 374
public Class<? extends Reducer> getReducer-
Class() method, 374
public Class<?>getClassByName(String name)
method, 355
public Class<?>[] getClasses(String name,
Class<?>... defaultValue) method, 355
public Class<?> getClass(String name,
Class<?> defaultValue) method, 355
public Class<?> getMapOutputKeyClass()
method, 366
public Class<?> getMapOutputValueClass()
method, 366

INDEX

public Class<?> getOutputKeyClass() method,
367

public Class<?> getOutputValueClass()
method, 367

public ClassLoader getClassLoader() method,
386

public Collection<String>
getStringCollection(String name)
method, 353

public Configuration.IntegerRanges
getProfileTaskRange(boolean isMap)
method, 381

public Configuration.IntegerRanges
getRange(String name, String
defaultValue) method, 352

public File getFile(String dirsProp, String
pathTrailer) throws IOException
method, 357

public InputFormat getInputFormat()
method, 363

public InputStream getConfResourceAsInput
Stream(String name) method, 359

public int getMaxMapAttempts() method, 377

public int getMaxMapTaskFailuresPercent()
method, 378

public int getMaxReduceAttempts() method,
377

public int getMaxReduceTaskFailuresPer-
cent() method, 378

public int getMaxTaskFailuresPerTracker()
method, 377

public int getNumMapTasks() method, 376

public int getNumReduceTasks() method, 376

public int getNumTasksToExecutePerJvm()
method, 362

public int size() method, 385

public Iterator<Map.Entry<String,String>>
iterator() method, 385

public JobConf(boolean loadDefaults)
method, 348

public JobConf(Class exampleClass) method,
347

public JobConf(Configuration conf, Class
exampleClass) method, 347-348

public JobConf(Configuration conf) method,
347

public JobConf() method, 347

public JobConf(Path config) method, 348

public JobConf(String config) method, 348

public JobPriority getJobPriority() method,
380

public OutputCommitter getOutputCommit-
ter() method, 363

www.it-ebooks.info

http://www.it-ebooks.info/

402

INDEX

public OutputFormat getOutputFormat()
method, 363

public Path getLocalPath(String dirsProp,
String pathTrailer) throws
IOException method, 357

public Path getLocalPath(String pathString)
throws IOException method, 358

public Path getWorkingDirectory() method,
362

public RawComparator getOutputKey
Comparator() method, 368

public RawComparator getOutputValue-
GroupingComparator() method, 371

public Reader
getConfResourceAsReader(String
name) method, 359

public static Path[]getLocalCacheArchives
(Configuration conf) method, 134

public String getJar() method, 360

public String getJobEndNotificationURI()
method, 384

public String getJjobLocalDir() method, 358

public String getJobName() method, 379

public String getKeepTaskFilesPattern()
method, 361

public String getKeyFieldComparatorOption()
method, 369

public String getKeyFieldPartitionerOption()
method, 371

public String[] getLocalDirs() throws
IOException method, 357

public String getMapDebugScript() method,
382-383

public String getProfileParams() method, 381

public String getQueueName() method, 384

public String getRaw(String name) method,
351

public String getReduceDebugScript()
method, 383

public String getSessionld() method, 379

public String get(String name) method,
350-351

public String get(String name, String default-
Value) method, 351

public String|[] getStrings(String name)
method, 353

public String[] getStrings(String name,
String... defaultValue) method, 354

public String|[] getStrings(String name,
String... values) method, 354

public String getUser() method, 360

public String toString() method, 386

public <U> class<? extends U> getClass
(String name, class<? extends U>
defaultValue, Class<U> xface)
method, 356

public URL getResource(String name)
method, 359

public void addResource(InputStream in)
method, 350

public void addResource(Path file) method,
350

public void addResource(String name)
method, 349

public void addResource(URL url) method,
350

public void clear() method, 385

public void deleteLocalFiles(String subdir)
throws IOException method, 358

public void deleteLocalFiles() throws
IOException method, 358

public void readFields(Datalnput in) throws
IOException method, 386

public void reloadConfiguration() method,
350

public void setBoolean(String name, boolean
value) method, 352

public void setClassLoader(ClassLoader
classLoader) method, 386

public void setClass(String name, Class<?>
theClass, Class<?> xface) method, 356

public void setCombinerClass(Class<? extends
Reducer> theClass) method, 374

public void setCompressMapOutput(boolean
compress) method, 364

public void setInputFormat(Class<? extends
InputFormat> theClass) method, 363

public void setInt(String name, int value)
method, 351

public void setJarByClass(Class cls) method,
360

public void set]Jar(String jar) method, 360

public void setJobEndNotificationURI
(String uri) method, 384

public void setjobName(String name)
method, 379

public void setJobPriority(JobPriority prio)
method, 380

public void setKeepFailedTaskFiles(boolean
keep) method, 361

public void setKeepTaskFilesPattern(String
pattern) method, 361

public void setKeyFieldComparatorOptions
(String keySpec) method, 368-369

www.it-ebooks.info

http://www.it-ebooks.info/

public void setKeyFieldPartitionerOptions
(String keySpec) method, 370-371

public void setLong(String name, long value)
method, 351

public void setMapDebugScript(String
mDbgScript) method, 383

public void setMapOutputCompressorClass
(Class<? extends CompressionCodec>
codecClass) method, 365

public void setMapOutputKeyClass(Class<?>
theClass) method, 366

public void
setMapOutputValueClass(Class<?>
theClass) method, 366

public void setMapperClass(Class<? extends
Mapper> theClass) method, 373

public void setMapRunnerClass(Class<?
extends MapRunnable> theClass)
method, 373

public void setMapSpeculativeExecution
(boolean speculativeExecution)
method, 375

public void setMaxMapAttempts(int n)
method, 377

public void setMaxMapTaskFailuresPercent
(int percent) method, 378

public void setMaxReduceAttempts(int n)
method, 377

public void setMaxReduceTaskFailuresPercen
t(int percent) method, 378

public void setMaxTaskFailuresPerTracker
(int noFailures) method, 377

public void setNumMapTasks(int n) method,
376

public void setNumReduceTasks(int n)
method, 376

public void
setNumTasksToExecutePerJvm(int
numTasks) method, 362

public void setOutputCommitter(Class<?
extends OutputCommitter> theClass)
method, 364

public void setOutputFormat(Class<? extends
OutputFormat> theClass) method,
363

public void setOutputKeyClass(Class<?>
theClass) method, 367

public void setOutputKeyComparatorClass
(Class<? extends RawComparator>
theClass) method, 368

public void setOutputValueClass(Class<?>
theClass) method, 367

INDEX

public void setOutputValueGrouping
Comparator(Class<? extends
RawComparator> theClass) method,
371-372

public void setPartitionerClass(Class
<? extends Partitioner> theClass)
method, 370

public void setProfileEnabled (boolean
newValue) method, 381

public void setProfileParams(String value)
method, 381

public void setProfileTaskRange(boolean
isMap, String newValue) method, 382

public void setQueueName(String queue-
Name) method, 384

public void setQuietMode(boolean
quietmode) method, 349

public void setReduceDebugScript
(String rDbgScript) method, 383

public void setReducerClass(Class<? extends
Reducer> theClass) method, 374

public void setReduceSpeculativeExecutio
n(boolean speculativeExecution)
method, 376

public void setSessionId(String sessionld)
method, 380

public void setSpeculativeExecution(boolean
speculativeExecution) method, 375

public void set(String name, String value)
method, 351

public void setUser(String user) method, 361

public void setWorkingDirectory(Path dir)
method, 361

public void write(DataOutput out) throws
IOException method, 386

public void writeXml(OutputStream out)
throws IOException method, 386

Python, implementation of, written in Java,

243
Q

queue, definition of, 281
R

RangePartitionTransformingMapper, 310
range query sample
brute-force MapReduce pattern
combiner, 298
driver, 301-302
helper class for keys, 291-294
key contents and comparators, 288-291
mapper, 204-298

www.it-ebooks.info

403

http://www.it-ebooks.info/

404

INDEX

pluses and minuses of, 302
reducer, 298-300
single reduce task, 287
custom partitioner
helper class for keys modifications,
311-318, 322,326
searching space keys for each reduce
task containing matching keys,
305-311
SimpleIPRangePartitioner class, 302-305
design goals, 285-286
future possibilities for, 326-327
overview of, 285
range table, building, 150-151
Range type (JobConf object), 352
reading data sequentially from multiple
sorted inputs. See map-side joins
record-level compression, 203
RecordReader.next method (LongLongText
InputFormat), 160
records, skipping bad, 280-281
recovery from failure
of DataNode server, 120-122
deleted file recovery, 122
of NameNode server, 120
overview of, 119
Red Hat Package Manager tool, 7
reduce function, IdentityReducer, 34-36
reduce() method
combiners and, 163
map() method compared to, 153
WordCount.java, 165
working body of, 156
reduce phase, 51-53, 181
ReducerForStandardComparator.handleHit,
300
ReducerForStandardComparator.java, 299
Reducer interface, 33
Reducer.reduce calls, 372
reducers
See also combiners
for brute-force MapReduce pattern,
298-300
common, 35
custom, creating, 63-66
as extending MapReduceBase class, 66-67
overview of, 153-154
TotalOrderSimpleReduce.java, 159-163
transformational, 154-159
reducer tasks, configuring to be chains,
261-265

reduce tasks
partitioners and
HashPartitioner class, 149
KeyFieldBasedPartitioner class, 151-153
overview of, 147-149
TotalOrderPartitioner class, 149-151
steps for, 202
tuning setup, 201-204
remote debugging session, setting up Eclipse
for, 231
replication, description of, 6
reporter:counter:group,counter,increment
command, 249
reporter:status:message command, 249
reporter object, 57-59
reporting, and hadoop-metrics.properties
file, 75
reserved disk space, 114
resources
adding to task classpath, 132
installing on all machines, 196
re-spins (Fedora), 7
restarting, 92
rsync command, 86
runJob() method, 53
run() method, WordCount.java, 164
running
job, 53
map-side joins, 270-271
test jobs on clusters, 94-95
running custom MapReduce jobs from
command-line. See streaming
RunningJob class, 53
RunningJob object, 61
runtime environment, per-process, 75
runtime of map task, 200
RunVirtualCluster class, 337

S

SampleMapperRunner.java class
class and member variable declarations,
142-143
close method, 140-141
configure method, 138-139
description of, 137
sample programs
overview of, 18
pi estimator
output, examining, 19-22
running, 18-19
Scale Unlimited cloud computing services,
336

www.it-ebooks.info

http://www.it-ebooks.info/

scripting language for dataset analysis, 332
search engines, Lucerne, 333
searchspace.txt, 323
secondary NameNode
disk I/0 tuning, 116-117
recovering NameNode server from, 120
role of, 73
Secure Shell (SSH), and Hadoop Core, 80
semicolon (;) as separator character, 24
SequenceFileInputFormat class, 45
sequence files
compression of, 172
for MapReduce jobs, 168-169
server-level tunable parameters, 182-183
server pending connections, 114
service level authorization, 337
setCompressMapOutput(true) call, 364
setReducer() method, 261-263
setupTestClass() method, 217
shared libraries, using for MapReduce jobs,
130
shuffle, 21
shuffle time, tuning, 204
side effect files, 279
SIMD (single-instruction multiple-data)
algorithm, 1
SimpleIPRangePartitioner class
configure() method, 304-305
getPartition() method, 302
spanSpaceKeys() method, 305-306
SimpleReduceTransformingReducer.java,
154-159
SimpleUnitTest test case
actual test, 218-220
class declaration, 216
cluster start method, 217
cluster stop method, 217
Simplified Wrapper and Interface Generator
(SWIG), 248
single-instruction multiple-data (SIMD)
algorithm, 1
single-threaded mappers, 373
skipping bad records, 280-281
slave node, 71
slaves file
description of, 75
generating for HDFS, 99
for sample cluster, 85
SOLR project, 333
sorting numerically with custom mapper
accurate determination of success, 62-63
counters and exceptions, 59-62
overview of, 56-57

INDEX

reporter object, 57-59
RunningJob object, 61
sorts, 21
sort time, tuning, 204
speculative execution, 375
spill file, 21
splitting compressed and input files, 179
Spring Framework, initializing mapper with
application context, creating, 144-145
autowiring mapper class, 145-147
overview of, 143-144
SSH (Secure Shell), and Hadoop Core, 80
start-balancer.sh command, 115
starting
HDFS, 89-91
HDFS installation, 104-105
MapReduce in clusters, 92-94
start-mapred.sh command, 92
start-*.sh script, starting TaskTracker with,
131
stop-balancer.sh command, 115
storage allocations, 115
streaming
aggregation using, 275-277
changing compression format, 242-243
command-line arguments for
overview of, 243-246
StreamXMLRecordReader class, 246-248
counters and
overview of, 248
reporter:counter:group,counter,increme
nt command, 249
reporter:status:message command, 249
key/value pairs split and joined for, 246
overview of, 239
pipes and, 248
producing line counts of distinct lines from
input set, 240-242
running streaming job to verify comparator
ordering, 289-291
sorting input records of dataset, 239-240
StreamXMLRecordReader class, 246-248
String CompositeInputFormat.
compose(Class<? extends Input
Format> inf, String path) method, 270
String CompositeInputFormat.compose
(String op, Class<? extends Input
Format> inf, Path... path) method, 270
String CompositeInputFormat.compose
(String op, Class<? extends Input
Format> inf, String... path) method,
270
success, accurate determination of, 62-63

www.it-ebooks.info

405

http://www.it-ebooks.info/

406

INDEX

summarizing data with custom reducer, 63-66
Sun Java Development Kit, and Hadoop Core,

7
Sun VM Invocation Options guide, 230

support for multihomed machines, sample

cluster configuration, 82

SWIG (Simplified Wrapper and Interface
Generator), 248

system variables, setting in Windows, 24

T
@Test annotation (JUnit 4), 218-219
tar files, compression of, 174
task classpath, adding resources to, 132
task failure, dealing with, 280
task local working directory
configuring job or cluster to save, 234
determining location of, 235
task output filtering, 222
tasks
distributing archives to, 133
distributing files to, 133
JobConf object and, 340
memory limits for, 385
rerunning failed, 234-237
task start, speeding up, 196-198
task tail, 205
TaskTracker
CPU utilization and, 200
diskI/0 and, 115
high availability of, 97
log files, 92
MapReduce jobs and, 127
map runner class and, 180
overview of, 6
role of, 72
starting with start-*.sh script, 131
tunable parameters, 187-188
tasktracker.http.threads parameter, 203
teardownTestCase() method, 218
TestAggregates class, 278
test jobs, running on clusters, 94-95
tests, 23-24. See also unit testing
Text class, 47
text files for MapReduce jobs, 166-168
TextInputFormat, 167
TextKeyHelperWithSeparators class
getFromRaw(Text raw), 293
getToRaw(Text raw), 294
TextOutputFormat, 167
threading for map functions, 47
Thrift project, 334

timeout length on MapReduce jobs, increas-

ing, 223

tools
dfsadmin -report, 110-111
Red Hat Package Manager, 7
used in example code development,
337-338
torrents (Fedora), 7
TotalOrderPartitioner class
building range table, 150-151
configuration settings, 151
overview of, 149
TotalOrderSimpleReducer.java, 159-163
transformational reducer, 154-159
TransformKeysToLongMapper class
description of, 57
MapReduceBase class and, 66-67
reporter object in, 58-59
troubleshooting
HDEFS failures
DataNode pauses, 125
NameNode, 123-125
overview of, 122
overview of, 24
tuning factors
block service threads, 112-113
diskI/0
DataNode tuning, 117-118
NameNode tuning, 117
overview of, 115-116

secondary NameNode tuning, 116-117

file descriptors, 111-112
NameNode threads, 113
network I/0, 119
overview of, 111
reserved disk space, 114
server pending connections, 114
storage allocations, 115
tuning to improve performance
job-level issues, 205
map phase, optimizing, 198-201
reduce task setup, 201-204
speeding job and task start, 196-198
TupleWritable class, 271-274
type checking for chained keys and values,
258

U

unit testing
agile programming model and, 207
MapReduce jobs

ClusterMapReduceDelegate, 214-216
ClusterMapReduceTestCase, 208-214

overview of, 207-208
SimpleUnitTest test case, 216-220
test case that launches, 220-223

www.it-ebooks.info

http://www.it-ebooks.info/

update_env.sh script, 8-11

URI for default file system, setting, 135

URI JobConf.getResource(name) method, 133
Utils.makeRelativeName() method, 134

)
Vaidya, 337
ValueAggregatorDescriptor class, 277-278
ValueAggregatorjob.createValueAggregator
Job() method, 277
variable argument lists, 354
variable expansion, and JobConf object,
341-344
verifying
configuration, sample cluster, 87-88
HDEFS is running
DataNode, checking, 108-111
NameNode, checking, 106-108
virtual cluster
ClusterMapReduceTestCase and, 212-214
reduction in logging level for, 220
starting and stopping, 217
VMware Linux installation images, 7
void close() method, 140-141
void JobConfigurable.configure(JobConf job)
method, 138-140
void map(K1 key, V1 value,
OutputCollector<K2,V2> out-
put, Reporter reporter) throws
IOException method, 140
void setMaxVirtualMemoryForTask
(long vmem) { method, 385

INDEX

w

web crawler, as MapReduce application, 2-3
web interface

Ganglia, 195

NameNode, 92
webinterface.private.actions parameter, 80
web sites

for book, 33

cascading package, 128

Sun VM Invocation Options guide, 230
Windows system

installing Hadoop on, 11-13

system variables, setting, 24
WordCount example, 164-165
WritableComparable interface, 47-49
Writable interface, 47, 49-51
write performance, checklist for, 196
write time, tuning, 204
writing to HDFS, 181-182

X
XML parser, and system properties, 210

Y
Yahoo, and MapReduce model, 3

z

zip files, compression of, 174
ZooKeeper project, 333

www.it-ebooks.info

407

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

You Need the Companion eBook

Your purchase of this book entitles you to buy the

companion PDF-version eBook for only $10. Take the
weightless companion with you anywhere.

e believe this Apress title will prove so indispensable that you'll want to carry it
vaith you everywhere, which is why we are offering the companion eBook (in
PDF format) for $10 to customers who purchase this book now. Convenient and fully
searchable, the PDF version of any content-rich, page-heavy Apress book makes a
valuable addition to your programming library. You can easily find and copy code—or
perform examples by quickly toggling between instructions and the application. Even
simultaneously tackling a donut, diet soda, and complex code becomes simplified
with hands-free eBooks!

Once you purchase your book, getting the $10 companion eBook is simple:

@ Visit www.apress.com/promo/tendollars/.

® Complete a basic registration form to receive a randomly
generated question about this title.

© Answer the question correctly in 60 seconds, and you will
receive a promotional code to redeem for the $10.00 eBook.

p

=

ADress s

THE EXPERT’'S VOICE™

2855 TELEGRAPH AVENUE | SUITE 600 | BERKELEY, CA 94705

All Apress eBooks subject to copyright protection. No part may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher. The purchaser may print the
work in full or in part for their own noncommercial use. The purchaser may place the eBook title on any of their
personal computers for their own personal reading and reference.

Offer valid through 12/09.

www.it-ebooks.info

http://www.apress.com/promo/tendollars/
http://www.it-ebooks.info/

	Prelims

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Getting Started with hadoop Core
	Unknown
	Hadoop Core MapReduce
	The Hadoop Distributed File System
	The Prerequisites
	hadoop on a Linux System
	hadoop on a Windows System: how to and Common problems

	Getting Hadoop Running
	Checking Your Environment
	Hadoop Examples
	running the pi estimator
	examining the Output: Input Splits, Shuffles, Spills, and Sorts

	Hadoop Tests

	the Basics of a Mapreduce Job
	Unknown
	Input Splitting
	A Simple Map Function: IdentityMapper
	A Simple Reduce Function: IdentityReducer
	Specifying Input Formats
	Setting the Output Parameters
	Configuring the Reduce Phase
	Setting Up a Custom Mapper
	the reporter Object
	the Counters and exceptions

	After the Job Finishes
	examining the Counters
	Was this Job really Successful?

	Creating a Custom Reducer
	Why Do the Mapper and Reducer Extend MapReduceBase?
	the configure Method
	the close Method

	Using a Custom Partitioner

	the Basics of Multimachine Clusters
	Unknown
	Hadoop Configuration Files
	Hadoop Core Server Configuration
	per-Machine Data
	Default Shared File System UrI and NameNode Location for hDFS
	Jobtracker host and port
	Maximum Concurrent Map tasks per tasktracker
	Maximum Concurrent reduce tasks per tasktracker
	JVM Options for the task Virtual Machines
	enable Job Control Options on the Web Interfaces

	Configuration Requirements
	Network requirements
	advanced Networking: Support for Multihomed Machines
	Machine Configuration requirements

	Configuration Files for the Sample Cluster
	the hadoop-site.xml File
	the slaves and masters Files
	the hadoop-metrics.properties File

	Distributing the Configuration
	Verifying the Cluster Configuration
	Formatting HDFS
	Starting HDFS
	Correcting Errors
	The Web Interface to HDFS
	Starting MapReduce
	Running a Test Job on the Cluster

	hDFS Details for Multimachine Clusters
	Unknown
	Building the HDFS Configuration
	Generating the conf/hadoop-site.xml File
	Generating the conf/slaves and conf/masters Files
	Customizing the conf/hadoop-env.sh File

	Distributing Your Installation Data
	Formatting Your HDFS
	Starting Your HDFS Installation
	Verifying HDFS Is Running
	Checking the NameNodes
	Checking the DataNodes

	File Descriptors
	Block Service Threads
	NameNode Threads
	Server Pending Connections
	Reserved Disk Space
	Storage Allocations
	Disk I/O
	Secondary NameNode Disk I/O tuning
	NameNode Disk I/O tuning
	DataNode Disk I/O tuning

	Network I/O Tuning
	NameNode Recovery
	DataNode Recovery and Addition
	DataNode Decommissioning
	Deleted File Recovery
	NameNode Failures
	Out of Memory
	Data Loss or Corruption
	No Live Node Contains Block errors
	Write Failed

	DataNode or NameNode Pauses

	Mapreduce Details for Multimachine Clusters
	Unknown
	Adding Resources to the Task Classpath
	Distributing Archives and Files to Tasks
	Distributing archives
	Distributing Files

	Accessing the DistributedCache Data
	Looking Up Names
	Looking Up archives and Files
	Finding a File or archive in the Localized Cache

	Setting the Default File System URI
	Setting the JobTracker Location
	Mapper Methods
	the configure() Method
	the map() Method
	the close() Method

	Mapper Class Declaration and Member Fields
	Initializing the Mapper with Spring
	Creating the Spring application Context
	Using Spring to autowire the Mapper Class

	The HashPartitioner Class
	The TotalOrderPartitioner Class
	Building a range table
	Using the totalOrderpartitioner

	The KeyFieldBasedPartitioner Class
	A Simple Transforming Reducer
	A Reducer That Uses Three Partitions
	Text Files
	Sequence Files
	Map Files
	Codec Specification
	Sequence File Compression
	Map Task Output
	JAR, Zip, and Tar Files

	tuning Your Mapreduce Jobs
	Unknown
	Behind the Scenes: What the Framework Does
	On Job Submission
	Map task Submission and execution
	Merge-Sorting
	the reduce phase
	Writing to hDFS

	Cluster-Level Tunable Parameters
	Server-Level parameters
	hDFS tunable parameters
	Jobtracker and tasktracker tunable parameters

	Per-Job Tunable Parameters
	JMX: Hadoop Core Server and Task State Monitor
	Nagios: A Monitoring and Alert Generation Framework
	Ganglia: A Visual Monitoring Tool with History
	Chukwa: A Monitoring Service
	FailMon: A Hardware Diagnostic Tool
	Speeding Up the Job and Task Start
	Optimizing a Job’s Map Phase
	Tuning the Reduce Task Setup
	Addressing Job-Level Issues
	Dealing with the task tail
	Dealing with the Job tail

	Unit testing and Debugging
	Unknown
	Requirements for Using ClusterMapReduceTestCase
	troubles with Jetty, the http Server for the Web UI
	the hadoop Core Jar Is Missing or Malformed
	the Virtual Cluster Failed to Start

	Simpler Testing and Debugging with ClusterMapReduceDelegate
	Core Methods of ClusterMapreduceDelegate
	Configuration parameters for Interacting with Virtual Clusters

	Writing a Test Case: SimpleUnitTest
	the testCase Class Declaration
	the Cluster Start Method
	the Cluster Stop Method
	the actual test
	a test Case that Launches a Mapreduce Job

	Running an Entire MapReduce Job in a Single JVM
	Debugging a Task Running on a Cluster
	Rerunning a Failed Task
	Configuring the Job or Cluster to Save the task Local Working Directory
	Determining the Location of the task Local Working Directory
	running a Job with a Keep pattern and Debugging via the Isolationrunner

	advanced and alternate Mapreduce techniques
	Unknown
	Streaming Command-Line Arguments
	Using -inputreader org.apache.hadoop.streaming.StreamXmlrecordreader

	Using Pipes
	Using Counters in Streaming and Pipes Jobs
	Using the reporter:counter:group,counter,increment Command
	Using the reporter:status:message Command

	libhdfs
	fuse-dfs
	Mounting an HDFS File System Using fuse_dfs
	Chaining: Efficiently Connecting Multiple Map and/or Reduce Steps
	Configuring for Chains
	passing Key/Value pairs by Value or by reference
	type Checking for Chained Keys and Values
	per Chain Item Job Configuration Objects
	how the close() Method Is Called for Items in a Chain
	Configuring Mapper tasks to be a Chain
	Configuring the reducer tasks to Be Chains

	Map-side Join: Sequentially Reading Data from Multiple Sorted Inputs
	examining Join Datasets
	Under the Covers: how a Join Works
	types of Joins Supported
	Details of a Join Specification
	handling Duplicate Keys in a Dataset
	Composing a Join Specification
	Building and running a Join
	the Magic of the tupleWritable in the Mapper.map() Method

	Aggregation Using Streaming
	Aggregation Using Java Classes
	Specifying the ValueAggregatorDescriptor Class via Configuration Parameters
	Side Effect Files: Map and Reduce Tasks Can Write Additional Output Files
	Dealing with Task Failure
	Skipping Bad Records
	Enabling the Capacity Scheduler

	Solving problems with hadoop
	Unknown
	A Single Reduce Task
	Key Contents and Comparators
	A Helper Class for Keys
	The Mapper
	The Combiner
	The Reducer
	The Driver
	The Pluses and Minuses of the Brute-Force Design
	The Simple IP Range Partitioner
	Search Space Keys for Each Reduce Task That May Contain Matching Keys
	Helper Class for Keys Modifications

	projects Based On hadoop and Future Directions
	Unknown
	HBase: HDFS-Based Column-Oriented Table
	Hive: The Data Warehouse that Facebook Built
	Setting Up and running hive

	Pig, the Other Latin: A Scripting Language for Dataset Analysis
	Mahout: Machine Learning Algorithms
	Hama: A Parallel Matrix Computation Framework
	ZooKeeper: A High-Performance Collaboration Service
	Lucene: The Open Source Search Engine
	SOLr: a rich Set of Interfaces to Lucene
	Katta: a Distributed Lucene Index Server

	Thrift and Protocol Buffers
	Cascading: A Map Reduce Framework for Complex Flows
	CloudStore: A Distributed File System
	Hypertable: A Distributed Column-Oriented Database
	Greenplum: An Analytic Engine with SQL
	CloudBase: Data Warehousing
	Amazon
	Cloudera
	training
	Supported Distribution
	paid Support

	Scale Unlimited
	Vaidya: A Rule-Based Performance Diagnostic Tool for MapReduce Jobs
	Service Level Authorization (SLA)
	Removal of LZO Compression Codecs and the API Glue
	New MapReduce Context APIs and Deprecation of the Old Parameter Passing APIs
	Zero-Configuration, Two-Node Virtual Cluster for Testing
	Eclipse Project for the Example Code

	The JobConf Object in detail
	Unknown
	public JobConf()
	public JobConf(Class exampleClass)
	public JobConf(Configuration conf)
	public JobConf(Configuration conf, Class exampleClass)
	public JobConf(String config)
	public JobConf(Path config)
	public JobConf(boolean loadDefaults)
	public void setQuietMode(boolean quietmode)
	public void addResource(String name)
	public void addResource(URL url)
	public void addResource(Path file)
	public void addResource(InputStream in)
	public void reloadConfiguration()
	public String get(String name)
	public String getRaw(String name)
	public void set(String name, String value)
	public String get(String name, String defaultValue)
	public int getInt(String name, int defaultValue)
	public void setInt(String name, int value)
	public long getLong(String name, long defaultValue)
	public void setLong(String name, long value)
	public float getFloat(String name, float defaultValue)
	public boolean getBoolean(String name, boolean defaultValue)
	public void setBoolean(String name, boolean value)
	public Configuration.IntegerRanges getRange(String name, String defaultValue)
	public Collection<String> getStringCollection(String name)
	public String[] getStrings(String name)
	public String[] getStrings(String name, String... defaultValue)
	public void setStrings(String name, String... values)
	public Class<?> getClassByName(String name) throws ClassNotFoundException
	public Class<?>[] getClasses(String name, Class<?>... defaultValue)
	public Class<?> getClass(String name, Class<?> defaultValue)
	public <U> Class<? extends U> getClass(String name, Class<? extends U> defaultValue, Class<U> xface)
	public void setClass(String name, Class<?> theClass, Class<?> xface)
	public Path getLocalPath(String dirsProp, String pathTrailer) throws IOException
	public File getFile(String dirsProp, String pathTrailer) throws IOException
	public String[] getLocalDirs() throws IOException
	public void deleteLocalFiles() throws IOException
	public void deleteLocalFiles(String subdir)throws IOException
	public Path getLocalPath(String pathString) throws IOException
	public String getJobLocalDir()
	public URL getResource(String name)
	public InputStream getConfResourceAsInputStream (String name)
	public Reader getConfResourceAsReader(String name)
	public String getJar()
	public void setJar(String jar)
	public void setJarByClass(Class cls)
	public String getUser()
	public void setUser(String user)
	public void setKeepFailedTaskFiles(boolean keep)
	public boolean getKeepFailedTaskFiles()
	public void setKeepTaskFilesPattern(String pattern)
	public String getKeepTaskFilesPattern()
	public void setWorkingDirectory(Path dir)
	public Path getWorkingDirectory()
	public void setNumTasksToExecutePerJvm(int numTasks)
	public int getNumTasksToExecutePerJvm()
	public InputFormat getInputFormat()
	public void setInputFormat(Class<? extends InputFormat> theClass)
	public OutputFormat getOutputFormat()
	public void setOutputFormat(Class<? extends OutputFormat> theClass)
	public OutputCommitter getOutputCommitter()
	public void setOutputCommitter(Class <? extends OutputCommitter> theClass)
	public void setCompressMapOutput(boolean compress)
	public boolean getCompressMapOutput()
	public void setMapOutputCompressorClass(Class <? extends CompressionCodec> codecClass)
	public Class<? extends CompressionCodec> getMapOutp utCompressorClass(Class<? extends CompressionCodec> defaultValue)
	public void setMapOutputKeyClass(Class<?> theClass)
	public Class<?> getMapOutputKeyClass()
	public Class<?> getMapOutputValueClass()
	public void setMapOutputValueClass(Class<?> theClass)
	public Class<?> getOutputKeyClass()
	public void setOutputKeyClass(Class<?> theClass)
	public Class<?> getOutputValueClass()
	public void setOutputValueClass(Class<?> theClass)
	public RawComparator getOutputKeyComparator()
	public void setOutputKeyComparatorClass(Class <? extends RawComparator> theClass)
	public void setKeyFieldComparatorOptions(String keySpec)
	public String getKeyFieldComparatorOption()
	public Class<? extends Partitioner> getPartitionerClass()
	public void setPartitionerClass(Class<? extends Partitioner> theClass)
	public void setKeyFieldPartitionerOptions(String keySpec)
	public String getKeyFieldPartitionerOption()
	public RawComparator getOutputValueGroupingComparator()
	public void setOutputValueGroupingComparator(Class <? extends RawComparator> theClass)
	public Class<? extends Mapper> getMapperClass()
	public void setMapperClass(Class<? extends Mapper> theClass)
	public Class<? extends MapRunnable> getMapRunnerClass()
	public void setMapRunnerClass(Class<? extends MapRunnable> theClass)
	public Class<? extends Reducer> getReducerClass()
	public void setReducerClass(Class<? extends Reducer> theClass)
	public Class<? extends Reducer> getCombinerClass()
	public void setCombinerClass(Class<? extends Reducer> theClass)
	public boolean getSpeculativeExecution()
	public void setSpeculativeExecution (boolean speculativeExecution)
	public boolean getMapSpeculativeExecution()
	public void setMapSpeculativeExecution (boolean speculativeExecution)
	public boolean getReduceSpeculativeExecution()
	public void setReduceSpeculativeExecution (boolean speculativeExecution)
	public int getNumMapTasks()
	public void setNumMapTasks(int n)
	public int getNumReduceTasks()
	public void setNumReduceTasks(int n)
	public int getMaxMapAttempts()
	public void setMaxMapAttempts(int n)
	public int getMaxReduceAttempts()
	public void setMaxReduceAttempts(int n)
	public void setMaxTaskFailuresPerTracker(int noFailures)
	public int getMaxTaskFailuresPerTracker()
	public int getMaxMapTaskFailuresPercent()
	public void setMaxMapTaskFailuresPercent(int percent)
	public int getMaxReduceTaskFailuresPercent()
	public void setMaxReduceTaskFailuresPercent(int percent)
	public String getJobName()
	public void setJobName(String name)
	public String getSessionId()
	public void setSessionId(String sessionId)
	public JobPriority getJobPriority()
	public void setJobPriority(JobPriority prio)
	public boolean getProfileEnabled()
	public void setProfileEnabled(boolean newValue)
	public String getProfileParams()
	public void setProfileParams(String value)
	public Configuration.IntegerRanges getProfileTaskRange (boolean isMap)
	public void setProfileTaskRange(boolean isMap, String newValue)
	public String getMapDebugScript()
	public void setMapDebugScript(String mDbgScript)
	public String getReduceDebugScript()
	public void setReduceDebugScript(String rDbgScript)
	public String getJobEndNotificationURI()
	public void setJobEndNotificationURI(String uri)
	public String getQueueName()
	public void setQueueName(String queueName)
	long getMaxVirtualMemoryForTask() {
	void setMaxVirtualMemoryForTask(long vmem) {
	public int size()
	public void clear()
	public Iterator<Map.Entry<String,String>> iterator()
	public void writeXml(OutputStream out) throws IOException
	public ClassLoader getClassLoader()
	public void setClassLoader(ClassLoader classLoader)
	public String toString()
	public void readFields(DataInput in) throws IOException
	public void write(DataOutput out) throws IOException

	Index

