
Guia de Versionamento e Fluxo
Git Flow e SemVer

CI/CD - BIRD

Sumário

1 Introdução 2

2 Configuração do Ambiente 2

3 Versionamento Semântico (SemVer) 2
3.1 Estrutura da Versão (X.Y.Z) . 2

4 O Modelo Git Flow 2
4.1 Branches Permanentes . 2
4.2 Branches Temporárias . 3

4.2.1 Feature Branches (feature/*) . 3
4.2.2 Release Branches (release/*) . 3
4.2.3 Hotfix Branches (hotfix/*) . 3

5 Exemplo: 3

6 Glossário de Comandos 4
6.1 Configuração Inicial . 4
6.2 Operações Diárias . 4
6.3 Boas Práticas de Commit . 5

1

1 Introdução

Nesse guia padronizaremos a forma como o time desenvolve, integra e entrega software. Usare-
mos o Git Flow para organizar as ramificações e o Versionamento Semântico para comu-
nicar o impacto das mudanças.

2 Configuração do Ambiente

Teremos uma organização do Bird no github, com os pesquisadores adicionados como colabo-
radores, onde serão criados repositórios específicos para cada projeto.

3 Versionamento Semântico (SemVer)

Vamos usar o padrão Major.Minor.Patch (ex: v1.2.0). A alteração dos números depende
do impacto das mudanças feitas no código:1

3.1 Estrutura da Versão (X.Y.Z)

• MAJOR (X.0.0) - Quebra de Compatibilidade: Incrementada quando há mudanças
drásticas. É geralmente quando acaba a retrocompatibilidade.

• MINOR (0.Y.0) - Nova Funcionalidade: Incrementada quando tem novas funcio-
nalidades adicionadas, mas que ainda são compatíveis com versões anteriores. Exemplo:
Adicionar um novo botão na interface.

• PATCH (0.0.Z) - Correção de Bug: Incrementada para correções de falhas simples
que não alteram funcionalidades. Exemplo: Corrigir um erro de digitação, ajustar uma
cor CSS ou corrigir um cálculo.

4 O Modelo Git Flow

A estrutura do repositório vai ser composta pelas seguintes branches principais:2

4.1 Branches Permanentes

• main: Representa a Produção. Não recebe commit direto. Só recebe código via
Merge de release ou hotfix. Cada commit deve ter uma Tag de versão.

• develop: Representa o Desenvolvimento Contínuo, é a branch de integração. Ela
contém as funcionalidades completas para a próxima versão.

1Se quiserem ler mais sobre versionamento semântico podem acessar a especificação.
2Se quiserem ler mais sobre o modelo do Git Flow, podem encontrar o artigo original do Vincent Driessen

(2010), "A successful Git branching model" ou esse em português.

2

https://github.com/Brain-BIRDs
https://semver.org/lang/pt-BR/
https://nvie.com/posts/a-successful-git-branching-model/
https://medium.com/trainingcenter/utilizando-o-fluxo-git-flow-e63d5e0d5e04

4.2 Branches Temporárias

4.2.1 Feature Branches (feature/*)

• Objetivo: Desenvolver uma nova funcionalidade.

• Nasce em: develop.

• Morre em: develop.

• Fluxo: O dev cria a branch, trabalha nela e abre um PR para a develop. Após o merge,
a branch local pode ser apagada.

4.2.2 Release Branches (release/*)

• Objetivo: Congela o código para testes de QA e preparação final (documentação, versão),
aqui acontece o Staging. Ela é exclusiva para isso, nenhuma feature nova entra
aqui.

• Nasce em: develop (quando o time decide que vai lançar uma versão).

• Morre em: Dois lugares. Ao finalizar a release, ela é mergeada na:

1. main: Para atualizar a produção.

2. develop: Para garantir que correções de bugs feitas durante a fase de release voltem
para o desenvolvimento.

• O nome da branch deve seguir o SemVer (ex: release/v1.2.0).

4.2.3 Hotfix Branches (hotfix/*)

• Objetivo: Resolver bugs críticos em produção.

• Nasce em: main.

• Morre em: Assim como a release, ela é mergeada na:

1. main: Para corrigir o erro imediatamente (gera nova Tag Patch).

2. develop: Para garantir que o erro não volte a aparecer na próxima release.

• Geralmente incrementa o Patch (ex: hotfix/v1.2.1).

5 Exemplo:

Por exemplo, imagine que estamos na versão v1.1.0.

1. Início do Trabalho: O dev quer criar um "Modo Escuro". Ele cria a branch
feature/dark-mode a partir da develop.

2. Integração: Ele termina, abre PR e mergeia na develop. Outros devs também mergeiam
suas features.

3

3. Corte da Release: O time decide lançar. É criada a branch release/v1.2.0 a partir
da develop.

4. Fase de QA: O QA testa a release/v1.2.0. Encontra um bug no CSS.

5. Correção na Release: O dev corrige o bug na branch release/v1.2.0 (commit de fix).

6. Lançamento: A release é aprovada.

• Mergeiam a release/v1.2.0 na main → Cria-se a Tag v1.2.0.

• MErgeiam a release/v1.2.0 na develop (o bug é corrigido na develop também).

7. Hotfix: No dia seguinte, descobrem que o login parou de funcionar na produção (main).

8. Correção do Hotfix:

• Criam hotfix/v1.2.1 a partir da main.

• Corrigem o erro.

• Mergeiam na main (Tag v1.2.1) e na develop.

6 Glossário de Comandos

Aqui temos um glossário dos comandos que mais usaremos no git, caso alguém não se lembre ou
não esteja acostumado. Pode também rodar o comando git --help direto no terminal, acessar
a documentção do Git ou o glossário da Atlassian.

6.1 Configuração Inicial

1 git clone https :// github.com/Brain -BIRDs/seu -projeto.git
2 cd seu -projeto

6.2 Operações Diárias

Fluxo Básico para Feature:
1 # 1. Garanta que esta atualizado
2 git checkout develop
3 git pull origin develop
4

5 # 2. Crie sua branch
6 git checkout -b feature/minha -tarefa
7

8 # ... Trabalho sendo feito ...
9

10 # 3. Salve e envie
11 git add .
12 git commit -m "feat: Adiciona nova tela"
13 git push origin feature/minha -tarefa

4

https://git-scm.com/docs/git/pt_BR
https://www.atlassian.com/br/git/glossary#commands

6.3 Boas Práticas de Commit

Para que seja fácil entender e encontrar o que desejamos, é bom seguir padrões de commit:

• feat: Nova funcionalidade.

• fix: Correção de bug.

• docs: Alteração em documentação.

• style: Formatação (ponto e vírgula, espaços).

• refactor: Melhoria de código sem mudar funcionalidade.

5

	Introdução
	Configuração do Ambiente
	Versionamento Semântico (SemVer)
	Estrutura da Versão (X.Y.Z)

	O Modelo Git Flow
	Branches Permanentes
	Branches Temporárias
	Feature Branches (feature/*)
	Release Branches (release/*)
	Hotfix Branches (hotfix/*)

	Exemplo:
	Glossário de Comandos
	Configuração Inicial
	Operações Diárias
	Boas Práticas de Commit

