(Guia de Versionamento e Fluxo
Git Flow e SemVer

CI/CD - BIRD

Sumario

1 Introducao
2 Configuracao do Ambiente

3 Versionamento Seméantico (SemVer)
3.1 Estrutura da Versao (X.Y.Z)

4 O Modelo Git Flow
4.1 Branches Permanentes L0 L
4.2 Branches Temporarias
4.2.1 Feature Branches (feature/*)
4.2.2 Release Branches (release/*)
4.2.3 Hotfix Branches (hotfix/*)

5 Exemplo:

6 Glossario de Comandos
6.1 Configuragao Inicial o
6.2 Operagoes Didrias L
6.3 Boas Praticas de Commit

1 Introducao

Nesse guia padronizaremos a forma como o time desenvolve, integra e entrega software. Usare-
mos o Git Flow para organizar as ramifica¢oes e o Versionamento Seméntico para comu-
nicar o impacto das mudancas.

2 Configuracao do Ambiente

Teremos uma organizacao do Bird no github, com os pesquisadores adicionados como colabo-
radores, onde serao criados repositorios especificos para cada projeto.

3 Versionamento Seméantico (SemVer)

Vamos usar o padrao Major.Minor.Patch (ex: v1.2.0). A alteragdo dos nimeros depende
do impacto das mudancas feitas no codigo:*

3.1 Estrutura da Versao (X.Y.Z)

¢ MAJOR (X.0.0) - Quebra de Compatibilidade: Incrementada quando ha mudancas
drasticas. E geralmente quando acaba a retrocompatibilidade.

e MINOR (0.Y.0) - Nova Funcionalidade: Incrementada quando tem novas funcio-
nalidades adicionadas, mas que ainda sao compativeis com versoes anteriores. Exemplo:
Adicionar um novo botao na interface.

e PATCH (0.0.Z) - Correcao de Bug: Incrementada para corregoes de falhas simples
que nao alteram funcionalidades. Exemplo: Corrigir um erro de digitagao, ajustar uma
cor CSS ou corrigir um calculo.

4 O Modelo Git Flow

A estrutura do repositério vai ser composta pelas seguintes branches principais:?

4.1 Branches Permanentes

e main: Representa a Produgao. Nao recebe commit direto. S6 recebe codigo via
Merge de release ou hotfix. Cada commit deve ter uma Tag de versao.

e develop: Representa o Desenvolvimento Continuo, é a branch de integragao. Ela
contém as funcionalidades completas para a préxima versao.

1Se quiserem ler mais sobre versionamento semantico podem acessar a especificacio.
2Se quiserem ler mais sobre o modelo do Git Flow, podem encontrar o artigo original do Vincent Driessen
(2010), "A successful Git branching model" ou esse em portugués.

https://github.com/Brain-BIRDs
https://semver.org/lang/pt-BR/
https://nvie.com/posts/a-successful-git-branching-model/
https://medium.com/trainingcenter/utilizando-o-fluxo-git-flow-e63d5e0d5e04

4.2 Branches Temporarias

4.2.1 Feature Branches (feature/x*)

e Objetivo: Desenvolver uma nova funcionalidade.
e Nasce em: develop.
e Morre em: develop.

e Fluxo: O dev cria a branch, trabalha nela e abre um PR para a develop. Apos o merge,
a branch local pode ser apagada.

4.2.2 Release Branches (release/x)

e Objetivo: Congela o codigo para testes de QA e preparagao final (documentagao, versao),
aqui acontece o Staging. Ela é exclusiva para isso, nenhuma feature nova entra
aqui.

e Nasce em: develop (quando o time decide que vai langar uma versao).
e Morre em: Dois lugares. Ao finalizar a release, ela é mergeada na:

1. main: Para atualizar a producao.

2. develop: Para garantir que corregoes de bugs feitas durante a fase de release voltem
para o desenvolvimento.

e O nome da branch deve seguir o SemVer (ex: release/v1.2.0).

4.2.3 Hotfix Branches (hotfix/*)

e Objetivo: Resolver bugs criticos em produgao.
e Nasce em: main.
e Morre em: Assim como a release, ela é mergeada na:

1. main: Para corrigir o erro imediatamente (gera nova Tag Patch).

2. develop: Para garantir que o erro nao volte a aparecer na proxima release.

e Geralmente incrementa o Patch (ex: hotfix/v1.2.1).

5 Exemplo:
Por exemplo, imagine que estamos na versao v1.1.0.

1. Inicio do Trabalho: O dev quer criar um "Modo Escuro". Ele cria a branch
feature/dark-mode a partir da develop.

2. Integragao: Ele termina, abre PR e mergeia na develop. Outros devs também mergeiam
suas features.

6

Corte da Release: O time decide lancar. E criada a branch release/v1.2.0 a partir
da develop.

. Fase de QA: O QA testa a release/v1.2.0. Encontra um bug no CSS.

Corregao na Release: O dev corrige o bug na branch release/v1.2.0 (commit de fix).
Lancamento: A release é aprovada.

e Mergeiam a release/v1.2.0 na main — Cria-se a Tag v1.2.0.

e MFErgeiam a release/v1.2.0 na develop (o bug é corrigido na develop também).
Hotfix: No dia seguinte, descobrem que o login parou de funcionar na produgao (main).
Correcao do Hotfix:

e Criam hotfix/v1.2.1 a partir da main.
e Corrigem o erro.

e Mergeiam na main (Tag v1.2.1) e na develop.

GGlossario de Comandos

Aqui temos um glossario dos comandos que mais usaremos no git, caso alguém nao se lembre ou
nao esteja acostumado. Pode também rodar o comando git --help direto no terminal, acessar
a documentc¢ao do Git ou o glossario da Atlassian.

6.1

git

Configuracao Inicial

clone https://github.com/Brain-BIRDs/seu-projeto.git

cd seu-projeto

6.2

Operagoes Diarias

Fluxo Basico para Feature:

1.
git
git
2.
git
#

3.
git
git
git

Garanta que esta atualizado
checkout develop
pull origin develop

Crie sua branch
checkout -b feature/minha-tarefa

Trabalho sendo feito

Salve e envie
add

commit -m "feat: Adiciona nova tela
push origin feature/minha-tarefa

https://git-scm.com/docs/git/pt_BR
https://www.atlassian.com/br/git/glossary#commands

6.3 Boas Praticas de Commit

Para que seja facil entender e encontrar o que desejamos, é bom seguir padroes de commit:
e feat: Nova funcionalidade.

e fix: Corregao de bug.

docs: Alteragao em documentagao.

style: Formatagao (ponto e virgula, espagos).

refactor: Melhoria de c6digo sem mudar funcionalidade.

	Introdução
	Configuração do Ambiente
	Versionamento Semântico (SemVer)
	Estrutura da Versão (X.Y.Z)

	O Modelo Git Flow
	Branches Permanentes
	Branches Temporárias
	Feature Branches (feature/*)
	Release Branches (release/*)
	Hotfix Branches (hotfix/*)

	Exemplo:
	Glossário de Comandos
	Configuração Inicial
	Operações Diárias
	Boas Práticas de Commit

