
Países em guerra
por Alessandro Luna Brasil

Timelimit: 2

No ano 2050, após diversas tentativas da ONU de manter a paz no mundo, explode a terceira guerra
mundial. Segredos industriais, comerciais e militares obrigaram todos os países a utilizar serviços
de espionagem extremamente sofisticados, de forma que em cada cidade do mundo há ao menos um
espião de cada país. Esses espiões precisam se comunicar com outros espiões, com informantes e
mesmo com as suas centrais durante as suas ações. Infelizmente não existe uma forma segura de um
espião se comunicar em um período de guerra, então as mensagens são sempre enviadas em código
para que somente o destinatário consiga ler a mensagem e entender o seu significado.

Os espiões utilizam o unico serviço que funciona no período de guerra, os correios. Cada cidade
possui uma agência postal onde as cartas são enviadas. As cartas podem ser enviadas diretamente ao
seu destino ou a outras agências postais, até que a carta chegue à agência postal da cidade de
destino, se isso for possível.

Uma agência postal na cidade A pode enviar diretamente uma carta impressa para a agênciae postal
da cidade B se houver um acordo de envio de cartas, que determina o tempo, em horas, que uma
carta leva para chegar da cidade A à cidade B (e não necessariamente o contrário).a Se não houver
um acordo entre as agências A e B, a agência A pode tentar enviar a carta a quantas agências for
necessário para que a carta chegue ao seu destino, se isso for possível.

Algumas agências são interligadas por meios eletrônicos de comunicação, como satélites e fibras
ópticas. Antes da guerra, essas ligações atingiam todas as agências, fazendo com que uma carta
fosse enviada de forma instantânea, mas durante o período de hostilidades cada país passou a
controlar a comunicação eletrônica e uma agência somente pode enviar uma carta a outra agência
por meio eletrônico (ou seja, instantaneamente) se ela estiver no mesmo país. Duas agências, A e B,
estão no mesmo país se houver uma forma de uma carta impressa enviada de uma das agências ser
entregue na outra agência.

O serviço de espionagem do seu país conseguiu obter o conteúdo de todos os acordos de envios de
mensagens existentes no mundo e deseja descobrir o tempo mínimo para se enviar uma carta entre
diversos pares de cidades. Você seria capaz de ajudá-lo?

Entrada
A entrada contém vários casos de teste. A primeira linha de cada caso de teste contém dois inteiros
separados por um espaço, N (1 ≤ N ≤ 500) e E (0 ≤ E ≤ N2), indicando o número de cidades
(numeradas de 1 a N) e de acordos de envio de mensagens, respectivamente. Seguem-se, então, E
linhas, cada uma com três inteiros separados por espaços, X, Y e H (1 ≤ X, Y ≤ N, 1 ≤ H ≤ 1000),
indicando que existe um acordo para enviar uma carta impressa da cidade X à cidade Y , e que tal
carta será entregue em H horas.

Em seguida, haverá uma linha com um inteiro K (0 ≤ K ≤ 100), o número de consultas. Finalmente,
virão K linhas, cada uma representando uma consulta e contendo dois inteiros separados por um
espaço, O e D (1 ≤ O, D ≤ N). Você deve determinar o tempo mínimo para se enviar uma carta da
cidade O à cidade D.

Saída
Para cada caso de teste da entrada seu programa deve produzir K linhas na saída. A I-ésima linha
deve conter um inteiro M , o tempo mínimo, em horas, para se enviar uma carta na I-ésima
consulta. Se não houver meio de comunicação entre as cidades da consulta, você deve imprimir
”Nao e possivel entregar a carta”(sem acentos).

Imprima uma linha em branco após cada caso de teste.

Exemplo de Entrada Exemplo de Saída
4 5
1 2 5
2 1 10
3 4 8
4 3 7
2 3 6
5
1 2
1 3
1 4
4 3
4 1
3 3
1 2 10
2 3 1
3 2 1
3
1 3
3 1
3 2
0 0

0
6
6
0
Nao e possivel entregar a carta

10
Nao e possivel entregar a carta
0

/home/gabrielr/Documentos/1148.c
Página 1 de 2 Ter 04 Fev 2014 16:12:28 BRST

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <math.h>
4
5 int destino, origem, vertices = 0;
6 int custo, *custos = NULL;
7 int e = 0;
8
9 void dijkstra(int vertices,int origem,int destino,int *custos)
10 {
11 int i,v, cont = 0;
12 int *ant, *tmp;
13 int *z; /* vertices para os quais se conhece o caminho minimo */
14 double min;
15 double dist[vertices]; /* vetor com os custos dos caminhos */
16
17
18 /* aloca as linhas da matriz */
19 ant = (int*) calloc (vertices, sizeof(int *));
20 tmp = (int*) calloc (vertices, sizeof(int *));
21 z = (int*) calloc (vertices, sizeof(int *));
22 for (i = 0; i < vertices; i++) {
23 if (custos[(origem - 1) * vertices + i] !=- 1) {
24 ant[i] = origem - 1;
25 dist[i] = custos[(origem-1)*vertices+i];
26 }
27 else {
28 ant[i]= -1;
29 dist[i] = HUGE_VAL;
30 }
31 z[i]=0;
32 }
33 z[origem-1] = 1;
34 dist[origem-1] = 0;
35
36 /* Laco principal */
37 do {
38
39 /* Encontrando o vertice que deve entrar em z */
40 min = HUGE_VAL;
41 for (i=0;i<vertices;i++)
42 if (!z[i])
43 if (dist[i]>=0 && dist[i]<min) {
44 min=dist[i];v=i;
45 }
46
47 /* Calculando as distancias dos novos vizinhos de z */
48 if (min != HUGE_VAL && v != destino - 1) {
49 z[v] = 1;
50 for (i = 0; i < vertices; i++)
51 if (!z[i]) {
52 if (custos[v*vertices+i] != -1 && dist[v] + custos[v*vertices+i

] < dist[i]) {
53 dist[i] = dist[v] + custos[v*vertices+i];
54 ant[i] =v;
55 }
56 }
57 }
58 } while (v != destino - 1 && min != HUGE_VAL);
59
60 if (min == HUGE_VAL) {
61 printf("Nao e possivel entregar a carta\n");
62 }
63 else {
64 i = destino;
65 i = ant[i-1];
66 while (i != -1) {
67 tmp[cont] = i+1;
68 cont++;
69 i = ant[i];

- 1 -

/home/gabrielr/Documentos/1148.c
Página 2 de 2 Ter 04 Fev 2014 16:12:28 BRST

70 }
71
72 printf("%d\n",(int) dist[destino-1]);
73 }
74 }
75
76 void add()
77 {
78 int i, j;
79
80 if (!custos)
81 free(custos);
82 custos = (int *) malloc(sizeof(int)*vertices*vertices);
83 for (i = 0; i <= vertices * vertices; i++)
84 custos[i] = -1;
85
86 for(i=0;i<e;i++){
87 scanf("%d %d %d",&origem,&destino,&custo);
88 custos[(origem-1) * vertices + destino - 1] = custo;
89 if(custos[(origem-1) * vertices + destino - 1]!=-1&&custos[(destino-1) *

vertices + origem - 1]!=-1){
90 custos[(origem-1) * vertices + destino - 1]=0;
91 custos[(destino-1) * vertices + origem - 1]=0;
92 }
93 }
94 }
95
96
97 void procurar(int orig, int dest)
98 {
99 dijkstra(vertices, orig,dest, custos);
100 }
101
102
103
104 int main(int argc, char **argv) {
105 int i, j,k,orig,dest;
106 char opcao[3], l[50];
107 scanf("%d %d",&vertices,&e);
108 while(1){
109 if(vertices==0)
110 break;
111 add();
112 scanf("%d",&k);
113 for(i=0;i<k;i++){
114 scanf("%d %d",&orig,&dest);
115 procurar(orig,dest);
116 }
117 scanf("%d %d",&vertices,&e);
118 if(vertices!=0)
119 printf("\n");
120 }
121 printf("\n");
122 return 0;
123 }
124

- 2 -

