
Guia de Melhores Práticas de
Implementação

Padrões de Engenharia e Qualidade de Código

Setor: Software Construction

Responsável Técnico: Gabriel de Freitas Villela
Contexto: Transição BIRD → Fábrica de Software

Dezembro de 2025

1

Fábrica de Software - Brain Guia de Implementação

Sumário

1 Propósito e Filosofia 4

2 Princípios Fundamentais (Clean Code) 4
2.1 KISS (Keep It Simple, Stupid) . 4

2.1.1 O que é Simplicidade? . 4
2.1.2 Sinais de Alerta (Code Smells) . 4
2.1.3 Técnica Prática: Guard Clauses . 5

2.2 DRY (Don’t Repeat Yourself) . 5
2.2.1 O Problema da Duplicação . 5
2.2.2 A “Regra de Três” (Rule of Three) 6
2.2.3 Falsa Duplicação (Cuidado) . 6
2.2.4 Exemplo Prático: Centralização de Lógica 6

2.3 SOLID Principles . 6
2.3.1 S - Single Responsibility Principle (SRP) 6
2.3.2 O - Open/Closed Principle (OCP) 7
2.3.3 L - Liskov Substitution Principle (LSP) 7
2.3.4 I - Interface Segregation Principle (ISP) 8
2.3.5 D - Dependency Inversion Principle (DIP) 8

3 Convenções de Estilo e Nomenclatura 9
3.1 Idioma do Código: Inglês . 9
3.2 Sintaxe: Tabela de Referência por Linguagem 9
3.3 Semântica de Nomenclatura (Regras Universais) 9

3.3.1 Funções são Ações (Verbos) . 9
3.3.2 Classes são Entidades (Substantivos) 10
3.3.3 Variáveis Booleanas (Perguntas) . 10

3.4 Segurança de Tipos (Type Safety) . 10
3.5 Exemplo Prático: Refatoração e Clareza 10

4 Ferramentas de Automação (Qualidade Contínua) 11
4.1 Pilar 1: Formatter Automatizado . 11
4.2 Pilar 2: Analisador Estático (Linter) . 11
4.3 Pilar 3: Type Checker . 12

5 Documentação e Legibilidade 12
5.1 Regra de Ouro . 12
5.2 Padrões de Docstrings (API) . 13

5.2.1 Estrutura Obrigatória . 13
5.2.2 Exemplo Prático (Python - Google Style) 13

5.3 Comentários Internos (O “Porquê”) . 14
5.4 Tags de Manutenção (Anotações) . 14

6 Tratamento de Erros e Observabilidade (Logs) 14
6.1 “A Morte do print” . 14
6.2 Logs Estruturados (JSON) . 15
6.3 Níveis de Log (Padronização) . 15

Página 2

Fábrica de Software - Brain Guia de Implementação

6.4 Segurança no Log (Sanitização) . 15
6.5 Tratamento de Exceções (Exception Handling) 15

6.5.1 Regra 1: Não engula exceções (Silent Failure) 16
6.5.2 Regra 2: Envelopamento (Pattern de Camadas) 16
6.5.3 Regra 3: Correlation ID (Rastreabilidade) 16

7 Segurança na Implementação (AppSec) 16
7.1 Gerenciamento de Segredos (Credenciais) 17
7.2 Blindagem contra Injeção (SQL Injection) 17
7.3 Validação e Sanitização de Entrada . 17
7.4 Vazamento de Informação (Error Handling) 17
7.5 5. Dependências Vulneráveis (Supply Chain) 18

8 Integração e Fluxo de Trabalho 18
8.1 Fluxo de Entrada (Antes de Codificar) . 18
8.2 Fluxo de Apoio (Durante a Codificação) 18
8.3 Fluxo de Saída (Entrega) . 19

9 Checklist de Code Review (Pull Request) 19
9.1 Padrões e Legibilidade . 19
9.2 Arquitetura e Design (SOLID/KISS) . 20
9.3 Segurança e Performance (Crítico) . 20
9.4 Operação e Observabilidade . 20
9.5 Testes . 20

10 Anexo Técnico: Setup do Ambiente de Desenvolvimento 20
10.1 Perfil A: Stack Python (Projetos de Backend / Scripts) 20

10.1.1 Instalação . 21
10.1.2 Configuração (.pre-commit-config.yaml) 21

10.2 Perfil B: Stack C# / .NET . 21
10.2.1 Instalação das Ferramentas . 21
10.2.2 Automação (Husky.Net ou Script) 21

10.3 Perfil C: Stack Java . 22
10.3.1 Configuração no pom.xml (Maven) 22

10.4 Integração com IDE (VS Code) . 22

11 Referências e Leitura Recomendada 23
11.1 Literatura Fundamental . 23
11.2 Guias de Estilo e Normas . 23
11.3 Segurança . 23

Página 3

Fábrica de Software - Brain Guia de Implementação

1 Propósito e Filosofia

Este documento, elaborado pela área responsável por Implementação, serve como a
“Constituição Técnica” do time. O objetivo não é engessar a criatividade, mas garantir
que o software produzido seja:

• Legível: O código é lido muito mais vezes do que é escrito.

• Manutenível: Fácil de corrigir e evoluir.

• Testável: Preparado para as validações de QA.

Regra de Ouro

“Sempre deixe o código mais limpo do que você o encontrou.” (Boy Scout Rule)

2 Princípios Fundamentais (Clean Code)

Todo código desenvolvido na fábrica deve aderir aos seguintes princípios:

2.1 KISS (Keep It Simple, Stupid)

A complexidade é o inimigo da segurança e da manutenção. Evite super-engenharia.
Se uma função faz “coisas demais”, ela deve ser quebrada. O objetivo da fábrica não é
produzir código “inteligente” que ninguém entende, mas sim código óbvio que funciona.

2.1.1 O que é Simplicidade?

Simplicidade não significa simplismo. Significa resolver o problema sem adicionar camadas
desnecessárias de abstração ou “complexidade acidental”.

• Se você precisa de um diagrama complexo para explicar uma única função de 20
linhas, ela viola o KISS.

• Se você está implementando uma estrutura genérica para “caso a gente precise no
futuro”, pare. (Ver princípio YAGNI - You Ain’t Gonna Need It).

2.1.2 Sinais de Alerta (Code Smells)

O revisor deve rejeitar o código se encontrar:

• Ninhada Profunda (Deep Nesting): Muitos ‘if’ dentro de ‘for’ dentro de ‘if’.
Isso aumenta a carga cognitiva.

• Funções Gigantes: Funções com mais de 20-30 linhas geralmente fazem coisas
demais.

• Nomes Genéricos: Variáveis chamadas ‘data’, ‘info’ ou ‘manager’ geralmente
escondem complexidade mal definida.

Página 4

Fábrica de Software - Brain Guia de Implementação

2.1.3 Técnica Prática: Guard Clauses

Para aplicar o KISS e evitar a “seta de código” (código que cresce para a direita devido à
indentação), utilize Guard Clauses (retorno antecipado).

1 # VIOLACAO DO KISS (Complexo e aninhado)
2 def process_payment(order):
3 if order:
4 if order.status == ’OPEN’:
5 if order.balance > 0:
6 order.pay()
7 return True
8 else:
9 return False

10 else:
11 return False
12 else:
13 return False
14

15 # APLICANDO KISS (Simples e plano)
16 def process_payment(order):
17 # Validacoes iniciais (Guard Clauses)
18 if not order:
19 return False
20 if order.status != ’OPEN’:
21 return False
22 if order.balance <= 0:
23 return False
24

25 # Execucao principal limpa
26 order.pay()
27 return True

Listing 1: Aplicando KISS com Guard Clauses

2.2 DRY (Don’t Repeat Yourself)

O princípio DRY preconiza que “cada parte do conhecimento deve ter uma representação
única, não ambígua e definitiva dentro do sistema”. Não se trata apenas de economizar
digitação, mas de garantir consistência.

2.2.1 O Problema da Duplicação

A duplicação é a maior causa de bugs de regressão (quando algo que funcionava para de
funcionar).

• Manutenção Pesadelo: Se a regra de validação de CPF muda, e você tem essa
validação espalhada em 3 telas diferentes, a chance de esquecer de atualizar uma
delas é altíssima.

• Inconsistência: O usuário percebe o sistema como “quebrado” quando a API recusa
um dado que o Front-end aceitou (lógicas duplicadas e divergentes).

Página 5

Fábrica de Software - Brain Guia de Implementação

2.2.2 A “Regra de Três” (Rule of Three)

Evite abstração prematura. Às vezes, criar uma função genérica cedo demais aumenta a
complexidade (violando o KISS). Utilize a seguinte heurística:

1. Primeira vez: Escreva o código.

2. Segunda vez: Copie e cole (se necessário), mas fique alerta.

3. Terceira vez: Pare. Refatore para uma função, classe ou componente reutilizável.

2.2.3 Falsa Duplicação (Cuidado)

Nem tudo que parece igual é duplicado. Se dois trechos de código fazem a mesma coisa,
mas por motivos de negócio diferentes (ex: validação de cadastro de cliente vs. va-
lidação de cadastro de fornecedor), eles podem evoluir de formas diferentes. Unificá-los
forçadamente cria um acoplamento ruim.

2.2.4 Exemplo Prático: Centralização de Lógica

1 # VIOLACAO DO DRY (Logica repetida)
2 # File A (Report)
3 final_price = product.value * 1.15 # Taxa de 15% hardcoded
4 print(f"Total: {final_price}")
5

6 # File B (Checkout)
7 total_to_pay = cart.sum * 1.15 # A mesma taxa repetida
8 print(f"Total: {total_to_pay}")
9

10 # ---
11

12 # APLICANDO DRY
13 # File: constants.py
14 SERVICE_TAX_RATE = 1.15
15

16 def calculate_price_with_tax(base_value):
17 return base_value * SERVICE_TAX_RATE
18

19 # Uso no sistema
20 final_price = calculate_price_with_tax(product.value)
21 total_to_pay = calculate_price_with_tax(cart.sum)

Listing 2: Aplicando DRY (Single Source of Truth)

2.3 SOLID Principles

O acrônimo SOLID representa cinco princípios de design de classes orientados a objetos.
O objetivo não é seguir regras cegamente, mas criar software que tolere mudanças.

2.3.1 S - Single Responsibility Principle (SRP)

“Uma classe deve ter um, e apenas um, motivo para mudar.”
Se você tem uma classe chamada PedidoManager que: 1) Calcula o total, 2) Salva no

banco e 3) Envia e-mail de confirmação, ela está errada. Se a regra de e-mail mudar, você
corre o risco de quebrar o cálculo do pedido.

Página 6

Fábrica de Software - Brain Guia de Implementação

1 # VIOLACAO (Classe "Deus" que faz tudo)
2 class Order:
3 def calculate_total(self): ...
4 def save_to_database(self): ... # Mistura persistencia
5 def send_email_confirmation(self): ... # Mistura notificacao
6

7 # CORRETO (Cada um com sua responsabilidade)
8 class Order:
9 def calculate_total(self): ... # Regra de negocio

10

11 class OrderRepository:
12 def save(self , order): ... # Banco de dados
13

14 class EmailService:
15 def send_confirmation(self , order): ... # Notificacao

Listing 3: Aplicando SRP

2.3.2 O - Open/Closed Principle (OCP)

“Entidades de software devem estar abertas para extensão, mas fechadas para
modificação.”

Você deve ser capaz de adicionar novas funcionalidades sem alterar o código fonte
existente. Isso evita introduzir bugs em funcionalidades que já estão estáveis.

1 # VIOLACAO (Muitos IFs)
2 class Discount:
3 def calculate(self , type , value):
4 if type == "VIP": return value * 0.8
5 elif type == "BLACK_FRIDAY": return value * 0.5
6

7 # CORRETO (Uso de Interface/Heranca)
8 class DiscountRule(ABC):
9 @abstractmethod

10 def calculate(self , value): pass
11

12 class VipDiscount(DiscountRule):
13 def calculate(self , value): return value * 0.8
14

15 class BlackFridayDiscount(DiscountRule):
16 def calculate(self , value): return value * 0.5

Listing 4: Aplicando OCP com Polimorfismo

2.3.3 L - Liskov Substitution Principle (LSP)

“Subclasses devem ser substituíveis por suas classes base.”
Se a classe B herda de A, o sistema deve funcionar usando B no lugar de A sem quebrar.

O exemplo clássico é: um Pinguim é uma Ave, mas se a classe Ave tem um método voar(),
o Pinguim não pode herdar dela (ou lançará um erro inesperado).

1 # VIOLACAO
2 class Bird:
3 def fly(self): ...
4

5 class Penguin(Bird):
6 def fly(self):

Página 7

Fábrica de Software - Brain Guia de Implementação

7 raise Exception("Penguins can’t fly!") # Quebra o contrato!
8

9 # CORRETO
10 class Bird: ... # Classe base geral
11

12 class FlyingBird(Bird):
13 def fly(self): ...
14

15 class Penguin(Bird): ... # Nao herda de FlyingBird

Listing 5: Respeitando a Substituicao de Liskov

2.3.4 I - Interface Segregation Principle (ISP)

“Muitas interfaces específicas são melhores do que uma interface única geral.”
Não force uma classe a implementar métodos que ela não usa. Isso cria dependências

fantasmas.
1 # VIOLACAO (Interface gorda)
2 class SmartDevice(ABC):
3 def print(self): pass
4 def scan(self): pass
5 def fax(self): pass
6

7 class SimplePrinter(SmartDevice):
8 def print(self): print("Printing ...")
9 def scan(self): pass # Forcado a implementar inutilmente

10 def fax(self): pass # Forcado a implementar inutilmente
11

12 # CORRETO
13 class Printer(ABC):
14 def print(self): pass
15

16 class Scanner(ABC):
17 def scan(self): pass
18

19 class SimplePrinter(Printer): ...

Listing 6: Segregacao de Interfaces

2.3.5 D - Dependency Inversion Principle (DIP)

“Dependa de abstrações, não de implementações.”
Este é o ponto mais crucial para a Qualidade e Testes. Classes de alto nível (Regra

de Negócio) não devem instanciar classes de baixo nível (Conexão MySQL) diretamente
dentro delas. Elas devem receber a dependência “injetada”.

1 # VIOLACAO (Alto acoplamento)
2 class ReportService:
3 def __init__(self):
4 # Preso ao MySQL para sempre. Dificil de testar.
5 self.db = MySQLConnection ()
6

7 # CORRETO (Injecao de Dependencia)
8 class ReportService:
9 # Aceita QUALQUER coisa que siga o contrato "DatabaseInterface"

10 def __init__(self , db: DatabaseInterface):

Página 8

Fábrica de Software - Brain Guia de Implementação

11 self.db = db
12

13 # Production:
14 service = ReportService(MySQLConnection ())
15 # Tests (Mock):
16 service = ReportService(MockDatabase ())

Listing 7: Inversao de Dependencia

3 Convenções de Estilo e Nomenclatura

Embora a Fábrica de Software trabalhe com múltiplas tecnologias, a legibilidade é um
princípio universal. Um código bem escrito deve ser autoexplicativo, independente se é
Python, C# ou Java.

A responsabilidade de configurar as ferramentas de validação é da área de Padrões,
mas a execução diária é dever de quem implementa.

3.1 Idioma do Código: Inglês

Para alinhar a Fábrica com padrões globais e facilitar a integração open-source, o idioma
oficial do código (variáveis, funções, classes) será o Inglês.

Exceção (Domínio Específico): Termos de negócio estritamente brasileiros ou si-
glas da Algar devem ser mantidos no original para evitar perda de sentido (ex: cpf, pix,
bairro).

3.2 Sintaxe: Tabela de Referência por Linguagem

Como cada linguagem tem sua “gramática” própria, respeite o padrão nativo da tecnologia:

Linguagem Variáveis Funções/Métodos Classes
Python snake_case

user_id
snake_case
get_user()

PascalCase
UserHandler

Java / TS camelCase
userId

camelCase
getUser()

PascalCase
UserHandler

C# camelCase
userId

PascalCase
GetUser()

PascalCase
UserHandler

3.3 Semântica de Nomenclatura (Regras Universais)

Independente da linguagem, o significado do nome deve seguir estas regras:

3.3.1 Funções são Ações (Verbos)

O nome da função deve dizer o que ela faz. Se você precisa ler o código da função para
entender o nome, refatore.

• Ruim: pdf_report() (Parece um objeto).

• Bom: generate_pdf_report() (Python) ou GeneratePdfReport() (C#).

• Prefixos comuns: get, set, is, has, calc, validate.

Página 9

Fábrica de Software - Brain Guia de Implementação

3.3.2 Classes são Entidades (Substantivos)

Classes representam o “sujeito” da ação.

• Ruim: ManageUser (Verbo).

• Bom: UserManager ou UserRepository (Substantivo).

3.3.3 Variáveis Booleanas (Perguntas)

Variáveis que guardam True/False devem soar como perguntas de sim ou não.

• Ruim: open, valid, admin.

• Bom: is_open, is_valid, has_admin_permission.

3.4 Segurança de Tipos (Type Safety)

Erros de tipo são a maior causa de bugs em produção.

• Em C#/Java: A tipagem é obrigatória pelo compilador. Use tipos explícitos em
vez de var sempre que a leitura ficar ambígua.

• Em Python: O uso de Type Hints é obrigatório nas assinaturas de métodos
públicos.

1 from typing import List , Dict
2

3 # RUIM (O que e ’data ’? O que retorna ?)
4 def process(data):
5 return data[’val’] * 2
6

7 # BOM (Contrato claro)
8 def process_transaction(transaction_data: Dict[str , float]) -> float:
9 """

10 Receives transaction data and returns the final value.
11 """
12 return transaction_data.get(’value ’, 0.0) * 2

Listing 8: Exemplo de Tipagem (Python Reference)

3.5 Exemplo Prático: Refatoração e Clareza

O exemplo abaixo está em Python, mas o conceito de “Evitar Números Mágicos”
aplica-se a C#, Java e qualquer outra linguagem.

1 # RUIM (Mistura de idiomas e numeros magicos)
2 # O que e 86400? Por que estamos multiplicando?
3 def converter_dias(lista):
4 res = []
5 for x in lista:
6 res.append(x * 86400)
7 return res
8

9 # ---

Página 10

Fábrica de Software - Brain Guia de Implementação

10

11 # BOM (Ingles Tecnico , Constantes e Clareza)
12 SECONDS_IN_A_DAY = 86400
13

14 def convert_days_to_seconds(days_list: List[int]) -> List[int]:
15 seconds_list = []
16 for day in days_list:
17 seconds = day * SECONDS_IN_A_DAY
18 seconds_list.append(seconds)
19 return seconds_list

Listing 9: De Código Obscuro para Clean Code

4 Ferramentas de Automação (Qualidade Contínua)

Para garantir que a equipe produza código com padrão industrial e não artesanal, o uso
de ferramentas de análise estática é mandatório.

O objetivo não é burocratizar, mas sim automatizar o esforço operacional des-
necessário. O Code Review deve focar em lógica de negócio e arquitetura, e não em
discussões sobre espaços, vírgulas ou indentação.

Nossa estratégia de automação se baseia em três pilares fundamentais, que devem ser
aplicados em qualquer linguagem utilizada no projeto:

4.1 Pilar 1: Formatter Automatizado

Cada linguagem tem uma ferramenta que reescreve o código automaticamente para seguir
o guia de estilo oficial.

• O que faz: Remove espaços extras, ajusta quebras de linha e padroniza a indentação
ao salvar o arquivo.

• Por que usar: Elimina 100% das discussões subjetivas sobre estética. O código de
um estagiário e de um sênior tornam-se visualmente idênticos.

• Ferramentas Oficiais:

– Python: Black (Rigoroso, sem configuração).

– C#: dotnet format (Nativo do SDK .NET).

– Java: Google Java Format (Padrão de mercado).

4.2 Pilar 2: Analisador Estático (Linter)

Enquanto o formatador cuida da estética, o Linter cuida da “saúde” do código.

• O que faz: Analisa o código estaticamente em busca de:

– Variáveis declaradas mas não usadas.

– Funções complexas demais (violação do KISS).

– Bugs lógicos óbvios (ex: if (x == x)).

Página 11

Fábrica de Software - Brain Guia de Implementação

• Por que usar: Impede que “code smells” (cheiro de código ruim) se acumulem,
garantindo que a dívida técnica seja paga antes do commit.

• Ferramentas Oficiais:

– Python: Pylint ou Flake8.

– C# / Java: SonarLint (Plugin poderoso que roda direto na IDE).

4.3 Pilar 3: Type Checker

Erros de tipo são os bugs mais comuns e evitáveis em engenharia de software.

• O que faz: Garante que se uma função pede um Número, ela não receba um Texto.

• Por que usar: Em linguagens compiladas (C#/Java), isso é nativo, mas war-
nings não devem ser ignorados. Em Python, evita quebras em tempo de execução
(Runtime Errors).

• Ferramentas Oficiais:

– Python: Mypy (Verifica a consistência dos Type Hints).

– C# / Java: O próprio Compilador (Configurado com Treat Warnings as
Errors).

Regra de Ouro (Atenção)

Código que não passa nessas ferramentas não deve ser aceito no repositório. O
responsável por “Padrões” deve configurar o pipeline (CI/CD ou Pre-commit)
para rejeitar automaticamente qualquer entrega fora do padrão.

5 Documentação e Legibilidade

Código é lido muito mais vezes do que é escrito. A documentação não serve para explicar
o que o código faz (o código já diz isso), mas sim para explicar ‘como usar’ (interface) e
‘por que foi feito assim’ (decisões).

5.1 Regra de Ouro

• Código ruim não deve ser documentado, deve ser refatorado. Não escreva
comentários para explicar variáveis com nomes ruins como x ou val. Renomeie-as.

• APIs Públicas: Toda função, classe ou método que pode ser acessado por outro
módulo deve ter documentação formal (Docstring).

Página 12

Fábrica de Software - Brain Guia de Implementação

5.2 Padrões de Docstrings (API)

Docstrings são a documentação que acompanha o código e permite a geração automática
de manuais (via Sphinx, Swagger, Javadoc). A Fábrica adota os seguintes padrões de
mercado:

Linguagem Padrão Adotado Ferramenta de Geração
Python Google Style Docstrings Sphinx / MkDocs
C# XML Documentation DocFX / Swagger
Java Javadoc Javadoc / Maven Site

5.2.1 Estrutura Obrigatória

Uma boa documentação de função deve responder a quatro perguntas, nesta ordem:

1. Resumo: O que isso faz? (Verbo no imperativo: “Calcula”, “Busca”, “Envia”).

2. Args (Parâmetros): O que eu preciso passar? Qual o tipo? Existem restrições?

3. Returns (Retorno): O que sai de lá?

4. Raises (Exceções): O que pode dar errado? (Essencial para quem vai fazer o
try/catch).

5.2.2 Exemplo Prático (Python - Google Style)

1 # RUIM (Docstring preguicosa)
2 def calculate_churn(users):
3 """Calcula o churn."""
4 ...
5

6 # BOM (Padrao Google Style)
7 def calculate_churn_rate(active_users: int , lost_users: int) -> float:
8 """
9 Calculates the monthly churn rate based on user data.

10

11 Args:
12 active_users (int): Total number of users at the start of the

period.
13 lost_users (int): Number of users who cancelled the service.
14

15 Returns:
16 float: The churn rate as a percentage (0.0 to 100.0).
17

18 Raises:
19 ValueError: If active_users is zero or negative.
20 """
21 if active_users <= 0:
22 raise ValueError("Active users must be greater than zero.")
23

24 return (lost_users / active_users) * 100.0

Listing 10: Documentacao de API Profissional

Página 13

Fábrica de Software - Brain Guia de Implementação

5.3 Comentários Internos (O “Porquê”)

Enquanto a Docstring é para quem usa a função, o comentário é para quem mantém a
função. Use comentários para registrar dívidas técnicas e decisões de negócio não óbvias.

• NÃO COMENTE O ÓBVIO:
1 i = i + 1 # Incrementa i (INUTIL - O codigo ja diz isso)
2

• COMENTE A DECISÃO:
1 # Usamos uma query bruta (SQL) aqui em vez do ORM porque
2 # a performance do ORM estava causando timeout em relatorios >

1GB.
3 # Ver ticket JIRA -123.
4 results = db.execute_raw_sql (...)
5

5.4 Tags de Manutenção (Anotações)

Em um ambiente colaborativo, use tags padronizadas para sinalizar pendências no código.
A maioria das IDEs mapeia isso automaticamente.

• TODO: Algo que precisa ser feito, mas não bloqueia a entrega atual.

• FIXME: Um código que funciona, mas é “gambiarra” e precisa de correção urgente.

• DEPRECATED: Funcionalidade antiga que será removida na próxima versão.

• NOTE: Um aviso importante sobre o comportamento do bloco.

1 def validate_cpf(cpf: str) -> bool:
2 # TODO: Implementar validacao completa com digito verificador.
3 # Atualmente valida apenas o tamanho para nao travar o MVP.
4 return len(cpf) == 11

Listing 11: Uso de Tags

6 Tratamento de Erros e Observabilidade (Logs)

Esta disciplina é a ponte entre o Desenvolvimento e a Operação. Um sistema sem logs
adequados é uma “caixa preta” cara de manter.

Não logamos apenas para “debugar”, logamos para ‘monitorar a saúde’ do negócio.

6.1 “A Morte do print”

O uso de print() (Python) ou System.out.println (Java) é “proibido” em código de
produção.

• Por quê? Prints não possuem ‘timestamp’, não possuem nível de severidade (ER-
ROR vs INFO) e, em muitas linguagens, bloqueiam a thread principal (I/O bloc-
king), degradando a performance.

• Solução: Use sempre a instância de Logger configurada pelo framework (Log4j,
Serilog, Python Logging).

Página 14

Fábrica de Software - Brain Guia de Implementação

6.2 Logs Estruturados (JSON)

Em vez de frases soltas, nossos logs devem ser objetos estruturados. Isso permite que
ferramentas (ELK Stack, Datadog, CloudWatch) indexem os campos.

1 # RUIM (Texto Plano - Dificil de filtrar)
2 logger.info(f"Usuario {user_id} comprou o item {item_id}")
3

4 # BOM (Estruturado - Facil de criar dashboards)
5 # O log sai como um JSON: {"event ": "purchase", "user_id ": 123, "item":

99}
6 logger.info("Purchase completed", extra={
7 "event": "purchase_success",
8 "user_id": user_id ,
9 "item_id": item_id ,

10 "amount": 50.00
11 })

Listing 12: Texto vs Logs Estruturados

6.3 Níveis de Log (Padronização)

O uso incorreto dos níveis gera alertas falsos ou silêncio perigoso.

Nível Quando usar?
DEBUG Informações granulares para desenvolvimento. Desligado

em Produção. (Ex: Payload completo de uma requisição).
INFO Eventos de negócio bem sucedidos. (Ex: “Pedido criado”, “Job

de sincronização finalizado”).
WARNING Algo inesperado aconteceu, mas o sistema se recuperou. Não

requer acordar ninguém de madrugada. (Ex: “Tentativa de
login falhou”, “API demorou mas respondeu”).

ERROR Uma operação falhou. O usuário percebeu o erro. Requer
investigação futura. (Ex: “Falha ao salvar no banco”, “Null-
PointerException”).

CRITICAL O sistema (ou uma parte vital dele) parou. Requer atuação
imediata da Operação. (Ex: “Banco de dados fora do ar”).

6.4 Segurança no Log (Sanitização)

Risco Crítico (LGPD)

Nunca, sob hipótese alguma, logue Dados Pessoais Sensíveis (PII), Senhas, Tokens
ou Chaves de API.

• Ruim: logger.info(f“User login: {password}”)

• Bom: logger.info(f“User login attempt for: {username}”)

6.5 Tratamento de Exceções (Exception Handling)

Tratar erros não é apenas evitar que o programa feche (“crash”), é garantir que o sistema
falhe de forma segura e informativa.

Página 15

Fábrica de Software - Brain Guia de Implementação

6.5.1 Regra 1: Não engula exceções (Silent Failure)

O catch vazio é o maior inimigo da manutenção. Se você capturou um erro, você tem
três opções:

1. Logar e lançar: Registra e deixa o erro subir.

2. Recuperar: Aplica uma lógica de correção (ex: tenta de novo).

3. Envelopar: Transforma uma exceção técnica em uma exceção de negócio.

6.5.2 Regra 2: Envelopamento (Pattern de Camadas)

Não exponha erros de banco de dados (SQL Injection risk) para o usuário final/frontend.
1 try:
2 user = db.find_user(user_id)
3 except DatabaseConnectionError as original_error:
4 # 1. Logamos o erro tecnico (para o responsavel pela area de

Operacao ver no servidor)
5 logger.error("DB connection failed", exc_info=original_error)
6

7 # 2. Lancamos um erro limpo de negocio (para o Frontend receber)
8 # O usuario recebe "Servico indisponivel", nao "Error 500 at line

40..."
9 raise ServiceUnavailableError("User service is temporarily down.")

Listing 13: Envelopamento de Excecao (Python)

6.5.3 Regra 3: Correlation ID (Rastreabilidade)

Em sistemas distribuídos (como o Open Gateway), um erro pode ocorrer em um serviço
profundo. Todo log deve conter um correlation_id (gerado na entrada da requisição)
que é repassado para todas as funções internas.

1 def process_payment(order_id , correlation_id):
2 try:
3 payment_gateway.charge(order_id)
4 except Exception as e:
5 # O responsavel por Operacao consegue pesquisar pelo ID e ver

todo o rastro
6 logger.error("Payment failed", extra={
7 "correlation_id": correlation_id ,
8 "order_id": order_id ,
9 "error": str(e)

10 })
11 raise

Listing 14: Exemplo com Correlation ID

7 Segurança na Implementação (AppSec)

Segurança não é responsabilidade exclusiva da área de “Segurança do Software”. A vulne-
rabilidade nasce no momento em que o código é digitado. Adotamos a filosofia Shift Left :
pensar em segurança desde a primeira linha de código.

Página 16

Fábrica de Software - Brain Guia de Implementação

7.1 Gerenciamento de Segredos (Credenciais)

Crime Capital

NUNCA, sob hipótese alguma, comite senhas, tokens, chaves de API ou strings
de conexão no Git. O histórico do Git é eterno.

• Problema: API_KEY = “12345” no código.

• Solução: Use Variáveis de Ambiente (.env).

• Ferramenta: Em Python, use python-dotenv. Em C#, use appsettings.json
(com User Secrets) ou Key Vault.

7.2 Blindagem contra Injeção (SQL Injection)

A falha mais antiga e comum. Ocorre quando você concatena strings para formar uma
query de banco de dados.

Regra: Jamais concatene input de usuário diretamente em comandos SQL ou de
Sistema Operacional. Use Parameterized Queries (Prepared Statements).

1 # VULNERAVEL (Concatenacao de String)
2 # Se o usuario enviar: " ’ OR ’1’=’1 "
3 # Ele apaga ou le todo o seu banco.
4 query = f"SELECT * FROM users WHERE name = ’{user_input}’"
5 cursor.execute(query)
6

7 # SEGURO (Query Parametrizada)
8 # O banco trata o input estritamente como dado , nao como comando.
9 query = "SELECT * FROM users WHERE name = %s"

10 cursor.execute(query , (user_input ,))

Listing 15: SQL Injection: O Jeito Errado vs Certo

7.3 Validação e Sanitização de Entrada

Adote o princípio de Zero Trust. Todo dado que vem de fora (Frontend, API externa,
Arquivo) é potencialmente malicioso.

• Validação de Tipo: Se o campo é idade, aceite apenas inteiros. Recuse strings.

• Allow-list (Lista Branca): Em vez de tentar bloquear caracteres ruins (o que é
difícil), aceite apenas os bons.

– Exemplo: Para um campo “UF”, aceite apenas [A-Z]{2}. Qualquer outra coisa
é rejeitada.

7.4 Vazamento de Informação (Error Handling)

Erros detalhados são úteis para o desenvolvedor, mas são mapas do tesouro para atacantes.

• Stack Trace: Nunca mostre o “caminho das pedras” (ex: Line 40 in /var/www/auth.py:
ConnectionRefused). Isso revela sua estrutura de pastas e tecnologia.

Página 17

Fábrica de Software - Brain Guia de Implementação

• Mensagens Genéricas:

– Ruim: “A senha para o usuário ’admin’ está incorreta.” (Revela que o usuário
‘admin’ existe).

– Bom: “Usuário ou senha inválidos.”

7.5 5. Dependências Vulneráveis (Supply Chain)

Bibliotecas modernas facilitam a vida, mas podem conter falhas. Não use versões antigas.

• O responsável pela área de Segurança do Software pode rodar scanners, mas o desen-
volvedor deve estar atento aos alertas do GitHub/GitLab (Dependabot) e atualizar
os pacotes (pip, npm, nuget) regularmente.

8 Integração e Fluxo de Trabalho

A área de Implementação atua como o motor da fábrica, transformando definições em
produto real. Para isso, atua no centro de um fluxo de comunicação constante:

8.1 Fluxo de Entrada (Antes de Codificar)

Nesta etapa, o objetivo é garantir que o problema foi bem compreendido antes de gastar
horas programando.

• Engenharia de Requisitos: O código deve resolver o problema de negócio descrito
no ERS.

– Atenção: Não confie cegamente apenas nos diagramas técnicos. Se o diagrama
parecer contradizer a regra de negócio do ERS, consulte o responsável pela área
imediatamente. A regra de negócio sempre tem precedência sobre o desenho
técnico.

• Projeto e Modelagem:

– Viabilidade: Se a arquitetura proposta ou o diagrama de classes for inviável
de implementar no prazo estipulado, é dever do Implementador levantar a mão
(“Pushback”).

– Fidelidade: O código deve refletir os diagramas. Se você precisou mudar a
estrutura da classe durante o código, o diagrama precisa ser atualizado. Código
e Documentação devem andar juntos.

8.2 Fluxo de Apoio (Durante a Codificação)

Você não está codando sozinho. Use os especialistas para blindar seu código.

• Segurança: Adote a postura de Shift Left. Não espere o código estar pronto para
perguntar se ele é seguro.

– Exemplo: Perguntando ao responsável por Segurança do Código - “Vou usar
essa lib para gerar PDF, ela tem alguma vulnerabilidade conhecida?”

Página 18

Fábrica de Software - Brain Guia de Implementação

• Padrões: Se o Linter ou o Pipeline estiverem travando seu commit injustamente,
acione o responsável para ajustar as regras de automação. Não tente burlar as regras
locais.

8.3 Fluxo de Saída (Entrega)

A implementação só termina quando o próximo da fila consegue trabalhar.

• QA e Entrega:

– Smoke Test: Nunca entregue código que “nem builda”. Antes de passar para
QA, rode o caminho feliz (happy path) na sua máquina.

– Testes Unitários: O código deve ir para QA com a cobertura mínima de testes
unitários definida no projeto. QA foca em testes integrados e de sistema, não
deveria perder tempo pegando erro de sintaxe.

• Operação:

– “Na minha máquina funciona”: Essa frase é proibida. Garanta que todas
as dependências novas estejam no requirements.txt ou Dockerfile.

– Variáveis de Ambiente: Se você criou uma nova chave ou configuração,
avise o responsável da Operação para que ele possa configurá-la no ambiente
de Homologação/Produção.

9 Checklist de Code Review (Pull Request)

O Code Review é a última linha de defesa antes de um bug ou vulnerabilidade chegar
à produção. O revisor não deve aprovar o PR se qualquer um dos itens abaixo não for
atendido.

9.1 Padrões e Legibilidade

Idioma: O código (variáveis, funções) está 100% em Inglês? (Exceto termos de
domínio local).

Clean Code: Nomes de variáveis e funções revelam claramente a intenção?

Documentação: Funções públicas possuem Docstrings no padrão definido (Args,
Returns, Raises)?

Sujeira: Código comentado, prints de debug e imports não usados foram removi-
dos?

Automação: O código passou no pipeline de Linter, Formatter e Type Checker
sem erros?

Página 19

Fábrica de Software - Brain Guia de Implementação

9.2 Arquitetura e Design (SOLID/KISS)

KISS: Existem funções complexas demais que poderiam ser quebradas? (Ninhada
de if/else).

DRY: Existe lógica de negócio duplicada que deveria virar uma função auxiliar?

Responsabilidade: A classe/função faz apenas uma coisa? (Princípio SRP).

Fidelidade: A implementação reflete os diagramas e arquitetura desenhados pelo
time de Projeto?

9.3 Segurança e Performance (Crítico)

Segredos: GARANTIA de que não há senhas, tokens ou chaves hardcoded?

Injeção: Queries SQL estão parametrizadas (sem concatenação de string)?

Validação: Inputs externos são validados e sanitizados antes do processamento?

Loops: Existe algum loop (for/while) perigoso que pode travar com grandes
volumes de dados?

9.4 Operação e Observabilidade

Logs: Os logs estão estruturados (JSON)? O nível (INFO/ERROR) está correto?

LGPD: Garantia de que nenhum dado sensível (PII) ou senha está sendo logado?

Tratamento de Erro: As exceções são tratadas ou envelopadas corretamente (sem
try/catch vazios)?

9.5 Testes

Cobertura: Existem testes unitários cobrindo o Happy Path - “Caminho Feliz” - e
as principais falhas?

Independência: Os testes rodam isolados (Mock) sem depender de banco de dados
real?

10 Anexo Técnico: Setup do Ambiente de Desenvolvi-
mento

Para garantir a padronização, utilizamos automação de *git hooks*. Abaixo estão as
instruções de configuração separadas por stack tecnológica.

10.1 Perfil A: Stack Python (Projetos de Backend / Scripts)

Este perfil utiliza o framework nativo pre-commit e é o padrão para projetos de ciência
de dados e APIs em Python.

Página 20

Fábrica de Software - Brain Guia de Implementação

10.1.1 Instalação

O arquivo requirements-dev.txt deve conter: black, mypy, pylint, pre-commit.
1 # No terminal (ambiente virtual ativo):
2 pip install -r requirements -dev.txt
3 pre -commit install

Listing 16: Setup Python

10.1.2 Configuração (.pre-commit-config.yaml)

1 repos:
2 - repo: https :// github.com/psf/black
3 rev: 23.9.1
4 hooks:
5 - id: black
6 language_version: python3
7

8 - repo: https :// github.com/pre -commit/mirrors -mypy
9 rev: v1.5.1

10 hooks:
11 - id: mypy
12 additional_dependencies: [types -requests]
13

14 - repo: local
15 hooks:
16 - id: pylint
17 name: pylint
18 entry: pylint
19 language: system
20 types: [python]
21 args: ["-rn", "-sn"]

Listing 17: Configuração Padrão Python

10.2 Perfil B: Stack C# / .NET

Para projetos .NET, utilizamos a ferramenta oficial dotnet format combinada com hooks
locais.

10.2.1 Instalação das Ferramentas

1 # Instala o formatador globalmente ou localmente no projeto
2 dotnet tool install -g dotnet -format

Listing 18: Setup C

10.2.2 Automação (Husky.Net ou Script)

Recomendamos o uso do pacote Husky.Net para gerenciar os commits.
1 dotnet new tool -manifest
2 dotnet tool install Husky
3 dotnet husky install

Página 21

Fábrica de Software - Brain Guia de Implementação

Adicione a tarefa no arquivo task-runner.json gerado pelo Husky:
1 {
2 "tasks": [
3 {
4 "name": "dotnet -format",
5 "command ": "dotnet",
6 "args": [" format", "--verify -no -changes"],
7 "group": "pre -commit"
8 }
9]

10 }

Listing 19: Tarefa do Husky para C

10.3 Perfil C: Stack Java

Para Java, a validação é feita via plugins do Maven/Gradle.

10.3.1 Configuração no pom.xml (Maven)

Adicione o plugin Spotless (Formatação) e Checkstyle (Lint) no pom.xml:
1 <plugin >
2 <groupId >com.diffplug.spotless </groupId >
3 <artifactId >spotless -maven -plugin </artifactId >
4 <version >2.40.0 </version >
5 <configuration >
6 <java>
7 <googleJavaFormat />
8 </java>
9 </configuration >

10 </plugin >

Listing 20: Exemplo Spotless Maven

10.4 Integração com IDE (VS Code)

Para feedback visual em tempo real, instale as extensões conforme sua linguagem:

• Python:

– Extensão: Black Formatter (Microsoft)

– Extensão: Mypy Type Checker

• C# / .NET:

– Extensão: C# Dev Kit

– Extensão: SonarLint

• Java:

– Extensão: Extension Pack for Java

– Extensão: Checkstyle for Java

Página 22

Fábrica de Software - Brain Guia de Implementação

11 Referências e Leitura Recomendada

As práticas descritas neste manual baseiam-se em literatura técnica consagrada e padrões
de mercado. A leitura das obras abaixo é encorajada para o aprimoramento técnico da
equipe.

11.1 Literatura Fundamental

• Clean Code: A Handbook of Agile Software Craftsmanship – Robert C.
Martin. (Base para os princípios SOLID e Nomenclatura).

• The Pragmatic Programmer – Andrew Hunt & David Thomas. (Base para os
princípios DRY e ETC).

• Refactoring – Martin Fowler. (Técnicas para melhorar código legado sem alterar
comportamento).

11.2 Guias de Estilo e Normas

• PEP 8 – Style Guide for Python Code. Disponível em: https://peps.python.
org/pep-0008/

• Google Java Style Guide. Disponível em: https://google.github.io/styleguide/
javaguide.html

• C# Coding Conventions (Microsoft). Disponível em: https://learn.microsoft.
com/en-us/dotnet/csharp/fundamentals/coding-style/coding-conventions

11.3 Segurança

• OWASP Top 10 – Padrão global de conscientização sobre segurança de aplicações
web.

• SWEBOK v4 – Guide to the Software Engineering Body of Knowledge (IEEE
Computer Society).

Página 23

https://peps.python.org/pep-0008/
https://peps.python.org/pep-0008/
https://google.github.io/styleguide/javaguide.html
https://google.github.io/styleguide/javaguide.html
https://learn.microsoft.com/en-us/dotnet/csharp/fundamentals/coding-style/coding-conventions
https://learn.microsoft.com/en-us/dotnet/csharp/fundamentals/coding-style/coding-conventions

	Propósito e Filosofia
	Princípios Fundamentais (Clean Code)
	KISS (Keep It Simple, Stupid)
	O que é Simplicidade?
	Sinais de Alerta (Code Smells)
	Técnica Prática: Guard Clauses

	DRY (Don't Repeat Yourself)
	O Problema da Duplicação
	A ``Regra de Três'' (Rule of Three)
	Falsa Duplicação (Cuidado)
	Exemplo Prático: Centralização de Lógica

	SOLID Principles
	S - Single Responsibility Principle (SRP)
	O - Open/Closed Principle (OCP)
	L - Liskov Substitution Principle (LSP)
	I - Interface Segregation Principle (ISP)
	D - Dependency Inversion Principle (DIP)

	Convenções de Estilo e Nomenclatura
	Idioma do Código: Inglês
	Sintaxe: Tabela de Referência por Linguagem
	Semântica de Nomenclatura (Regras Universais)
	Funções são Ações (Verbos)
	Classes são Entidades (Substantivos)
	Variáveis Booleanas (Perguntas)

	Segurança de Tipos (Type Safety)
	Exemplo Prático: Refatoração e Clareza

	Ferramentas de Automação (Qualidade Contínua)
	Pilar 1: Formatter Automatizado
	Pilar 2: Analisador Estático (Linter)
	Pilar 3: Type Checker

	Documentação e Legibilidade
	Regra de Ouro
	Padrões de Docstrings (API)
	Estrutura Obrigatória
	Exemplo Prático (Python - Google Style)

	Comentários Internos (O ``Porquê'')
	Tags de Manutenção (Anotações)

	Tratamento de Erros e Observabilidade (Logs)
	``A Morte do print''
	Logs Estruturados (JSON)
	Níveis de Log (Padronização)
	Segurança no Log (Sanitização)
	Tratamento de Exceções (Exception Handling)
	Regra 1: Não engula exceções (Silent Failure)
	Regra 2: Envelopamento (Pattern de Camadas)
	Regra 3: Correlation ID (Rastreabilidade)

	Segurança na Implementação (AppSec)
	Gerenciamento de Segredos (Credenciais)
	Blindagem contra Injeção (SQL Injection)
	Validação e Sanitização de Entrada
	Vazamento de Informação (Error Handling)
	5. Dependências Vulneráveis (Supply Chain)

	Integração e Fluxo de Trabalho
	Fluxo de Entrada (Antes de Codificar)
	Fluxo de Apoio (Durante a Codificação)
	Fluxo de Saída (Entrega)

	Checklist de Code Review (Pull Request)
	Padrões e Legibilidade
	Arquitetura e Design (SOLID/KISS)
	Segurança e Performance (Crítico)
	Operação e Observabilidade
	Testes

	Anexo Técnico: Setup do Ambiente de Desenvolvimento
	Perfil A: Stack Python (Projetos de Backend / Scripts)
	Instalação
	Configuração (.pre-commit-config.yaml)

	Perfil B: Stack C# / .NET
	Instalação das Ferramentas
	Automação (Husky.Net ou Script)

	Perfil C: Stack Java
	Configuração no pom.xml (Maven)

	Integração com IDE (VS Code)

	Referências e Leitura Recomendada
	Literatura Fundamental
	Guias de Estilo e Normas
	Segurança

