
Methods

Antônio Carlos de Renzede Filho 
Brunna Ferreira Gonçalves 
Gabriel de Sousa Borges 

José Maxwell Ismael de Oliveira 
Manuela Oliveira Rocha 

Leonardo Balestere Alves 

Metodologias e diagramas para desenvolvimento de produtos

Introdução aos Sistemas de informação



• Canvas 

• eXtreme programming 

• Integração contínua (CI) 

• SOA 

• Scrum 

• UML 

• FDD

Índice



Canvas



Alexander Osterwalder 
e Yves Pigneur

https://www.amazon.com.br/Business-Model-Generation-Visionaries-Challengers/dp/0470876417



Modelo de negócio x Plano de negócio



• Um Modelo de Negócio é a representação de como a sua empresa gera e 
entrega valor para os seus clientes.  

•  Um Plano de Negócios é um documento detalhado em que o 
empreendedor deve descrever todas as etapas que envolvem ou fazem 
parte do seu negócio. 

Modelo de negócio x Plano de negócio



http://www.sourceinnovation.com.br/wiki/Projeto_em_Canvas



https://analistamodelosdenegocios.com.br/modelo-de-negocio-da-netflix/



eXtreme programming



• Criada por Kent Baeck em 1996 durante o projeto Daimler Chrysler. 

• Chrysler Comprehensive Compensation System – Sistema de 
Compensação Abrangente da Chrysler).  

• O sucesso de XP advém da intensa satisfação do cliente. 

• Cliente satisfeito é o melhor indicativo de sucesso de um projeto. 

• Esta metodologia foi criada para produzir o software que o cliente precisa 
seguindo as especificações à risca. 

• XP encoraja os desenvolvedores a atender as requisições de mudanças 
dos requisitos do software, no momento em que isto acontece.

O que é?



• Simplicidade: Conceito de simplificar e tentar não complicar, otimizando 
a codificação. 

• Comunicação: A comunicação precisa ser muito clara, deve levar a 
informação correta para o público alvo. 

• Feedback: Retornos constantes em relação ao time (profissionais). 

• Coragem: Ambiente encorajador. 

• Respeito: Ambiente respeitoso entre os membros do time.

Valores



Metodologia



• Jogo de Planejamento 

• Fases Pequenas 

• Equipe (Tecnico e clientes) 

• Testes de Aceitação 

• Semana de 40 horas  

• Propriedade Coletiva 

• Integração continua 

• Ritmo Sustentavel 

Metodologia



• Desenvolvimento em Pares 

• Teste Unitario 

• Refatoração 

• Design Simples

Metodologia



Integração contínua (CI)



• A integração contínua pode ser explicada como uma pratica que está 
inserida no desenvolvimento de softwares. Conhecido como DevOps, ou 
seja, os desenvolvedores fazem a junção das alterações de código em um 
repositório central. Depois disso, criações e testes são executados. 

•  É originada da metodologia ágil XP e sempre foi usada em várias outras 
metodologias. A grande sacada está no fato de o desenvolvedor 
conseguir fazer a integração do código alterado ou desenvolvido do 
projeto, porém, com muito mais agilidade. 

O que é?



Objetivos

ENCONTRAR E INVESTIGAR 
BUGS MAIS RAPIDAMENTE.

MELHORAR A QUALIDADE DO 
SOFTWARE.

REDUZIR O TEMPO QUE LEVA 
PARA VALIDAR E LANÇAR 

NOVAS ATUALIZAÇÕES DE 
SOFTWARE



• No passado, os desenvolvedores de uma equipe podiam trabalhar 
isoladamente por um longo período e só juntar suas alterações ao 
repositório central quando concluíssem seu trabalho. Dessa forma, a 
junção das alterações de códigos era difícil e demorada, além de resultar 
no acúmulo de erros sem correção por longos períodos. Estes fatores 
dificultavam uma distribuição de atualizações rápida e efetiva para os 
clientes.

Por que a Integração contínua é necessária 



• Com a integração contínua, os desenvolvedores frequentemente usam 
um repositório compartilhado que utiliza de um sistema de controle de 
versão, como o Git. Antes de cada confirmação, os desenvolvedores 
podem escolher executar testes de unidade locais em seus códigos como 
uma camada de verificação extra anterior à integração. Um serviço de 
integração contínua cria e executa automaticamente testes de unidade 
nas novas alterações de código para destacar imediatamente todos os 
erros.

Como funciona a integração contínua?



Fluxo do processo de Integração contínua

https://aws.amazon.com/pt/devops/continuous-integration/



• Jenkins 

• Hudson 

• GitlabCI 

• Bitbucket Pipelines 

• AWS CodePipeline 

• Circle CI

Principais ferramentas da Integração contínua



• A integração contínua ajuda sua equipe a ser mais produtiva ao liberar os 
desenvolvedores de tarefas manuais e encorajar comportamentos que 
ajudam a reduzir o número de erros e bugs implantados para os clientes. 

• Com testes mais frequentes, sua equipe pode descobrir e investigar bugs 
mais cedo, antes que no futuro os problemas cresçam demais. 

• A integração contínua ajuda a sua equipe a distribuir atualizações para os 
clientes mais rapidamente e com maior frequência.

Benefícios da Integração contínua



SOA
Service-Oriented Architecture ou Arquitetura Orientada a Serviços



• Em  1996 foi proposto pelos pesquisadores Roy Schulte e Yefim Natis do Gartner group o conceito 
de SOA.

De onde veio?



É um padrão de arquitetura de software que pode ser usado 
por qualquer empresa, não significa que seja obrigatório 

porém possui vários benefícios.

O que é?



• A diminuição do tempo de desenvolvimento 

• Facilidade de Manutenção 

• Menor custo 

• Flexibilidade 

• Melhor controle

Beneficios



• SOA não é uma tecnologia.  

• SOA não é uma metodologia.  

• SOA pode ser considerada uma filosofia arquitetural.  

• SOA não é algo que se possa comprar ou instalar. 

• SOA não é um web service. 

• SOA não cria nada SOA 

Considerações sobre o SOA



Scrum



Scrum é uma metodologia ágil para 
gestão e planejamento de projetos 

de software.

O que é?



Inicialmente, o Scrum foi concebido como um estilo de gerenciamento de produtos em empresas de 
fabricação de automóveis e produtos de consumo, por Takeuchi e Nonaka no artigo "The New Product 

Development Game" (Harvard Business Review, Janeiro-Fevereiro 1986). Eles notaram que projetos usando 
equipes pequenas e multidisciplinares (cross-functional) produziram os melhores resultados, e associaram 

estas equipes altamente eficazes à formação Scrum do Rugby (utilizada para reinício do jogo em certos 
casos). Jeff Sutherland, John Scumniotales e Jeff McKenna conceberam, documentaram e implementaram o 

Scrum na empresa Easel Corporation em 1993, incorporando os estilos de gerenciamento observados por 
Takeuchi e Nonaka.

Quando surgiu?



Scrum é uma metodologia ágil para 
gestão e planejamento de projetos 

de software.

O que é?



Como funciona?
• No Scrum, os projetos são dividos em ciclos (tipicamente mensais) chamados de Sprints.  

• O Sprint representa um Time Box dentro do qual um conjunto de atividades deve ser executado. 

• As funcionalidades a serem implementadas em um projeto são mantidas em uma lista que é conhecida 
como Product Backlog. 

•  No início de cada Sprint, faz-se um Sprint Planning Meeting, ou seja, uma reunião de planejamento na qual 
o Product Owner prioriza os itens do Product Backlog e a equipe seleciona as atividades que ela será capaz 
de implementar durante o Sprint que se inicia. 

• As tarefas alocadas em um Sprint são transferidas do Product Backlog para o Sprint Backlog. 

• A cada dia de uma Sprint, a equipe faz uma breve reunião (normalmente de manhã), chamada Daily Scrum.  

• O objetivo é disseminar conhecimento sobre o que foi feito no dia anterior, identificar impedimentos e 
priorizar o trabalho do dia que se inicia.



https://www.desenvolvimentoagil.com.br/scrum/



Que bom, acabou por aqui…



Nada disso, precisamos finalizar processo
• Ao final de um Sprint, a equipe apresenta as funcionalidades 

implementadas em uma Sprint Review Meeting.  

• Finalmente, faz-se uma Sprint Retrospective e a equipe parte para o 
planejamento do próximo Sprint. Assim reinicia-se o ciclo.



Nosso board <3



UML
Unified Modeling Language



• A Unified Modeling Language, ou Linguagem Unificada de Modelagem, é uma linguagem de 
notação utilizada para modelar e documentar as fases do desenvolvimento de sistemas orientados 
a objetos. 

• Ela define uma série de elementos gráficos, que são usados em diferentes diagramas para 
representar os componentes de uma aplicação, suas interações e mudanças de estados. 

• Surgiu no final dos anos 1990, da união de três metodologias de modelagem: 

1. Método de Booch  - Grady Booch  

2. Método OMT - Ivar Jacobson  

3. Método OOSE - James Rumbaugh

O que é?



Diagramas estruturais e Diagramas comportamentais



• Diagrama de Objetos - Apresenta o estado de instâncias de objetos dentro de um sistema, levando 
em conta para isto um intervalo de tempo específico. 

• Diagrama de Componentes - Está associado à linguagem de programação e tem por finalidade 
indicar os componentes do software e seus relacionamentos 

• Diagrama de implantação - Determina as necessidades de hardware e características físicas do 
Sistema 

• Diagrama de Pacotes - Representa os subsistemas englobados de forma a determinar partes que o 
compõem. 

• Diagrama de Estrutura Composta - Utilizado para demonstrar a estrutura interna de uma classe, 
incluindo referências que apontam para outras partes de um sistema.  

Diagramas estruturais



Diagrama de Classes - Mostra 
o conjunto de classes com 
seus atributos e métodos e os 
relacionamentos entre classes

Diagramas estruturais 



• Especificam detalhes do comportamento do sistema (parte dinâmica), por exemplo: como as 
funcionalidades devem funcionar, como componentes estruturais trocam mensagens e como 
respondem às chamadas etc. 

• Diagrama de Casos de Uso  - voltado à apresentação de funcionalidades e características de um 
sistema. 

• Diagrama de Transição de Estados - detalha os diferentes estados pelos quais pode passar um 
objeto, tomando por base a execução de um processo dentro do sistema que se está 
considerando.

Diagramas Comportamentais



Diagrama de Atividades - 
descreve os passos a serem 
percorridos para a conclusão 
de uma atividade.

Diagramas Comportamentais 



• Diagrama de Interação - considerados um subgrupo dos diagramas comportamentais, sendo 
normalmente utilizados na representação de interações entre objetos de uma aplicação. 

• Diagrama de visão geral - mostra o fluxo principal das interações dentro do sistema. 

• Diagrama de comunicação - complementa o anterior, mostrando os vínculos entre cada objeto. 

• Diagrama de tempo - descreve o comportamento das instâncias de uma classe durante um 
intervalo específico.

Diagramas Comportamentais



Diagrama de sequência - 
descreve a interação entre os 
objetos de um caso de uso.

Diagramas Comportamentais 



FDD
Feature Driven Development



• É um método leve e interativo para desenvolvimento de Software que foi 
criado por Jeff de Luca e Peter Coad em 1997 em Cingapura.  

• Combina as melhores práticas do gerenciamento ágil de projetos com 
uma abordagem completa de engenharia de software orientada a objetos 
e possui como lema: “Resultados frequentes, tangíveis e funcionais”.

O que é?



• São características ou Funcionalidades que representam algum valor para 
o cliente e devem ser expressas da seguinte forma:

O que são Features?

<action> <result> <object>



Exemplo

<Calcular> a <nota final> do <aluno>

• Calcular: Ação 

• Nota final: Resultado 

• Aluno: Objeto



• Modelagem dos objetos de domínio 

• Desenvolvimento através de funcionalidades 

• Propriedade individual das classes 

• Equipes de funcionalidades 

• Inspeções 

• Construções regulares 

• Administração de configuração 

• Relatórios de resultados

Práticas do FDD



• Gerente de projeto 

• Arquiteto chefe 

• Gerente de desenvolvimento 

• Programadores chefes 

• Proprietários das classes 

• Especialistas do domínio

Papéis principais



• Gerente do domínio 

• Gerente de versão 

• Especialista de linguagem 

• Coordenador de construção 

• Ferramenteiro/toolsmith 

• Administrador de Sistema

Papéis de apoio



• Testador 

• Desenvolvedores 

• Escritor técnico

Papéis de adicionais



Concepção e Planejamento: pensar antes de fazer (1 a 2 semanas): 

• Desenvolvimento de modelo abrangente (Análise orientada por objetos) 

• Construção de lista de funcionalidades (Decomposição funcional) 

• Planejar por funcionalidade (Planejamento Incremental) 

Construção: fazer de forma iterativa (2 semanas) 

• Detalhar por funcionalidade (Desenho orientado a objetos) 

• Construção por funcionalidade (Programação e teste orientado a objetos)

Fases do FDD



“ A soma das partes é 
maior do que o todo”



Percentual de tempo gasto em cada etapa



• É um método ágil e altamente adaptável 

• Oferece vantagens dos métodos pesados 

• Oferece vantagens dos métodos extremamente ágeis 

• É orientada às necessidades dos clientes, gerentes e desenvolvedores

Vantages do FDD



• https://meusucesso.com/artigos/gestao/canvas-passo-a-passo-para-o-modelo-de-negocios-1616/  

• https://www.agendor.com.br/blog/dor-do-cliente/  

• devmedia.com.br/introducao-ao-extreme-programming-xp/29249 

• hiperbytes.com.br/xp/metodologia-xp-extreme-programming-breve-historico-da-xp/ 

• robsoncamargo.com.br/blog/Extreme-Programming 

• treinaweb.com.br/blog/o-que-e-xp-extreme-programming/ 

• https://pt.wikipedia.org/wiki/Programa%C3%A7%C3%A3o_extrema

Referências

https://www.agendor.com.br/blog/dor-do-cliente/
http://devmedia.com.br/introducao-ao-extreme-programming-xp/29249
http://hiperbytes.com.br/xp/metodologia-xp-extreme-programming-breve-historico-da-xp/
http://robsoncamargo.com.br/blog/Extreme-Programming
http://treinaweb.com.br/blog/o-que-e-xp-extreme-programming/
https://pt.wikipedia.org/wiki/Programa%C3%A7%C3%A3o_extrema


• https://www.mundodevops.com/blog/o-que-e-integracao-continua/ 

• https://www.opus-software.com.br/o-que-e-integracao-continua/
#:~:text=Integra%C3%A7%C3%A3o%20cont%C3%ADnua%20(continuous%20integration)
%20%C3%A9,realizado%20com%20entregas%20mais%20frequentes. 

• https://mundodevops.com.br/blog/principais-ferramentas-de-integracao-continua/ 

• https://aws.amazon.com/pt/devops/continuous-integration/ 

• https://blog.iprocess.com.br/2012/10/soa-arquitetura-orientada-a-servicos/
#:~:text=SOA%20significa%20Service-
Oriented%20Architecture,Yefim%20Natis%20do%20Gartner%20Group 

• https://www.opus-software.com.br/o-que-e-soa-e-quais-os-beneficios/

Referências

https://www.mundodevops.com/blog/o-que-e-integracao-continua/
https://www.opus-software.com.br/o-que-e-integracao-continua/#:~:text=Integra%C3%A7%C3%A3o%20cont%C3%ADnua%20(continuous%20integration)%20%C3%A9,realizado%20com%20entregas%20mais%20frequentes
https://www.opus-software.com.br/o-que-e-integracao-continua/#:~:text=Integra%C3%A7%C3%A3o%20cont%C3%ADnua%20(continuous%20integration)%20%C3%A9,realizado%20com%20entregas%20mais%20frequentes
https://www.opus-software.com.br/o-que-e-integracao-continua/#:~:text=Integra%C3%A7%C3%A3o%20cont%C3%ADnua%20(continuous%20integration)%20%C3%A9,realizado%20com%20entregas%20mais%20frequentes
https://mundodevops.com.br/blog/principais-ferramentas-de-integracao-continua/
https://aws.amazon.com/pt/devops/continuous-integration/
https://blog.iprocess.com.br/2012/10/soa-arquitetura-orientada-a-servicos/#:~:text=SOA%20significa%20Service-Oriented%20Architecture,Yefim%20Natis%20do%20Gartner%20Group
https://blog.iprocess.com.br/2012/10/soa-arquitetura-orientada-a-servicos/#:~:text=SOA%20significa%20Service-Oriented%20Architecture,Yefim%20Natis%20do%20Gartner%20Group
https://blog.iprocess.com.br/2012/10/soa-arquitetura-orientada-a-servicos/#:~:text=SOA%20significa%20Service-Oriented%20Architecture,Yefim%20Natis%20do%20Gartner%20Group
https://www.opus-software.com.br/o-que-e-soa-e-quais-os-beneficios/


• https://pt.wikipedia.org/wiki/Scrum_(desenvolvimento_de_software)#História 

• https://www.desenvolvimentoagil.com.br/scrum/ 

• https://blog.betrybe.com/tecnologia/uml/ 

• https://www.infoescola.com/engenharia-de-software/uml/ 

• https://www.devmedia.com.br/modelagem-de-sistemas-atraves-de-uml-uma-visao-geral/27913 

• https://pt.qwe.wiki/wiki/
Booch_method#:~:text=O%20m%C3%A9todo%20Booch%20%C3%A9%20um,um%20conjunto%20de%20pr%C3%A1ticas%20rec
omendadas. 

• FDD Numa Casca de Banana, Um guia de rápido aprendizado para a Feature Driven Development; Mar 2007; Alexandre Magno 
Figueiredo  

• https://www.devmedia.com.br/introducao-ao-fdd-feature-driven-development/27971 

• https://www.featuredrivendevelopment.com/ 

• https://homepages.dcc.ufmg.br/~figueiredo/disciplinas/aulas/uml-intro_v01.pdf 

• https://www.ateomomento.com.br/diagramas-uml/

Referências

https://pt.wikipedia.org/wiki/Scrum_(desenvolvimento_de_software)#Hist%C3%B3ria
https://www.desenvolvimentoagil.com.br/scrum/
https://blog.betrybe.com/tecnologia/uml/
https://www.infoescola.com/engenharia-de-software/uml/
https://www.devmedia.com.br/modelagem-de-sistemas-atraves-de-uml-uma-visao-geral/27913
https://pt.qwe.wiki/wiki/Booch_method#:~:text=O%20m%C3%A9todo%20Booch%20%C3%A9%20um,um%20conjunto%20de%20pr%C3%A1ticas%20recomendadas
https://pt.qwe.wiki/wiki/Booch_method#:~:text=O%20m%C3%A9todo%20Booch%20%C3%A9%20um,um%20conjunto%20de%20pr%C3%A1ticas%20recomendadas
https://pt.qwe.wiki/wiki/Booch_method#:~:text=O%20m%C3%A9todo%20Booch%20%C3%A9%20um,um%20conjunto%20de%20pr%C3%A1ticas%20recomendadas
https://www.devmedia.com.br/introducao-ao-fdd-feature-driven-development/27971
https://www.featuredrivendevelopment.com/
https://homepages.dcc.ufmg.br/~figueiredo/disciplinas/aulas/uml-intro_v01.pdf
https://www.ateomomento.com.br/diagramas-uml/


Obrigado


