Paises em guerra

por Alessandro Luna Brasil

Timelimit: 2

No ano 2050, ap6s diversas tentativas da ONU de manter a paz no mundo, explode a terceira guerra
mundial. Segredos industriais, comerciais e militares obrigaram todos os paises a utilizar servicos
de espionagem extremamente sofisticados, de forma que em cada cidade do mundo ha ao menos um
espido de cada pais. Esses espiOes precisam se comunicar com outros espides, com informantes e
mesmo com as suas centrais durante as suas acoes. Infelizmente ndo existe uma forma segura de um
espido se comunicar em um periodo de guerra, entdo as mensagens sdo sempre enviadas em codigo
para que somente o destinatario consiga ler a mensagem e entender o seu significado.

Os espides utilizam o unico servico que funciona no periodo de guerra, os correios. Cada cidade
possui uma agéncia postal onde as cartas sao enviadas. As cartas podem ser enviadas diretamente ao
seu destino ou a outras agéncias postais, até que a carta chegue a agéncia postal da cidade de
destino, se isso for possivel.

Uma agéncia postal na cidade A pode enviar diretamente uma carta impressa para a agénciae postal
da cidade B se houver um acordo de envio de cartas, que determina o tempo, em horas, que uma
carta leva para chegar da cidade A a cidade B (e ndo necessariamente o contrario).a Se ndo houver
um acordo entre as agéncias A e B, a agéncia A pode tentar enviar a carta a quantas agéncias for
necessario para que a carta chegue ao seu destino, se isso for possivel.

Algumas agéncias sdo interligadas por meios eletronicos de comunicagdo, como satélites e fibras
opticas. Antes da guerra, essas ligacOes atingiam todas as agéncias, fazendo com que uma carta
fosse enviada de forma instantanea, mas durante o periodo de hostilidades cada pais passou a
controlar a comunicacgao eletronica e uma agéncia somente pode enviar uma carta a outra agéncia
por meio eletrénico (ou seja, instantaneamente) se ela estiver no mesmo pais. Duas agéncias, A e B,
estdo no mesmo pais se houver uma forma de uma carta impressa enviada de uma das agéncias ser
entregue na outra agéncia.

O servico de espionagem do seu pais conseguiu obter o contetido de todos os acordos de envios de
mensagens existentes no mundo e deseja descobrir o tempo minimo para se enviar uma carta entre
diversos pares de cidades. Vocé seria capaz de ajuda-lo?

Entrada

A entrada contém varios casos de teste. A primeira linha de cada caso de teste contém dois inteiros

separados por um espaco, N (1 < N < 500) e E (0 < E < N?), indicando o nimero de cidades
(numeradas de 1 a N) e de acordos de envio de mensagens, respectivamente. Seguem-se, entao, E
linhas, cada uma com trés inteiros separados por espacos, X, Ye H(1 <X, Y <N, 1 <H < 1000),
indicando que existe um acordo para enviar uma carta impressa da cidade X a cidade Y , e que tal
carta sera entregue em H horas.

Em seguida, havera uma linha com um inteiro K (0 < K < 100), o niimero de consultas. Finalmente,
virdo K linhas, cada uma representando uma consulta e contendo dois inteiros separados por um
espaco, O e D (1 < O, D < N). Vocé deve determinar o tempo minimo para se enviar uma carta da
cidade O a cidade D.

Saida

Para cada caso de teste da entrada seu programa deve produzir K linhas na saida. A I-ésima linha
deve conter um inteiro M , o tempo minimo, em horas, para se enviar uma carta na I-ésima
consulta. Se ndo houver meio de comunicacao entre as cidades da consulta, vocé deve imprimir
”Nao e possivel entregar a carta”(sem acentos).

Imprima uma linha em branco apés cada caso de teste.

Exemplo de Entrada Exemplo de Saida

45
125
2110
348
437
236
5 0
12 6
13 6

14 0

43 Nao e possivel entregar a carta
41

33 10

1210 Nao e possivel entregar a carta
231 0

321

3

13

31

32

00

/home/gabrielr/Documentos/1148.c

Pagina 1 de 2 Ter 04 Fev 2014 16:12:28 BRST
1 #include
2 #include
3 #include
4
5 int destino, origem, vertices = 0;
6 | int custo, *custos = NULL;
7 int e = 0;
8
9 | void dijkstra(int vertices,int origem,int destino,int *custos)
10 {
11 int i,v, cont = 0;
12 int *ant, *tmp;
13 int *z; /* vertices para o0s quais se conhece o caminho minimo */
14 double min;
15 double dist[vertices]; /* vetor com os custos dos caminhos */
16
17
18 /* aloca as linhas da matriz */
19 ant = (int*) calloc (vertices, sizeof(int *));
20 tmp = (int*) calloc (vertices, sizeof(int *));
21 z = (int*) calloc (vertices, sizeof(int *));
22 for (1 = 0; i < vertices; i++) {
23 if (custos[(origem - 1) * vertices + i] !'=- 1) {
24 ant[i] = origem - 1;
25) dist[i] = custos[(origem-1)*vertices+i];
26
27 else {
28 ant[i]= -1;
29 dist[i] = HUGE VAL;
30 }
31 z[11=0;
32 }
33 z[origem-1] = 1;
34 dist[origem-1] = 0;
35
36 /* Laco principal */
37 do {
38
39 /* Encontrando o vertice que deve entrar em z */
40 min = HUGE VAL;
41 for (i=0;i<vertices;i++)
42 if ('z[i])
43 if (dist[i]>=0 && dist[i]<min) {
44 min=dist[i];v=i;
45 }
46
47 /* Calculando as distancias dos novos vizinhos de z */
48 if (min != HUGE VAL && v != destino - 1) {
49 z[v] = 1;
50 for (1 = 0; i < vertices; i++)
51 if ('z[i]) {
52 if (custos[v*vertices+i] != -1 && dist[v] + custos[v*vertices+i =
] < dist[i]) {
53 dist[i] = dist[v] + custos[v*vertices+il];
54 ant[i] =v;
55 }
56 }
57 }
58 } while (v '= destino - 1 && min != HUGE VAL);
59
60 if (min == HUGE VAL) {
61 printf();
62 }
63 else {
64 i = destino;
65 i =ant[i-1];
66 while (i !'= -1) {
67 tmp[cont] = i+1;
68 cont++;
69 i =ant[i];

/home/gabrielr/Documentos/1148.c
Pagina 2 de 2

Ter 04 Fev 2014 16:12:28 BRST

70 }

71

72 printf(,(int) dist[destino-11);

73 }

74 }

75

76 | void add()

77 {

78 int i, 7§;

79

80 if (!'custos)

81 free(custos);

82 custos = (int *) malloc(sizeof(int)*vertices*vertices);

83 for (i = 0; i <= vertices * vertices; i++)

84 custos[i] = -1;

85

86 for(i=0;i<e;i++){

87 scanf(,&origem,&destino, &custo);

88 custos[(origem-1) * vertices + destino - 1] = custo;

89 if(custos[(origem-1) * vertices + destino - 1]!'=-1&&custos[(destino-1) *
vertices + origem - 1]!=-1){

90 custos[(origem-1) * vertices + destino - 1]=0;

91 custos[(destino-1) * vertices + origem - 1]=0;

92 }

93 }

94 }

95

96

97 void procurar(int orig, int dest)

99 dijkstra(vertices, orig,dest, custos);
100 }

101

102

103

104 | int main(int argc, char **argv) {
105 int i, j,k,oriqg,dest;

106 char opcao[3], 1[501];

107 scanf(,&vertices, &e);
108 while(1){

109 if(vertices==0)

110 break;

111 add();

112 scanf(,&K)

113 for(i=0;i<k;i++){

114 scanf(,&orig,&dest) ;
115 procurar(orig,dest);

116 }

117 scanf(,&vertices, &e);
118 if(vertices!=0)

119 printf();

120 }

121 printf();

122 return 0;

123 }

124

