Guia de Melhores Praticas de
Implementacao

Padroes de Engenharia e Qualidade de Codigo

Setor: Software Construction

Responsavel Técnico: Gabriel de Freitas Villela
Contexto: Transicao BIRD — Fébrica de Software

Dezembro de 2025

Fabrica de Software - Brain Guia de Implementacao

Sumario
(1 Proposito e Filosofial 4
2 Principios Fundamentais (Clean Code)| 4
2.1 KISS (Keep It Simple, Stupid)|. 4
[2.1.1 O que é Simplicidade?| 4
[2.1.2 Sinais de Alerta (Code Smells)|. 4
2.1.3 Técnica Pratica: Guard Clauses 5)
2.2 DRY (Don’t Repeat Yourself) 5
[2.2.1 O Problema da Duplicacaol. 5
2.2.2 A “Regra de Trés” (Rule of Three)| 6
2.2.3 Falsa Duplicagao (Cuidado)| 6
[2.2.4 Exemplo Pratico: Centralizacao de Logical 6
2.3 SOLID Principles| 6
2.3.1 S - Single Responsibility Principle (SRP)[. 6
2.3.2 O - Open/Closed Principle (OCP)|. 7
2.3.3 L - Liskov Substitution Principle (LSP)|. 7
2.3.4 1 - Interface Segregation Principle (IS_BE 8
2.3.5 D - Dependency Inversion Principle (DIP)| 8
[3 Convencoes de Estilo e Nomenclatural 9
[3.1 Idioma do Codigo: Inglés| 9
[3.2 Sintaxe: Tabela de Referéncia por Linguagem| 9
[3.3 Semantica de Nomenclatura (Regras Universais) 9
3.3.1 Funcoes sao Acoes (Verbos)| L 9
3.3.2 Classes sao Entidades (Substantivos) 10
3.3.3 Variaveis Booleanas (Perguntas)[. 10
[3.4 Seguranca de Tipos (Type Safety)|. 10
[3.5 Exemplo Pratico: Refatoracao e Clareza] 10
4 Ferramentas de Automacao (Qualidade Continua) 11
4.1 Pilar 1: Formatter Automatizadol 11
1.2 Pilar 2: Analisador Estatico (Linter)| 11
[4.3 Pilar 3: Type Checker|, 12
[> Documentacao e Legibilidade]| 12
.1 Regrade Ourol 12
[>.2 Padroes de Docstrings (API)|. L. 13
[5.2.1 Estrutura Obrigatoria], 13
[p.2.2 Exemplo Pratico (Python - Google Style)[. 13
5.3 Comentarios Internos (O “Porqué”)| 14
5.4 Tags de Manutencao (Anotagoes)| 14
6 Tratamento de Erros e Observabilidade (Logs)| 14
6.1 “A Morte do print”|o 14
6.2 Logs Estruturados (JSON)| o 15
6.3 Niveis de Log (Padronizacao)l 15

Pagina 2

Fabrica de Software - Brain

Guia de Implementagao

[T Seguranca na Implementacao (AppSec)|

[8 Integracao e Fluxo de Trabalho]
8.1 Fluxo de Entrada (Antes de Codificar)|
8.2 Fluxo de Apoio (Durante a Codificagao)|
8.3 Fluxo de Saida (Entrega)|.,
[9 Checklist de Code Review (Pull Request)|
9.1 Padroes e Legibilidade]
9.2 Arquitetura e Design (SOLID/KISS)|
9.3 Seguranca e Performance (Critico)|
9.4 Operacao e Observabilidadel
05 Tested

(10 Anexo Técnico: Setup do Ambiente de Desenvolvimento|

[10.1 Perfil A: Stack Python (Projetos de Backend / Scripts)|
(10.1.1 Imstalacaol,
[10.1.2 Configuracao (.pre-commit-config.yaml)|.

[10.2 Perfil B: Stack C# / NET|.
[10.2.1 Instalacao das Ferramentas|.
{10.2.2 Automagao (Husky.Net ou Seript)[.

0.3 Perfil C: Stack Javal
[10.3.1 Configuracao no pom.xml (Maven)|

[10.4 Integracao com IDE (VS Code)[.

6.4 Seguranca no Log (Sanitizagao)
6.5 Tratamento de Excegoes (Exception Handling)|
6.5.1 Regra 1: Nao engula excecoes (Silent Failure)|
6.5.2 Regra 2: Envelopamento (Pattern de Camadas)|
6.5.3 Regra 3: Correlation ID (Rastreabilidade)]

7.1 Gerenciamento de Segredos (Credenciais)[.
7.2 Blindagem contra Injegao (SQL Injection)|
7.3 Validacao e danitizacao de Entradal
7.4 Vazamento de Informacao (Error Handling)]
7.5 5. Dependéncias Vulneraveis (Supply Chain)|

Pagina 3

Fabrica de Software - Brain Guia de Implementagao

1 Propésito e Filosofia

Este documento, elaborado pela area responsavel por Implementacao, serve como a
“Constituigao Técnica” do time. O objetivo nao é engessar a criatividade, mas garantir
que o software produzido seja:

e Legivel: O codigo ¢ lido muito mais vezes do que é escrito.
e Manutenivel: Facil de corrigir e evoluir.

e Testavel: Preparado para as validagoes de QA.

Regra de Ouro

“Sempre deixe o codigo mais limpo do que vocé o encontrou.” (Boy Scout Rule)

2 Principios Fundamentais (Clean Code)

Todo codigo desenvolvido na fabrica deve aderir aos seguintes principios:

2.1 KISS (Keep It Simple, Stupid)

A complexidade é o inimigo da seguranca e da manutencao. FEvite super-engenharia.

Se uma funcao faz “coisas demais”, ela deve ser quebrada. O objetivo da fabrica nao é
)

produzir codigo “inteligente” que ninguém entende, mas sim c6digo 6ébvio que funciona.

2.1.1 O que é Simplicidade?

Simplicidade nao significa simplismo. Significa resolver o problema sem adicionar camadas
desnecessarias de abstracao ou “complexidade acidental”.

e Se vocé precisa de um diagrama complexo para explicar uma tnica fungao de 20
linhas, ela viola o KISS.

e Se vocé esta implementando uma estrutura genérica para “caso a gente precise no
futuro”, pare. (Ver principio YAGNI - You Ain’t Gonna Need It).

2.1.2 Sinais de Alerta (Code Smells)

O revisor deve rejeitar o coédigo se encontrar:

e Ninhada Profunda (Deep Nesting): Muitos ‘if’ dentro de ‘for’ dentro de ‘if’.
[sso aumenta a carga cognitiva.

e Funcoes Gigantes: Funcgoes com mais de 20-30 linhas geralmente fazem coisas
demais.

e Nomes Genéricos: Variaveis chamadas ‘data’, ‘info’ ou ‘manager’ geralmente
escondem complexidade mal definida.

Pagina 4

Fabrica de Software - Brain Guia de Implementagao

2.1.3 Técnica Pratica: Guard Clauses

Para aplicar o KISS e evitar a “seta de codigo” (codigo que cresce para a direita devido a
indentagao), utilize Guard Clauses (retorno antecipado).

1 # VIOLACAO DO KISS (Complexo e aninhado)
> def process_payment (order):

3 if order:

A if order.status == ’0PEN’:

5 if order.balance > O:

6 order .pay ()

7 return True

8 else:

9 return False
10 else:

11 return False

12 else:

13 return False

5 # APLICANDO KISS (Simples e plano)
¢ def process_payment (order):
17 # Validacoes iniciais (Guard Clauses)

18 if not order:
19 return False
20 if order.status != ’0PEN’:

21 return False
22 if order.balance <= O0:
23 return False

25 # Execucao principal limpa
26 order .pay ()
27 return True

Listing 1: Aplicando KISS com Guard Clauses

2.2 DRY (Don’t Repeat Yourself)

O principio DRY preconiza que “cada parte do conhecimento deve ter uma representagao
tnica, nao ambigua e definitiva dentro do sistema”. Nao se trata apenas de economizar
digitacao, mas de garantir consisténcia.

2.2.1 O Problema da Duplicacao

A duplicac@o é a maior causa de bugs de regressao (quando algo que funcionava para de
funcionar).

e Manutencao Pesadelo: Se a regra de validagao de CPF muda, e vocé tem essa
validacao espalhada em 3 telas diferentes, a chance de esquecer de atualizar uma
delas é altissima.

e Inconsisténcia: O usuério percebe o sistema como “quebrado” quando a API recusa
um dado que o Front-end aceitou (logicas duplicadas e divergentes).

Pagina 5

N

Fabrica de Software - Brain Guia de Implementagao

2.2.2 A “Regra de Trés” (Rule of Three)

Evite abstracdo prematura. As vezes, criar uma funcdo genérica cedo demais aumenta a
complexidade (violando o KISS). Utilize a seguinte heuristica:

1. Primeira vez: Escreva o codigo.
2. Segunda vez: Copie e cole (se necessario), mas fique alerta.

3. Terceira vez: Pare. Refatore para uma funcao, classe ou componente reutilizavel.

2.2.3 Falsa Duplicagao (Cuidado)

Nem tudo que parece igual é duplicado. Se dois trechos de coédigo fazem a mesma coisa,
mas por motivos de negoécio diferentes (ex: validacao de cadastro de cliente vs. va-
lidagdo de cadastro de fornecedor), eles podem evoluir de formas diferentes. Unifica-los
forcadamente cria um acoplamento ruim.

2.2.4 Exemplo Pratico: Centralizacao de Loégica

VIOLACAO DO DRY (Logica repetida)

File A (Report)

final_price = product.value * 1.15 # Taxa de 157 hardcoded
print (f"Total: {final_pricel}")

; # File B (Checkout)

total_to_pay = cart.sum * 1.15 # A mesma taxa repetida
print (f"Total: {total_to_payl}")

APLICANDO DRY
File: constants.py
SERVICE_TAX_RATE = 1.15

; def calculate_price_with_tax(base_value):

return base_value * SERVICE_TAX_RATE

Uso no sistema
final_price = calculate_price_with_tax(product.value)
total_to_pay = calculate_price_with_tax(cart.sum)

Listing 2: Aplicando DRY (Single Source of Truth)

2.3 SOLID Principles

O acréonimo SOLID representa cinco principios de design de classes orientados a objetos.
O objetivo nao é seguir regras cegamente, mas criar software que tolere mudancas.

2.3.1 S - Single Responsibility Principle (SRP)

“Uma classe deve ter um, e apenas um, motivo para mudar.”

Se vocé tem uma classe chamada PedidoManager que: 1) Calcula o total, 2) Salva no
banco e 3) Envia e-mail de confirmagao, ela esta errada. Se a regra de e-mail mudar, vocé
corre o risco de quebrar o calculo do pedido.

Pagina 6

N

6

Fabrica de Software - Brain Guia de Implementagao

VIOLACAO (Classe "Deus" que faz tudo)
class Order:
def calculate_total (self):
def save_to_database(self): ... # Mistura persistencia
def send_email_confirmation(self): ... # Mistura notificacao

CORRETO (Cada um com sua responsabilidade)
class Order:
def calculate_total(self): ... # Regra de negocio

class OrderRepository:
def save(self, order): ... # Banco de dados

class EmailService:
def send_confirmation(self, order): ... # Notificacao

Listing 3: Aplicando SRP

2.3.2 O - Open/Closed Principle (OCP)

“Entidades de software devem estar abertas para extensao, mas fechadas para
modificacao.”
Vocé deve ser capaz de adicionar novas funcionalidades sem alterar o codigo fonte
existente. Isso evita introduzir bugs em funcionalidades que ji estao estéaveis.
VIOLACAO (Muitos IFs)
class Discount:
def calculate(self, type, value):

if type == "VIP": return value * 0.8
elif type == "BLACK_FRIDAY": return value * 0.5

CORRETO (Uso de Interface/Heranca)
class DiscountRule (ABC):
@abstractmethod
def calculate(self, value): pass

class VipDiscount (DiscountRule):
def calculate(self, value): return value * 0.8

class BlackFridayDiscount (DiscountRule):
def calculate(self, value): return value * 0.5

Listing 4: Aplicando OCP com Polimorfismo

2.3.3 L - Liskov Substitution Principle (LSP)

“Subclasses devem ser substituiveis por suas classes base.”

Se a classe B herda de A, o sistema deve funcionar usando B no lugar de A sem quebrar.
O exemplo classico é: um Pinguim é uma Ave, mas se a classe Ave tem um método voar (),
o Pinguim nao pode herdar dela (ou langara um erro inesperado).
VIOLACAO

class Bird:
def fly(self):

class Penguin(Bird):
def fly(self):

Pagina 7

-

N

Fabrica de Software - Brain Guia de Implementagao

raise Exception("Penguins can’t fly!") # Quebra o contrato!

CORRETO
class Bird: ... # Classe base geral

class FlyingBird(Bird):
def fly(self):

5 class Penguin(Bird): ... # Nao herda de FlyingBird

Listing 5: Respeitando a Substituicao de Liskov

2.3.4 I - Interface Segregation Principle (ISP)

“Muitas interfaces especificas sao melhores do que uma interface tinica geral.”
Nao force uma classe a implementar métodos que ela nao usa. Isso cria dependéncias
fantasmas.

VIOLACAO (Interface gorda)
class SmartDevice (ABC):
def print(self): pass
def scan(self): pass
def fax(self): pass

class SimplePrinter (SmartDevice):
def print(self): print("Printing...")
def scan(self): pass # Forcado a implementar inutilmente
def fax(self): pass # Forcado a implementar inutilmente

CORRETO
class Printer (ABC):
def print(self): pass

; class Scanner (ABC):

def scan(self): pass

class SimplePrinter (Printer):

Listing 6: Segregacao de Interfaces

2.3.5 D - Dependency Inversion Principle (DIP)

“Dependa de abstragoes, nao de implementacgoes.”

Este é o ponto mais crucial para a Qualidade e Testes. Classes de alto nivel (Regra
de Negocio) ndo devem instanciar classes de baixo nivel (Conexao MySQL) diretamente
dentro delas. Elas devem receber a dependéncia “injetada’.

VIOLACAO (Alto acoplamento)
class ReportService:
def __init__(self):

Preso ao MySQL para sempre. Dificil de testar.
self.db = MySQLConnection ()

CORRETO (Injecao de Dependencia)

class ReportService:
Aceita QUALQUER coisa que siga o contrato "DatabaseInterface"
def __init__(self, db: DatabaselInterface):

Pagina 8

11

12

14

16

Fabrica de Software - Brain

Guia de Implementagao

self .db

3 # Production:

= db

service = ReportService (MySQLConnection())

5 # Tests (Mock):

service = ReportService (MockDatabase ())

3 Convencoes de Estilo e Nomenclatura

Listing 7: Inversao de Dependencia

Embora a Fabrica de Software trabalhe com multiplas tecnologias, a legibilidade é um
principio universal. Um codigo bem escrito deve ser autoexplicativo, independente se é
Python, C# ou Java.

A responsabilidade de configurar as ferramentas de validacao é da area de Padroes,
mas a execucao diaria é dever de quem implementa.

3.1 Idioma do Coédigo: Inglés

Para alinhar a Fabrica com padroes globais e facilitar a integragao open-source, o idioma
oficial do codigo (variaveis, fungoes, classes) sera o Inglés.

Excegao (Dominio Especifico): Termos de negocio estritamente brasileiros ou si-
glas da Algar devem ser mantidos no original para evitar perda de sentido (ex: cpf, pix,

bairro).

3.2 Sintaxe: Tabela de Referéncia por Linguagem

Como cada linguagem tem sua “graméatica’ propria, respeite o padrao nativo da tecnologia:

Linguagem ‘ Variaveis Fungoes/Métodos Classes
Python snake_case snake_case PascalCase
user_id get_user() UserHandler
Java / TS camelCase camelCase PascalCase
userld getUser() UserHandler
C# camelCase PascalCase PascalCase
userld GetUser() UserHandler

3.3 Seméantica de Nomenclatura (Regras Universais)

Independente da linguagem, o significado do nome deve seguir estas regras:

3.3.1 Funcoes sao Agoes (Verbos)

O nome da fungao deve dizer o que ela faz. Se vocé precisa ler o cédigo da fungao para
entender o nome, refatore.

e Ruim: pdf_report() (Parece um objeto).

o generate_pdf_report() (Python) ou GeneratePdfReport() (C#).

e Prefixos comuns: get, set, is, has, calc, validate.

Pagina 9

1

Fabrica de Software - Brain Guia de Implementagao

3.3.2 Classes sao Entidades (Substantivos)

Classes representam o “sujeito” da agao.
e Ruim: ManageUser (Verbo).

° UserManager ou UserRepository (Substantivo).

3.3.3 Variaveis Booleanas (Perguntas)

Variaveis que guardam True/False devem soar como perguntas de sim ou nao.
e Ruim: open, valid, admin.

° is_open, is_valid, has_admin_permission.

3.4 Seguranca de Tipos (Type Safety)

Erros de tipo sao a maior causa de bugs em produgao.

e Em C#/Java: A tipagem é obrigatoria pelo compilador. Use tipos explicitos em
vez de var sempre que a leitura ficar ambigua.

e Em Python: O uso de Type Hints é obrigatério nas assinaturas de métodos
publicos.

from typing import List, Dict

RUIM (0 que e ’data’? 0 que retorna?)
def process(data):
return datal[’val’] * 2

BOM (Contrato claro)

def process_transaction(transaction_data: Dict[str, float]) -> float:
nnn

Receives transaction data and returns the final value.

return transaction_data.get(’value’, 0.0) * 2

Listing 8: Exemplo de Tipagem (Python Reference)

3.5 Exemplo Pratico: Refatoracao e Clareza

O exemplo abaixo estd em Python, mas o conceito de “Evitar Ntimeros MAagicos”
aplica-se a C+#, Java e qualquer outra linguagem.

RUIM (Mistura de idiomas e numeros magicos)
0 que e 864007 Por que estamos multiplicando?
def converter_dias(lista):
res = []
for x in lista:
res.append(x * 86400)
return res

Pagina 10

Fabrica de Software - Brain Guia de Implementagao

10

11 # BOM (Ingles Tecnico, Constantes e Clareza)

12 SECONDS_IN_A_DAY = 86400

13

11+ def convert_days_to_seconds(days_list: List[int]) -> List[int]:
15 seconds_list = []

16 for day in days_list:

17 seconds = day * SECONDS_IN_A_DAY

18 seconds_list.append(seconds)

19 return seconds_list

Listing 9: De Codigo Obscuro para Clean Code

4 Ferramentas de Automacao (Qualidade Continua)

Para garantir que a equipe produza coédigo com padrao industrial e nao artesanal, o uso
de ferramentas de anélise estatica ¢ mandatoério.

O objetivo nao é burocratizar, mas sim automatizar o esforgo operacional des-
necessario. O Code Review deve focar em légica de negocio e arquitetura, e nao em
discussoes sobre espacos, virgulas ou indentagao.

Nossa estratégia de automacao se baseia em trés pilares fundamentais, que devem ser
aplicados em qualquer linguagem utilizada no projeto:

4.1 Pilar 1: Formatter Automatizado

Cada linguagem tem uma ferramenta que reescreve o c6digo automaticamente para seguir
o guia de estilo oficial.

e O que faz: Remove espacos extras, ajusta quebras de linha e padroniza a indentagao
ao salvar o arquivo.

e Por que usar: Elimina 100% das discussoes subjetivas sobre estética. O codigo de
um estagiario e de um sénior tornam-se visualmente idénticos.

e Ferramentas Oficiais:

— Python: Black (Rigoroso, sem configuragao).
— C#: dotnet format (Nativo do SDK .NET).

— Java: Google Java Format (Padrao de mercado).

4.2 Pilar 2: Analisador Estatico (Linter)
Enquanto o formatador cuida da estética, o Linter cuida da “satde” do codigo.
e O que faz: Analisa o c6digo estaticamente em busca de:

— Variaveis declaradas mas nao usadas.
— Fungoes complexas demais (violagao do KISS).

— Bugs logicos 6bvios (ex: if (x == x)).

Pagina 11

Fabrica de Software - Brain Guia de Implementagao

e Por que usar: Impede que “code smells” (cheiro de codigo ruim) se acumulem,
garantindo que a divida técnica seja paga antes do commit.

e Ferramentas Oficiais:

— Python: Pylint ou Flake8.
— C# / Java: SonarLint (Plugin poderoso que roda direto na IDE).

4.3 Pilar 3: Type Checker

Erros de tipo sao os bugs mais comuns e evitaveis em engenharia de software.

e O que faz: Garante que se uma funcao pede um Namero, ela nao receba um Texto.

e Por que usar: Em linguagens compiladas (C#/Java), isso é nativo, mas war-
nings nao devem ser ignorados. Em Python, evita quebras em tempo de execugao
(Runtime Errors).

e Ferramentas Oficiais:

— Python: Mypy (Verifica a consisténcia dos Type Hints).

— C# / Java: O proprio Compilador (Configurado com Treat Warnings as
Errors).

Regra de Ouro (Atencao)

Codigo que nao passa nessas ferramentas nao deve ser aceito no repositério. O
responsavel por “Padroes” deve configurar o pipeline (CI/CD ou Pre-commit)
para rejeitar automaticamente qualquer entrega fora do padrao.

5 Documentacao e Legibilidade

Codigo é lido muito mais vezes do que é escrito. A documentagao nao serve para explicar
o que o codigo faz (o codigo ja diz isso), mas sim para explicar ‘como usar’ (interface) e
‘por que foi feito assim’ (decisoes).

5.1 Regra de Ouro

e Cdédigo ruim nao deve ser documentado, deve ser refatorado. Nao escreva
comentarios para explicar varidveis com nomes ruins como x ou val. Renomeie-as.

e APIs Publicas: Toda funcao, classe ou método que pode ser acessado por outro
modulo deve ter documentagao formal (Docstring).

Pagina 12

Fabrica de Software - Brain Guia de Implementagao

5.2

Padroes de Docstrings (API)

Docstrings sao a documentacao que acompanha o c6digo e permite a geragao automaética
de manuais (via Sphinx, Swagger, Javadoc). A Fabrica adota os seguintes padroes de

mercado:
Linguagem ‘ Padrao Adotado ‘ Ferramenta de Geracao ‘
Python Google Style Docstrings | Sphinx / MkDocs
C+# XML Documentation DocFX / Swagger
Java Javadoc Javadoc / Maven Site
5.2.1 Estrutura Obrigatoéria

Uma boa documentacao de fungao deve responder a quatro perguntas, nesta ordem:

1.
2.

5.2.

Resumo: O que isso faz? (Verbo no imperativo: “Calcula”, “Busca”, “Envia”).
Args (Parametros): O que eu preciso passar? Qual o tipo? Existem restri¢oes?
. Returns (Retorno): O que sai de 1a?

Raises (Excegoes): O que pode dar errado? (Essencial para quem vai fazer o
try/catch).

2 Exemplo Pratico (Python - Google Style)

1 # RUIM (Docstring preguicosa)

def

calculate_churn (users):
"""Calcula o churn."""

BOM (Padrao Google Style)

def

calculate_churn_rate(active_users: int, lost_users: int) -> float:
mmnn
Calculates the monthly churn rate based on user data.
Args:

active_users (int): Total number of users at the start of the
period.

lost_users (int): Number of users who cancelled the service.

Returns:
float: The churn rate as a percentage (0.0 to 100.0).

Raises:

ValueError: If active_users is zero or negative.
monn

if active_users <= O0:
raise ValueError ("Active users must be greater than zero.")

return (lost_users / active_users) * 100.0

Listing 10: Documentacao de API Profissional

Pagina 13

Fabrica de Software - Brain Guia de Implementagao

5.3 Comentarios Internos (O ‘“Porqué”)
Enquanto a Docstring é para quem usa a fungao, o comentario é para quem mantém a

funcao. Use comentérios para registrar dividas técnicas e decisoes de negocio nao 6bvias.

e NAO COMENTE O OBVIO:

1 i =1+ 1 # Incrementa i (INUTIL - 0 codigo ja diz isso)

2

e COMENTE A DECISAO:

1 # Usamos uma query bruta (SQL) aqui em vez do ORM porque
2 # a performance do ORM estava causando timeout em relatorios >

1GB.
Ver ticket JIRA-123.
1 results = db.execute_raw_sql(...)

5.4 Tags de Manutengao (Anotagoes)

Em um ambiente colaborativo, use tags padronizadas para sinalizar pendéncias no cédigo.
A maioria das IDEs mapeia isso automaticamente.

e TODO: Algo que precisa ser feito, mas nao bloqueia a entrega atual.

e FIXME: Um codigo que funciona, mas é “gambiarra” e precisa de corre¢ao urgente.
e DEPRECATED: Funcionalidade antiga que serd removida na proxima versao.

e NOTE: Um aviso importante sobre o comportamento do bloco.

def validate_cpf (cpf: str) -> bool:
TODO: Implementar validacao completa com digito verificador.
Atualmente valida apenas o tamanho para nao travar o MVP.
return len(cpf) == 11

Listing 11: Uso de Tags

6 Tratamento de Erros e Observabilidade (Logs)

Esta disciplina é a ponte entre o Desenvolvimento e a Operacao. Um sistema sem logs
adequados é uma “caixa preta’ cara de manter.
Nao logamos apenas para “debugar”, logamos para ‘monitorar a saide’ do negocio.

6.1 “A Morte do print”

O uso de print() (Python) ou System.out.println (Java) é “proibido” em codigo de
producao.

e Por qué? Prints ndo possuem ‘timestamp’, ndo possuem nivel de severidade (ER-
ROR vs INFO) e, em muitas linguagens, bloqueiam a thread principal (I/O bloc-
king), degradando a performance.

e Solugao: Use sempre a instancia de Logger configurada pelo framework (Log4j,
Serilog, Python Logging).

Pagina 14

Fabrica de Software - Brain Guia de Implementagao

6.2 Logs Estruturados (JSON)

Em vez de frases soltas, nossos logs devem ser objetos estruturados. Isso permite que
ferramentas (ELK Stack, Datadog, CloudWatch) indexem os campos.
1 # RUIM (Texto Plano - Dificil de filtrar)

logger.info (f"Usuario {user_id} comprou o item {item_id}")

2
3
4

BOM (Estruturado - Facil de criar dashboards)
5 # 0 log sai como um JSON: {"event": "purchase", "user_id": 123, "item":
99}
6 logger.info ("Purchase completed", extra={
7 "event": "purchase_success",
8 "user_id": user_id,
9 "item_id": item_id,

10 "amount": 50.00
1 })

Listing 12: Texto vs Logs Estruturados

6.3 Niveis de Log (Padronizagao)

O uso incorreto dos niveis gera alertas falsos ou siléncio perigoso.

Nivel ' Quando usar?

DEBUG Informagoes granulares para desenvolvimento. Desligado
em Producgao. (Ex: Payload completo de uma requisicao).
INFO Eventos de negdcio bem sucedidos. (Ex: “Pedido criado”, “Job

de sincronizagao finalizado”).

WARNING | Algo inesperado aconteceu, mas o sistema se recuperou. Nao
requer acordar ninguém de madrugada. (Ex: “Tentativa de
login falhou”, “API demorou mas respondeu”).

ERROR Uma operacao falhou. O usuério percebeu o erro. Requer
investigagao futura. (Ex: “Falha ao salvar no banco”, “Null-
PointerException”).

CRITICAL | O sistema (ou uma parte vital dele) parou. Requer atuacao
imediata da Operagao. (Ex: “Banco de dados fora do ar”).

6.4 Segurancga no Log (Sanitizagao)

Risco Critico (LGPD)

Nunca, sob hipdtese alguma, logue Dados Pessoais Sensiveis (PII), Senhas, Tokens
ou Chaves de API.

e Ruim: logger.info(f‘User login: {password}’’)

e Dom: logger.info(f‘User login attempt for: <{username}’’)

6.5 Tratamento de Excegoes (Exception Handling)

Tratar erros nao é apenas evitar que o programa feche (“crash”), é garantir que o sistema
falhe de forma segura e informativa.

Pagina 15

1

2

9

Fabrica de Software - Brain Guia de Implementagao

6.5.1 Regra 1: Nao engula excegoes (Silent Failure)

O catch vazio é o maior inimigo da manutencao. Se vocé capturou um erro, vocé tem
trés opcoes:

1. Logar e lancgar: Registra e deixa o erro subir.
2. Recuperar: Aplica uma logica de corre¢ao (ex: tenta de novo).

3. Envelopar: Transforma uma excecao técnica em uma excegao de negocio.

6.5.2 Regra 2: Envelopamento (Pattern de Camadas)

Nao exponha erros de banco de dados (SQL Injection risk) para o usuério final/frontend.

try:
user = db.find_user (user_id)
except DatabaseConnectionError as original_error:
1. Logamos o erro tecnico (para o responsavel pela area de
Operacao ver no servidor)
logger.error ("DB connection failed", exc_info=original_error)

2. Lancamos um erro limpo de negocio (para o Frontend receber)

0 usuario recebe "Servico indisponivel", nao "Error 500 at line
40..."

raise ServiceUnavailableError ("User service is temporarily down.")

Listing 13: Envelopamento de Excecao (Python)

6.5.3 Regra 3: Correlation ID (Rastreabilidade)

Em sistemas distribuidos (como o Open Gateway), um erro pode ocorrer em um servigo
profundo. Todo log deve conter um correlation_id (gerado na entrada da requisi¢ao)
que é repassado para todas as fungoes internas.

def process_payment (order_id, correlation_id):
try:
payment_gateway.charge (order_id)
except Exception as e:
0 responsavel por 0Operacao consegue pesquisar pelo ID e ver
todo o rastro

logger.error ("Payment failed", extra={
"correlation_id": correlation_id,
"order_id": order_id,
"error": str(e)

b

raise

Listing 14: Exemplo com Correlation ID

7 Seguranca na Implementacao (AppSec)

Seguranga nao é responsabilidade exclusiva da area de “Seguranga do Software”. A vulne-
rabilidade nasce no momento em que o codigo é digitado. Adotamos a filosofia Shift Left:
pensar em seguranca desde a primeira linha de codigo.

Pagina 16

Fabrica de Software - Brain Guia de Implementagao

7.1 Gerenciamento de Segredos (Credenciais)

NUNCA, sob hipotese alguma, comite senhas, tokens, chaves de API ou strings
de conexao no Git. O histoérico do Git é eterno.

e Problema: API_KEY = 12345’ no codigo.
e Solugao: Use Variaveis de Ambiente (.env).

e Ferramenta: Em Python, use python-dotenv. Em C#, use appsettings.json
(com User Secrets) ou Key Vault.

7.2 Blindagem contra Injecao (SQL Injection)

A falha mais antiga e comum. Ocorre quando vocé concatena strings para formar uma
query de banco de dados.

Regra: Jamais concatene input de usuario diretamente em comandos SQL ou de
Sistema Operacional. Use Parameterized Queries (Prepared Statements).

1 # VULNERAVEL (Concatenacao de String)

2 # Se o usuario enviar: " ’ OR ’1°’=’1 "
3 # Ele apaga ou le todo o seu banco.
1 query = f"SELECT * FROM users WHERE name = ’{user_input}’"

5 cursor .execute (query)

6

7 # SEGURO (Query Parametrizada)

¢ # 0 banco trata o input estritamente como dado, nao como comando.

9 query = "SELECT * FROM users WHERE name = 7%s"
10 cursor .execute (query, (user_input,))

Listing 15: SQL Injection: O Jeito Errado vs Certo

7.3 Validacao e Sanitizacao de Entrada

Adote o principio de Zero Trust. Todo dado que vem de fora (Frontend, API externa,
Arquivo) é potencialmente malicioso.

e Validagao de Tipo: Se o campo ¢é idade, aceite apenas inteiros. Recuse strings.

e Allow-list (Lista Branca): Em vez de tentar bloquear caracteres ruins (o que é
dificil), aceite apenas os bons.

— FExemplo: Para um campo “UF”, aceite apenas [A-Z]{2}. Qualquer outra coisa
é rejeitada.

7.4 Vazamento de Informacao (Error Handling)

Erros detalhados sao tteis para o desenvolvedor, mas sao mapas do tesouro para atacantes.

e Stack Trace: Nunca mostre o “caminho das pedras” (ex: Line 40 in /var/www/auth.py:
ConnectionRefused). Isso revela sua estrutura de pastas e tecnologia.

Pagina 17

Fabrica de Software - Brain Guia de Implementagao

e Mensagens Genéricas:

— Ruim: “A senha para o usuario 'admin’ esté incorreta.” (Revela que o usuario
‘admin’ existe).

— “Usuério ou senha invéalidos.”

7.5 5. Dependéncias Vulneraveis (Supply Chain)
Bibliotecas modernas facilitam a vida, mas podem conter falhas. Nao use versoes antigas.

e O responséavel pela area de Seguranca do Software pode rodar scanners, mas o desen-
volvedor deve estar atento aos alertas do GitHub/GitLab (Dependabot) e atualizar
os pacotes (pip, npm, nuget) regularmente.

8 Integracao e Fluxo de Trabalho

A éarea de Implementacao atua como o motor da fabrica, transformando defini¢bes em
produto real. Para isso, atua no centro de um fluxo de comunicacao constante:

8.1 Fluxo de Entrada (Antes de Codificar)

Nesta etapa, o objetivo é garantir que o problema foi bem compreendido antes de gastar
horas programando.

¢ Engenharia de Requisitos: O codigo deve resolver o problema de negéocio descrito
no ERS.

— Atenc¢ao: Nao confie cegamente apenas nos diagramas técnicos. Se o diagrama
parecer contradizer a regra de negocio do ERS, consulte o responsavel pela area
imediatamente. A regra de negdcio sempre tem precedéncia sobre o desenho
técnico.

e Projeto e Modelagem:

— Viabilidade: Se a arquitetura proposta ou o diagrama de classes for inviavel
de implementar no prazo estipulado, é dever do Implementador levantar a mao
(“Pushback”).

— Fidelidade: O codigo deve refletir os diagramas. Se vocé precisou mudar a
estrutura da classe durante o codigo, o diagrama precisa ser atualizado. Cddigo
e Documentagao devem andar juntos.

8.2 Fluxo de Apoio (Durante a Codificagao)

Vocé nao esta codando sozinho. Use os especialistas para blindar seu codigo.

e Seguranca: Adote a postura de Shift Left. Nao espere o codigo estar pronto para
perguntar se ele é seguro.

— FEzemplo: Perguntando ao responsavel por Seguranca do Coédigo - “Vou usar
essa lib para gerar PDF, ela tem alguma vulnerabilidade conhecida?”

Pagina 18

Fabrica de Software - Brain Guia de Implementagao

e Padroes: Se o Linter ou o Pipeline estiverem travando seu commit injustamente,
acione o responsavel para ajustar as regras de automagao. Nao tente burlar as regras
locais.

8.3 Fluxo de Saida (Entrega)

A implementagao s6 termina quando o proximo da fila consegue trabalhar.

e QA e Entrega:
— Smoke Test: Nunca entregue codigo que “nem builda”. Antes de passar para
QA, rode o caminho feliz (happy path) na sua maquina.

— Testes Unitarios: O codigo deve ir para QA com a cobertura minima de testes
unitéarios definida no projeto. QA foca em testes integrados e de sistema, nao
deveria perder tempo pegando erro de sintaxe.

e Operacgao:

— “Na minha maquina funciona”: Essa frase é proibida. Garanta que todas
as dependéncias novas estejam no requirements.txt ou Dockerfile.

— Variaveis de Ambiente: Se vocé criou uma nova chave ou configuracgao,
avise o responsavel da Operagao para que ele possa configurd-la no ambiente
de Homologagao/Produgao.

9 Checklist de Code Review (Pull Request)

O Code Review ¢ a tltima linha de defesa antes de um bug ou vulnerabilidade chegar
a producao. O revisor nao deve aprovar o PR se qualquer um dos itens abaixo nao for
atendido.

9.1 Padroes e Legibilidade

Idioma: O codigo (variaveis, fungdes) esta 100% em Inglés? (Exceto termos de
dominio local).

Clean Code: Nomes de variaveis e fungoes revelam claramente a intencao?

Documentagao: Fungoes publicas possuem Docstrings no padrao definido (Args,
Returns, Raises)?

Sujeira: Codigo comentado, prints de debug e imports nao usados foram removi-
dos?

Automacgao: O codigo passou no pipeline de Linter, Formatter e Type Checker
sem erros?

Pagina 19

Fabrica de Software - Brain Guia de Implementagao

9.2

9.3

9.4

9.5

10

Arquitetura e Design (SOLID /KISS)

KISS: Existem fung¢oes complexas demais que poderiam ser quebradas? (Ninhada
de if/else).

DRY: Existe logica de negdcio duplicada que deveria virar uma funcao auxiliar?
Responsabilidade: A classe/funcao faz apenas uma coisa? (Principio SRP).
Fidelidade: A implementacao reflete os diagramas e arquitetura desenhados pelo

time de Projeto?

Seguranca e Performance (Critico)
Segredos: GARANTIA de que nao ha senhas, tokens ou chaves hardcoded?
Injegao: Queries SQL estdo parametrizadas (sem concatenagao de string)?
Validagao: Inputs externos sao validados e sanitizados antes do processamento?
Loops: Existe algum loop (for/while) perigoso que pode travar com grandes

volumes de dados?

Operacao e Observabilidade
Logs: Os logs estao estruturados (JSON)? O nivel (INFO/ERROR) esté correto?
LGPD: Garantia de que nenhum dado sensivel (PII) ou senha esta sendo logado?

Tratamento de Erro: As excecoes sao tratadas ou envelopadas corretamente (sem
try/catch vazios)?

Testes

Cobertura: Existem testes unitarios cobrindo o Happy Path - “Caminho Feliz” - e
as principais falhas?

Independéncia: Os testes rodam isolados (Mock) sem depender de banco de dados
real?

Anexo Técnico: Setup do Ambiente de Desenvolvi-
mento

Para garantir a padronizacao, utilizamos automacao de *git hooks*. Abaixo estao as
instrugoes de configuracao separadas por stack tecnologica.

10.1 Perfil A: Stack Python (Projetos de Backend / Scripts)

Este perfil utiliza o framework nativo pre-commit e é o padrao para projetos de ciéncia
de dados e APIs em Python.

Pagina 20

N

Fabrica de Software - Brain

Guia de Implementagao

10.1.1 Instalacao

O arquivo requirements-dev.txt deve conter: black, mypy, pylint, pre-commit.

No terminal (ambiente virtual ativo):
pip install -r requirements-dev.txt
pre-commit install

Listing 16: Setup Python

10.1.2 Configuragao (.pre-commit-config.yaml)

repos:
- repo: https://github.com/psf/black
rev: 23.9.1
hooks:
- id: black
language_version: python3

- repo: https://github.com/pre-commit/mirrors-mypy

rev: v1.5.1
hooks:
- id: mypy
additional_dependencies: [types-requests]
- repo: local
hooks:
- id: pylint
name: pylint
entry: pylint
language: system
types: [python]
args: ["-rn", "-sn"]

Listing 17: Configuracao Padrao Python

10.2 Perfil B: Stack C# / .NET

Para projetos .NET, utilizamos a ferramenta oficial dotnet format combinada com hooks

locais.

10.2.1 Instalacao das Ferramentas

Instala o formatador globalmente ou localmente no projeto

dotnet tool install -g dotnet-format
Listing 18: Setup C

10.2.2 Automacgao (Husky.Net ou Script)

Recomendamos o uso do pacote Husky.Net para gerenciar os commits.

dotnet new tool-manifest
dotnet tool install Husky
dotnet husky install

Pagina 21

Fabrica de Software - Brain Guia de Implementagao

Adicione a tarefa no arquivo task-runner. json gerado pelo Husky:

1 {

2 "tasks": [

3 {

1 "name": "dotnet-format",

"command": "dotnet",

6 "args": ["format", "--verify-no-changes"],
7 "group": "pre-commit"

8 }

)]
10

Listing 19: Tarefa do Husky para C

10.3 Perfil C: Stack Java

Para Java, a validacao é feita via plugins do Maven/Gradle.

10.3.1 Configuragao no pom.xml (Maven)

Adicione o plugin Spotless (Formatagao) e Checkstyle (Lint) no pom.xml:

1 <plugin>

2 <groupId>com.diffplug.spotless</groupld>

3 <artifactId>spotless-maven-plugin</artifactId>
1 <version>2.40.0</version>

<configuration>

6 <java>

7 <googleJavaFormat />

8 </java>

9 </configuration>
10 </plugin>

Listing 20: Exemplo Spotless Maven

10.4 Integragao com IDE (VS Code)
Para feedback visual em tempo real, instale as extensoes conforme sua linguagem:
e Python:

— Extensao: Black Formatter (Microsoft)
— Extensao: Mypy Type Checker

e C# / .NET:

— Extensao: C# Dev Kit

— Extensao: SonarLint
e Java:

— Extensao: FExtension Pack for Java

— Extensao: Checkstyle for Java

Pagina 22

Fabrica de Software - Brain Guia de Implementagao

11 Referéncias e Leitura Recomendada

As praticas descritas neste manual baseiam-se em literatura técnica consagrada e padroes
de mercado. A leitura das obras abaixo é encorajada para o aprimoramento técnico da
equipe.

11.1 Literatura Fundamental

e Clean Code: A Handbook of Agile Software Craftsmanship — Robert C.
Martin. (Base para os principios SOLID e Nomenclatura).

e The Pragmatic Programmer — Andrew Hunt & David Thomas. (Base para os
principios DRY e ETC).

e Refactoring — Martin Fowler. (Técnicas para melhorar codigo legado sem alterar
comportamento).

11.2 Guias de Estilo e Normas

e PEP 8 — Style Guide for Python Code. Disponivel em: https://peps.python.
org/pep-0008/

e Google Java Style Guide. Disponivel em: https://google.github.io/styleguide/
javaguide.html

e C# Coding Conventions (Microsoft). Disponivel em: https://learn.microsoft.
com/en-us/dotnet/csharp/fundamentals/coding-style/coding-conventions

11.3 Seguranca

e OWASP Top 10 — Padrao global de conscientizacao sobre seguranca de aplicagoes
web.

e SWEBOK v4 — Guide to the Software Engineering Body of Knowledge (IEEE
Computer Society).

Pagina 23

https://peps.python.org/pep-0008/
https://peps.python.org/pep-0008/
https://google.github.io/styleguide/javaguide.html
https://google.github.io/styleguide/javaguide.html
https://learn.microsoft.com/en-us/dotnet/csharp/fundamentals/coding-style/coding-conventions
https://learn.microsoft.com/en-us/dotnet/csharp/fundamentals/coding-style/coding-conventions

	Propósito e Filosofia
	Princípios Fundamentais (Clean Code)
	KISS (Keep It Simple, Stupid)
	O que é Simplicidade?
	Sinais de Alerta (Code Smells)
	Técnica Prática: Guard Clauses

	DRY (Don't Repeat Yourself)
	O Problema da Duplicação
	A ``Regra de Três'' (Rule of Three)
	Falsa Duplicação (Cuidado)
	Exemplo Prático: Centralização de Lógica

	SOLID Principles
	S - Single Responsibility Principle (SRP)
	O - Open/Closed Principle (OCP)
	L - Liskov Substitution Principle (LSP)
	I - Interface Segregation Principle (ISP)
	D - Dependency Inversion Principle (DIP)

	Convenções de Estilo e Nomenclatura
	Idioma do Código: Inglês
	Sintaxe: Tabela de Referência por Linguagem
	Semântica de Nomenclatura (Regras Universais)
	Funções são Ações (Verbos)
	Classes são Entidades (Substantivos)
	Variáveis Booleanas (Perguntas)

	Segurança de Tipos (Type Safety)
	Exemplo Prático: Refatoração e Clareza

	Ferramentas de Automação (Qualidade Contínua)
	Pilar 1: Formatter Automatizado
	Pilar 2: Analisador Estático (Linter)
	Pilar 3: Type Checker

	Documentação e Legibilidade
	Regra de Ouro
	Padrões de Docstrings (API)
	Estrutura Obrigatória
	Exemplo Prático (Python - Google Style)

	Comentários Internos (O ``Porquê'')
	Tags de Manutenção (Anotações)

	Tratamento de Erros e Observabilidade (Logs)
	``A Morte do print''
	Logs Estruturados (JSON)
	Níveis de Log (Padronização)
	Segurança no Log (Sanitização)
	Tratamento de Exceções (Exception Handling)
	Regra 1: Não engula exceções (Silent Failure)
	Regra 2: Envelopamento (Pattern de Camadas)
	Regra 3: Correlation ID (Rastreabilidade)

	Segurança na Implementação (AppSec)
	Gerenciamento de Segredos (Credenciais)
	Blindagem contra Injeção (SQL Injection)
	Validação e Sanitização de Entrada
	Vazamento de Informação (Error Handling)
	5. Dependências Vulneráveis (Supply Chain)

	Integração e Fluxo de Trabalho
	Fluxo de Entrada (Antes de Codificar)
	Fluxo de Apoio (Durante a Codificação)
	Fluxo de Saída (Entrega)

	Checklist de Code Review (Pull Request)
	Padrões e Legibilidade
	Arquitetura e Design (SOLID/KISS)
	Segurança e Performance (Crítico)
	Operação e Observabilidade
	Testes

	Anexo Técnico: Setup do Ambiente de Desenvolvimento
	Perfil A: Stack Python (Projetos de Backend / Scripts)
	Instalação
	Configuração (.pre-commit-config.yaml)

	Perfil B: Stack C# / .NET
	Instalação das Ferramentas
	Automação (Husky.Net ou Script)

	Perfil C: Stack Java
	Configuração no pom.xml (Maven)

	Integração com IDE (VS Code)

	Referências e Leitura Recomendada
	Literatura Fundamental
	Guias de Estilo e Normas
	Segurança

