
Projeto de Software - Template

UFU

2026

1

Sumário

1 Requisitos de Sistema 1
1.1 Requisitos Funcionais . 1
1.2 Requisitos Não-Funcionais . 2
1.3 Protótipo . 2

1.3.1 Detalhamento das Telas do Protótipo . 3

2 Projeto de Software 4
2.1 Diagramas de Interação . 4
2.2 Diagramas de Classes . 4
2.3 Persistência de Dados . 4
2.4 Mapeamento de Ferramentas . 4

2.4.1 Linguagem de Programação . 4
2.4.2 Frameworks e Bibliotecas . 5
2.4.3 Ferramentas de Desenvolvimento . 5
2.4.4 Containerização e Automação . 5

3 Versionamento 6
3.1 Introdução . 6
3.2 Configuração do Ambiente . 6
3.3 Versionamento Semântico (SemVer) . 6

3.3.1 Estrutura da Versão (X.Y.Z) . 6
3.4 O Modelo Git Flow . 6

3.4.1 Branches Permanentes . 6
3.4.2 Feature Branches (feature/*) . 6
3.4.3 Release Branches (release/*) . 7
3.4.4 Hotfix Branches (hotfix/*) . 7

3.5 Exemplo: . 7
3.6 Glossário de Comandos . 8

3.6.1 Configuração Inicial . 8
3.6.2 Operações Diárias . 8
3.6.3 Boas Práticas de Commit . 8

4 Deploy e Ambientes 9
4.1 Infraestrutura . 9
4.2 Processo de Deploy . 9
4.3 Ambiente de Produção e Homologação . 9

4.3.1 Ambiente de Homologação . 9
4.3.2 Ambiente de Produção . 10
4.3.3 Controle de Acesso e Segurança (Opcional) 10

4.4 Padrões de Adoção de Versões no Mercado . 10
4.4.1 APIs de Segurança, localização e telecom 10
4.4.2 Java / JDK . 10
4.4.3 Protocolos de Rede . 10
4.4.4 APIs de Pagamento e Financeiro . 11
4.4.5 Linguagens de Programação . 11
4.4.6 Bancos de Dados . 11
4.4.7 Infraestrutura / DevOps . 11
4.4.8 Recomendações . 11
4.4.9 Fontes Recomendadas . 11

2

5 QA 12
5.1 Tipos de Testes . 12

5.1.1 Testes de Requisitos (Validação Inicial) 12
5.1.2 Testes Funcionais . 12
5.1.3 Testes de Integração . 12
5.1.4 Testes de Regressão . 12
5.1.5 Testes de Aceitação (UAT) . 12
5.1.6 Testes de Performance Básicos . 12
5.1.7 Smoke Test Pós-Deploy . 12

5.2 Processo de QA (Passo a Passo) . 13
5.2.1 Planejamento (Antes da Implementação) 13
5.2.2 Design dos Testes . 13
5.2.3 Preparação . 13
5.2.4 Execução . 13
5.2.5 Reteste e Regressão . 13
5.2.6 Encerramento . 13

5.3 Critérios de Entrada e Sáıda . 14
5.3.1 Entrada para Ińıcio dos Testes da Sprint/Projeto 14
5.3.2 Sáıda para Liberação em Produção . 14

5.4 Métricas de Qualidade . 14

6 Processo de Integração 15
6.1 Tipos e Padrões de Integração . 15

6.1.1 Tipos de Integração por Tecnologia . 15
6.1.2 Padrões de Integração Empresarial (EIP) 15

6.2 Ferramentas e Tecnologias de Integração . 16
6.3 Plataformas de Integração . 16
6.4 Integração por API (Application Programming Interface) 16

6.4.1 Tipos de APIs . 17
6.4.2 Melhores Práticas de Design de APIs (RESTful) 17
6.4.3 Ciclo de Vida da API . 18

6.5 Comparativo ESB vs iPaaS . 18
6.6 Procedimento para Integração de Software . 18
6.7 Fases do Projeto . 18
6.8 Melhores Práticas . 20
6.9 Passo a Passo para o Desenvolvimento de APIs RESTful 20
6.10 Design da API (API-First) . 20
6.11 Implementação e Codificação . 21
6.12 Testes e Validação . 21
6.13 Governança e Evolução . 21

7 Segurança de Software 22
7.1 Fundamentos Teóricos . 22

7.1.1 Da Visão SWEBOK v4 . 22
7.1.2 OWASP Top 10 (2021) . 22
7.1.3 Práticas de Implementação (Codificação Segura) 22

7.2 Segurança na Implementação (AppSec) . 23
7.2.1 Gerenciamento de Segredos (Credenciais) 23
7.2.2 Blindagem contra Injeção (SQL Injection) 24
7.2.3 Validação e Sanitização de Entrada . 24

3

7.2.4 Vazamento de Informação (Error Handling) 24
7.2.5 5. Dependências Vulneráveis (Supply Chain) 25
7.2.6 As 10 Melhores Práticas de Segurança do CERT/CC 25
7.2.7 Principais Responsabilidades . 25
7.2.8 Na Fase de Definição e Design . 26

8 Melhores Práticas 28
8.1 KISS (Keep It Simple, Stupid) . 28

8.1.1 O que é Simplicidade? . 28
8.1.2 Sinais de Alerta (Code Smells) . 28
8.1.3 Técnica Prática: Guard Clauses . 28

8.2 DRY (Don’t Repeat Yourself) . 29
8.2.1 O Problema da Duplicação . 29
8.2.2 A “Regra de Três” (Rule of Three) . 30
8.2.3 Falsa Duplicação (Cuidado) . 30
8.2.4 Exemplo Prático: Centralização de Lógica 30

8.3 SOLID Principles . 31
8.3.1 S - Single Responsibility Principle (SRP) 31
8.3.2 O - Open/Closed Principle (OCP) . 31
8.3.3 L - Liskov Substitution Principle (LSP) 32
8.3.4 I - Interface Segregation Principle (ISP) 33
8.3.5 D - Dependency Inversion Principle (DIP) 34

8.4 Convenções de Estilo e Nomenclatura . 34
8.4.1 Idioma do Código: Inglês . 34
8.4.2 Sintaxe: Tabela de Referência por Linguagem 35
8.4.3 Semântica de Nomenclatura (Regras Universais) 35
8.4.4 Segurança de Tipos (Type Safety) . 35
8.4.5 Ferramentas de Automação (Qualidade Cont́ınua) 37
8.4.6 Documentação e Legibilidade . 38
8.4.7 Padrões de Docstrings (API) . 38
8.4.8 Tratamento de Exceções (Exception Handling) 41

9 Usabilidade 44
9.1 Visão Geral . 44
9.2 Fundamentos Teóricos . 44
9.3 Principais Responsabilidades . 44

9.3.1 Na Fase de Definição e Design . 44
9.3.2 Na Fase de Avaliação (Testing) . 44

9.4 Integração com o Time . 44
9.4.1 Com Engenharia de Requisitos . 45
9.4.2 Com Q&A / Testes . 45

10 Integração e Fluxo de Trabalho 46
10.1 Fluxo de Entrada (Antes de Codificar) . 46
10.2 Fluxo de Apoio (Durante a Codificação) . 46
10.3 Fluxo de Sáıda (Entrega) . 46

4

11 Checklist de Code Review (Pull Request) 48
11.1 Padrões e Legibilidade . 48
11.2 Arquitetura e Design (SOLID/KISS) . 48
11.3 Segurança e Performance (Cŕıtico) . 48
11.4 Operação e Observabilidade . 48
11.5 Testes . 49

12 Anexo Técnico: Setup do Ambiente de Desenvolvimento 50
12.1 Perfil A: Stack Python (Projetos de Backend / Scripts) 50

12.1.1 Instalação . 50
12.1.2 Configuração (.pre-commit-config.yaml) 50

12.2 Perfil B: Stack C# / .NET . 51
12.2.1 Instalação das Ferramentas . 51
12.2.2 Automação (Husky.Net ou Script) . 51

12.3 Perfil C: Stack Java . 52
12.3.1 Configuração no pom.xml (Maven) . 52

12.4 Integração com IDE (VS Code) . 52

13 Leitura Recomendada 53

1 Requisitos de Sistema

Texto Base (Instrução):
Esta seção deve definir o propósito deste documento ERS. O texto deve explicar por que o

documento está sendo escrito e quem é o público-alvo (ex: desenvolvedores, testadores, cliente).
Ele deve deixar claro que este documento servirá como um ”contrato” ou acordo formal entre
a equipe de desenvolvimento e o cliente sobre o que o software fará.

Exemplo:
”O objetivo desta ERS (Especificação de Requisitos de Software) consiste em documentar

os requisitos do software a ser produzido. Este documento visa garantir que o cliente (usuário
do software) e os desenvolvedores tenham um entendimento comum e ineqúıvoco de todas
as funcionalidades, capacidades e restrições do software, servindo como base para o design,
desenvolvimento, testes e validação do produto final.”

Texto Base (Instrução):
Descreva o escopo do produto de software. Responda às perguntas:

• Qual é o nome do sistema?

• Qual é o propósito principal do sistema? (Qual problema ele resolve?)

• Quais são os principais objetivos de negócio?

• (Opcional, mas recomendado) O que o sistema não fará? (Escopo Negativo). Isso é
crucial para gerenciar as expectativas.

Exemplo:
”O sistema tem como propósito [Propósito principal, ex: otimizar o processo de

gestão de inventário] para a [Empresa/Cliente]. Dentre os principais objetivos destacam-
se um maior controle de [Entidade, ex: estoque] e a organização de [Entidade, ex: pe-
didos].1 O software permitirá ao usuário [Função principal 1, ex: cadastrar produtos],
[Função principal 2, ex: registrar entradas e sáıdas] e [Função principal 3, ex: gerar
relatórios de inventário].

Escopo Negativo: Este sistema não fará o processamento de folha de pagamento ou
faturamento, que continuarão sendo realizados pelo sistema ERP existente.”

1.1 Requisitos Funcionais

Neste item devem ser apresentados os requisitos funcionais que especificam ações que um sistema
deve ser capaz de executar, ou seja, as funções do sistema. Os requisitos funcionais geralmente
são melhor descritos em diagramas de caso de uso, juntamente com o detalhamento dos atores
e de cada caso de uso. Cada ator do diagrama de caso de uso deve ser descrito de forma
sucinta e cada caso de uso deve ser especificado. A seguir são apresentados itens básicos para
a especificação dos casos de uso do diagrama.

• Nome do Caso de Uso

• Breve descrição

• Atores envolvidos

• Pré-condições

• Fluxo Principal de Eventos

1

• Pós-condições

• Fluxo Secundário de Eventos

• Observações

1.2 Requisitos Não-Funcionais

Neste item devem ser apresentados os requisitos não funcionais, que especificam restrições
sobre os serviços ou funções providas pelo sistema. Eles abrangem aspectos como desempenho,
segurança, usabilidade, confiabilidade e escalabilidade.

• Requisitos de sistema : Requisitos que especificam o comportamento do produto.Ex.
portabilidade; tempo na execução; confiabilidade,mobilidade, etc.

• Requisitos da organização: Requisitos decorrentes de poĺıticas e procedimentos corpora-
tivos. Ex. padrões, infra-estrutura,etc.

• Requisitos externos: Requisitos decorrentes de fatores externos ao sistema e ao processo
de desenvolvimento. Ex. requisitos de interoperabilidade, legislação,localização geográfica
etc.

• Requisitos de facilidade de uso. Ex.: usuários deverão operar o sistema após um deter-
minado tempo de treinamento.

• Requisitos de eficiência. Ex.: o sistema deverá processar n requisições por um determinado
tempo.

• Requisitos de confiabilidade. Ex.: o sistema deverá ter alta disponibilidade, por.exemplo,
99

• Requisitos de portabilidade. Ex.: o sistema deverá rodar em qualquer plataforma.

• Requisitos de entrega.Ex.: um relatório de acompanhamento deverá ser fornecido toda
segunda-feira.

• Requisitos de implementação.: Ex.: o sistema deverá ser desenvolvido na linguagem Java.

• Requisitos de padrões.: Ex. uso de programação orientada a objeto sob a plataforma A.

• Requisitos de interoperabilidade.:Ex. o sistema deverá se comunicar com o SQL Server.

• Requisitos éticos. Ex.: o sistema não apresentará aos usuários quaisquer dados de cunho
privativo.

• Requisitos legais. Ex.: o sistema deverá atender às normas legais, tais como padrões, leis,
etc.

• Requisitos de Integração. Ex.: o sistema integra com outra aplicação.

1.3 Protótipo

O protótipo do sistema é a materialização inicial e das funcionalidades principais. Ele serve
como um produto mı́nimo viável (MVP) visual, que é constrúıdo e aprimorado de forma in-
cremental. O objetivo central é estabelecer um ciclo de feedback cont́ınuo e atingir o consenso
total com o usuário final sobre os requisitos do sistema.

2

1.3.1 Detalhamento das Telas do Protótipo

A implementação visual das telas pode ser realizada utilizando ferramentas de mockup dedi-
cadas ou o ambiente de desenvolvimento final. É mandatório que cada tela seja acompanhada
de uma especificação funcional detalhada, que deve contemplar os seguintes atributos-chave:

• Objetivo: Declaração concisa da finalidade da tela.

• Relação de Navegação: Indicação do módulo ou tela de origem e a lista de telas sucessoras
que podem ser invocadas.

• Regras e Restrições:

– Regras de Domı́nio: Especificações técnicas dos componentes de input, tais como for-
mato de dados (ex: numérico, alfanumérico), restrições de cardinalidade (tamanho),
e valores padrão (default).

– Perfis de Acesso: Definição clara dos papéis de usuário (ex: Administrador, Oper-
ador, Leitor) autorizados a visualizar e interagir com a tela.

3

2 Projeto de Software

Texto Base (Instrução):
Esta seção descreve o design (o ”como”) do software, traduzindo os requisitos (o ”o quê”)

em uma especificação de implementação. Esta seção é voltada para os desenvolvedores.

2.1 Diagramas de Interação

Texto Base (Instrução):
Insira aqui os Diagramas de Interação da UML (Diagramas de Sequência detalhados ou

Diagramas de Comunicação). Diferente do DSS (3.1.4), estes diagramas mostram a colaboração
interna entre as classes e objetos de software (ex: Controladores, Repositórios, Entidades) para
realizar um Caso de Uso.

2.2 Diagramas de Classes

Texto Base (Instrução):
Insira aqui o Diagrama de Classes de Projeto (UML). Este diagrama é mais detalhado que

o Modelo Conceitual (3.2). Ele deve incluir as classes de software (ex: classes de Interface,
Controle e Entidade), seus atributos (com tipos de dados e visibilidade -/+) e seus métodos
(com parâmetros e visibilidade).

2.3 Persistência de Dados

O banco de dados utilizado no projeto é o [nome do SGBD – ex.: PostgreSQL, MySQL,
MongoDB], classificado como [relacional — não relacional]. Sua escolha se deve a [justi-
ficativa sucinta, como desempenho, escalabilidade, compatibilidade tecnológica ou
suporte a transações].

Para bancos de dados relacionais, a persistência dos dados é realizada por meio de mapea-
mento objeto-relacional (ORM), no qual as classes do Diagrama de Classes são mapeadas para
tabelas, e seus atributos para colunas, respeitando chaves primárias, estrangeiras e relaciona-
mentos.

Para bancos de dados não relacionais, a persistência ocorre por meio de coleções e docu-
mentos, onde as classes são representadas por documentos (por exemplo, JSON), estruturados
conforme a modelagem definida no Diagrama de Classes.

2.4 Mapeamento de Ferramentas

Texto Base (Instrução):
Descreva as ferramentas utilizadas no desenvolvimento, versionamento, testes e deploy do

sistema, justificando brevemente a escolha de cada uma em relação aos requisitos do projeto,
como escalabilidade, manutenção, produtividade e integração.

2.4.1 Linguagem de Programação

A linguagem [LINGUAGEM] foi adotada neste projeto por apresentar melhor aderência às
necessidades da aplicação, especialmente no que se refere a [tipo de aplicação, ex: aplicações
web, APIs, processamento de dados, sistemas distribúıdos]. Entre os principais motivos
para sua escolha destacam-se:

• vantagem 1: ex. produtividade, tipagem, performance, comunidade

4

• vantagem 2

• vantagem 3

2.4.2 Frameworks e Bibliotecas

O framework [FRAMEWORK PRINCIPAL] foi utilizado para estruturar a aplicação, pois
oferece [motivação: ex. padrão arquitetural, segurança, rapidez no desenvolvimento,
suporte a ORM, middlewares]. Outras bibliotecas relevantes incluem:

• Biblioteca 1: utilizada para [finalidade]

• Biblioteca 2: utilizada para [finalidade]

2.4.3 Ferramentas de Desenvolvimento

Para o desenvolvimento e apoio ao projeto, foram utilizadas as seguintes ferramentas:

• IDE/Editor – [ex: VS Code]: para edição e organização do código-fonte

• Ferramenta de modelagem – [ex: draw.io, StarUML]: para criação de diagramas UML

• Ferramenta de testes de API – [ex: Postman, Insomnia]: para validação das rotas e
serviços

• Ferramenta de mock/teste – [ex: WireMock]: para simulação de serviços externos
(quando aplicável)

2.4.4 Containerização e Automação

A ferramenta [Docker / Outra] foi utilizada para padronizar o ambiente de desenvolvimento
e facilitar o deploy da aplicação, garantindo que ela funcione de forma consistente em diferentes
ambientes.

5

3 Versionamento

3.1 Introdução

Nesse guia padronizaremos a forma como o time desenvolve, integra e entrega software. Us-
aremos o Git Flow para organizar as ramificações e o Versionamento Semântico para
comunicar o impacto das mudanças.

3.2 Configuração do Ambiente

Teremos um link (a ser criado), com os devs adicionados como colaboradores, onde serão criados
repositórios espećıficos para cada projeto.

3.3 Versionamento Semântico (SemVer)

Vamos usar o padrão Major.Minor.Patch (ex: v1.2.0). A alteração dos números depende
do impacto das mudanças feitas no código:1

3.3.1 Estrutura da Versão (X.Y.Z)

• MAJOR (X.0.0) - Quebra de Compatibilidade: Incrementada quando há mudanças
drásticas. É geralmente quando acaba a retrocompatibilidade.

• MINOR (0.Y.0) - Nova Funcionalidade: Incrementada quando tem novas funcional-
idades adicionadas, mas que ainda são compat́ıveis com versões anteriores. Exemplo:
Adicionar um novo botão na interface.

• PATCH (0.0.Z) - Correção de Bug: Incrementada para correções de falhas simples
que não alteram funcionalidades. Exemplo: Corrigir um erro de digitação, ajustar uma
cor CSS ou corrigir um cálculo.

3.4 O Modelo Git Flow

A estrutura do repositório vai ser composta pelas seguintes branches principais:2

3.4.1 Branches Permanentes

• main: Representa a Produção. Não recebe commit direto. Só recebe código via
Merge de release ou hotfix. Cada commit deve ter uma Tag de versão.

• develop: Representa o Desenvolvimento Cont́ınuo, é a branch de integração. Ela
contém as funcionalidades completas para a próxima versão.

3.4.2 Feature Branches (feature/*)

• Objetivo: Desenvolver uma nova funcionalidade.

• Nasce em: develop.

• Morre em: develop.

1Se quiserem ler mais sobre versionamento semântico podem acessar a especificação.
2Se quiserem ler mais sobre o modelo do Git Flow, podem encontrar o artigo original do Vincent Driessen

(2010), ”A successful Git branching model” ou esse em português.

6

https://semver.org/lang/pt-BR/
https://nvie.com/posts/a-successful-git-branching-model/
https://medium.com/trainingcenter/utilizando-o-fluxo-git-flow-e63d5e0d5e04

• Fluxo: O dev cria a branch, trabalha nela e abre um PR para a develop. Após o merge,
a branch local pode ser apagada.

3.4.3 Release Branches (release/*)

• Objetivo: Congela o código para testes de QA e preparação final (documentação, versão),
aqui acontece o Staging. Ela é exclusiva para isso, nenhuma feature nova entra
aqui.

• Nasce em: develop (quando o time decide que vai lançar uma versão).

• Morre em: Dois lugares. Ao finalizar a release, ela é mergeada na:

1. main: Para atualizar a produção.

2. develop: Para garantir que correções de bugs feitas durante a fase de release voltem
para o desenvolvimento.

• O nome da branch deve seguir o SemVer (ex: release/v1.2.0).

3.4.4 Hotfix Branches (hotfix/*)

• Objetivo: Resolver bugs cŕıticos em produção.

• Nasce em: main.

• Morre em: Assim como a release, ela é mergeada na:

1. main: Para corrigir o erro imediatamente (gera nova Tag Patch).

2. develop: Para garantir que o erro não volte a aparecer na próxima release.

• Geralmente incrementa o Patch (ex: hotfix/v1.2.1).

3.5 Exemplo:

Por exemplo, imagine que estamos na versão v1.1.0.

1. Ińıcio do Trabalho: O dev quer criar um ”Modo Escuro”. Ele cria a branch
feature/dark-mode a partir da develop.

2. Integração: Ele termina, abre PR e mergeia na develop. Outros devs também mergeiam
suas features.

3. Corte da Release: O time decide lançar. É criada a branch release/v1.2.0 a partir
da develop.

4. Fase de QA: O QA testa a release/v1.2.0. Encontra um bug no CSS.

5. Correção na Release: O dev corrige o bug na branch release/v1.2.0 (commit de fix).

6. Lançamento: A release é aprovada.

• Mergeiam a release/v1.2.0 na main → Cria-se a Tag v1.2.0.

• MErgeiam a release/v1.2.0 na develop (o bug é corrigido na develop também).

7. Hotfix: No dia seguinte, descobrem que o login parou de funcionar na produção (main).

7

8. Correção do Hotfix:

• Criam hotfix/v1.2.1 a partir da main.

• Corrigem o erro.

• Mergeiam na main (Tag v1.2.1) e na develop.

3.6 Glossário de Comandos

Aqui temos um glossário dos comandos que mais usaremos no git, caso alguém não se lembre ou
não esteja acostumado. Pode também rodar o comando git --help direto no terminal, acessar
a documentção do Git ou o glossário da Atlassian.

3.6.1 Configuração Inicial

1 git clone https :// github.com/repositorioasercriado/seu -projeto.git

2 git clone https :// github.com/repositoioasercriado/seu -projeto.git

3 cd seu -projeto

3.6.2 Operações Diárias

Fluxo Básico para Feature:

1 # 1. Garanta que esta atualizado

2 git checkout develop

3 git pull origin develop

4

5 # 2. Crie sua branch

6 git checkout -b feature/minha -tarefa

7

8 # ... Trabalho sendo feito ...

9

10 # 3. Salve e envie

11 git add .

12 git commit -m "feat: Adiciona nova tela"

13 git push origin feature/minha -tarefa

3.6.3 Boas Práticas de Commit

Para que seja fácil entender e encontrar o que desejamos, é bom seguir padrões de commit:

• feat: Nova funcionalidade.

• fix: Correção de bug.

• docs: Alteração em documentação.

• style: Formatação (ponto e v́ırgula, espaços).

• refactor: Melhoria de código sem mudar funcionalidade.

8

https://git-scm.com/docs/git/pt_BR
https://www.atlassian.com/br/git/glossary#commands

4 Deploy e Ambientes

Texto Base (Instrução):
Descreva como o sistema é empacotado e disponibilizado para execução, incluindo infraestru-

tura, serviços utilizados e forma de publicação. O ambiente de deploy do sistema é composto por
[tipo de infraestrutura – ex: servidor local, VPS, cloud], onde a aplicação é distribúıda
utilizando [tecnologia – ex: Docker, pipeline CI/CD, scripts manuais].

4.1 Infraestrutura

A aplicação é hospedada em [PROVEDOR ou AMBIENTE – ex: AWS, Azure, VPS
própria], utilizando:

• Sistema Operacional: [ex: Linux Ubuntu XX]

• Servidor de aplicação: [ex: Gunicorn, Node.js, Tomcat]

• Servidor web (quando aplicável): [ex: Nginx, Apache]

4.2 Processo de Deploy

O processo de deploy ocorre da seguinte forma:

1. ex: Build da aplicação

2. Criação de imagens Docker

3. Publicação no servidor

4. Inicialização dos containers/serviços

Esse processo pode ser manual / automatizado, dependendo da configuração adotada.

4.3 Ambiente de Produção e Homologação

Texto Base (Instrução):
Descreva os ambientes de homologação e produção, destacando suas diferenças e finalidades.

4.3.1 Ambiente de Homologação

O ambiente de homologação é destinado a testes e validações, sendo utilizado para:

• Testes funcionais

• Validação de regras de negócio

• Avaliação de integrações

Ele possui configuração similar ao ambiente de produção, porém com:

• Base de dados de teste

• Acesso restrito

• Logs em ńıvel mais detalhado

9

4.3.2 Ambiente de Produção

O ambiente de produção é o ambiente final do sistema, destinado aos usuários finais. Neste
ambiente:

• São utilizados dados reais

• acesso é controlado por [mecanismos de segurança]

• O sistema opera com foco em desempenho, estabilidade e disponibilidade

4.3.3 Controle de Acesso e Segurança (Opcional)

São adotadas as seguintes medidas de segurança:

• Autenticação / Autorização

• Uso de HTTPS

• Controle de permissões

• Backups periódicos

4.4 Padrões de Adoção de Versões no Mercado

Objetivo: Identificar a diferença entre as versões mais recentes das tecnologias e aquelas
efetivamente adotadas pelo mercado, auxiliando fábricas de software a alinhar decisões técnicas
com a realidade do mercado.

4.4.1 APIs de Segurança, localização e telecom

API Recente Mercado Observação
SIM Swap v2.1.0 v0.4.0 Versão alpha ainda é padrão

global
Number Verification v1.0.0+ v0.3.0 Muitas operadoras usam versão

inicial
Device Location v1.0.0+ v0.2 / v0.3 Adoção lenta por privacidade
OTP Validation v0.2.0+ v0.1.0 Primeira versão predominante

4.4.2 Java / JDK

Versão Recente Mercado Observação
JDK 21+ (LTS) JDK 8 / 11 Java 8 ainda muito utilizado; JDK 11

em ampla adoção

4.4.3 Protocolos de Rede

Tecnologia Recente Mercado Observação
HTTP HTTP/3 HTTP/1.1 / 2 Baixa adoção do HTTP/3
TLS TLS 1.3 TLS 1.2 Compatibilidade mantém 1.2
IPv4 vs IPv6 IPv6 IPv4 IPv4 ainda domina o tráfego
DNS DNS over HTTPS DNS tradicional DoH ainda pouco adotado

10

4.4.4 APIs de Pagamento e Financeiro

API Recente Mercado Observação
PIX DICT v2.0+ v1.x Instituições em estabilização
Open Banking BR Fase 4 Fase 2/3 Adoção parcial
PCI DSS 4.0 3.2.1 Migração até 2025
3D Secure 2.3+ 2.1 / 2.2 Gateways defasados

4.4.5 Linguagens de Programação

Linguagem Recente Mercado Observação
Python 3.12+ 3.8 / 3.9 / 3.10 Produção concentra-se em 3.10+
Node.js v22+ v18 / v20 LTS Priorizar LTS
PHP 8.3+ 7.4 / 8.0 / 8.1 Legado ainda relevante
.NET .NET 8+ .NET 6 / Framework 4.8 Alto uso do Framework

4.4.6 Bancos de Dados

Banco Recente Mercado Observação
PostgreSQL 16+ 12–14 Versões mais usadas
MySQL 8.x 5.7 / 8.0 5.7 ainda comum
MongoDB 7.x 4.4–6.0 Atualização gradual
Redis 7.x 6.x Padrão em produção

4.4.7 Infraestrutura / DevOps

Tecnologia Recente Mercado Observação
Kubernetes 1.30+ 1.26–1.28 Sempre algumas versões atrás
Docker 25+ 20–24 Diferença entre Desktop e Engine
Terraform 1.7+ 1.0–1.5 Estabilidade priorizada

4.4.8 Recomendações

• Pesquisar versões realmente suportadas pelo mercado.

• Priorizar versões LTS.

• Manter compatibilidade com versões anteriores.

• Documentar justificativas técnicas.

4.4.9 Fontes Recomendadas

• CAMARA Project

• GSMA Open Gateway

• JetBrains Developer Survey

• Stack Overflow Developer Survey

• Banco Central do Brasil (PIX)

11

5 QA

5.1 Tipos de Testes

5.1.1 Testes de Requisitos (Validação Inicial)

• Revisar histórias e requisitos com foco em:

– clareza;

– critérios de aceitação;

– cenários de exceção.

• Entrega: requisitos ”prontos para teste”, ou seja, compreenśıveis e testáveis.

5.1.2 Testes Funcionais

• Verificar se cada funcionalidade faz exatamente o que foi especificado.

• Basear os testes nos critérios de aceitação e cenários de negócio.

5.1.3 Testes de Integração

• Verificar a comunicação entre módulos e sistemas(API’s, webhooks, serviços externos).

• Validar contratos de integração, formatos de mensagens e tratamento de erros.

5.1.4 Testes de Regressão

• Executar um conjunto de casos principais a cada nova release.

• Garantir que funcionalidades já existentes não foram quebradas por alterações recentes.

5.1.5 Testes de Aceitação (UAT)

• envolver representantes de negócio ou usuários internos, quando fizer sentido.

• Validar se a solução atende às expectativas reais de uso antes de ir para produção.

5.1.6 Testes de Performance Básicos

• Avaliar tempo de resposta em cenários t́ıpicos.

• Identificar travamentos ou lentidões evidentes nas principais jornadas.

5.1.7 Smoke Test Pós-Deploy

• Após o deploy, checar se o sistema ”respira”:

– acessos ao sistema;

– login;

– fluxo principal de negócios;

– funcionalidades cŕıticas.

12

5.2 Processo de QA (Passo a Passo)

5.2.1 Planejamento (Antes da Implementação)

• Participação do QA nas reuniões de requisitos e projeto.

• Identificação de riscos, dependências e funcionalidades cŕıticas.

• Ińıcio da lista de cenários e casos de teste.

5.2.2 Design dos Testes

• Criação ou atualização dos casos de teste.

• Definição da massa de dados de teste.

• Identificação de necessidades espećıficas de ambiente.

5.2.3 Preparação

• Garantir que o ambiente de testes está pronto:

– versão correta implantada;

– acessos liberados;

– massa de dados criada ou carregada.

• Validar se os artefatos necessários (requisitos, fluxogramas, protótipos) estão dispońıveis.

5.2.4 Execução

• Executar os cases de teste planejados.

• Registrar o resultado de cada caso como: Aprovado, Reprovado ou Bloqueado.

• Registrar bugs com, no mı́nimo:

– passos para reproduzir;

– ambiente em que ocorreu;

– evidências (prints, v́ıdeos, logs);

– severidade e prioridade sugeridas.

5.2.5 Reteste e Regressão

• Após a correção do bug, o QA deve retestar o cenário.

• Em defeitos cŕıticos, executar uma regressão rápida nos fluxos impactados.

5.2.6 Encerramento

• Verificar se os critérios de sáıda foram atendidos.

• Registrar um resumo de testes da release, incluindo:

– quantidade de casos executados;

– taxa de aprovação;

– número de bugs por severidade;

– principais riscos conhecidos.

13

5.3 Critérios de Entrada e Sáıda

5.3.1 Entrada para Ińıcio dos Testes da Sprint/Projeto

Os testes só devem iniciar quando:

• requisitos estiverem completos, aprovados e dispońıveis;

• protótipos, fluxogramas ou demais artefatos (quando existirem) estiverem acesśıveis;

• build adequada estiver implantada no ambiente de testes;

• QA tiver usuários, acessos e massa de teste mı́nima dispońıvel.

5.3.2 Sáıda para Liberação em Produção

A release só deve ser liberada para produção quando:

• 100% dos casos de teste cŕıticos e altos estiverem aprovados;

• não houver bugs cŕıticos abertos;

• bugs médios e baixos estiverem conhecidos, documentados e aceitos pelo time de negócio;

• houver registro do resumo de testes e dos riscos remanescentes.

5.4 Métricas de Qualidade

As métricas abaixo serão utilizadas para acompanhar a qualidade dos produtos e a efetividade
do processo de testes:

• Percentual de casos de teste executados por sprint: razão entre casos executados e casos
planejados.

• Percentual de aprovação dos casos: proporção de casos aprovados sobre o total executado.

• Número de bugs por severidade: contagem de defeitos categorizados em Cŕıtico, Alto,
Médio e Baixo.

• Bugs encontrados em produção: quantidade de defeitos que escaparam do QA e foram
detectados após o deploy.

Essas métricas serão analisadas periodicamente pela área de KPI em conjunto com o QA e
demais áreas envolvidas, servindo como base para ações de melhoria cont́ınua no processo da
Fábrica de Software.

14

6 Processo de Integração

A integração de software é um processo fundamental no contexto de desenvolvimento de soft-
ware, onde a produção cont́ınua de novas aplicações e a manutenção de sistemas legados exigem
que componentes d́ıspares trabalhem de forma coesa e eficiente [1]. A integração de sistemas
(System Integration) é a disciplina que visa conectar diferentes subsistemas ou aplicações de
software, permitindo que eles troquem dados e coordenem funcionalidades, transformando-os
em um ecossistema unificado [2].

A integração é crucial para:

• Reutilização de Componentes: Conectar novos módulos a serviços existentes, acelerando
o desenvolvimento.

• Consistência de Dados: Garantir que as informações sejam sincronizadas e precisas
em todos os sistemas.

• Automação de Processos: Criar fluxos de trabalho de ponta a ponta que atravessam
múltiplas aplicações.

6.1 Tipos e Padrões de Integração

A integração pode ser classificada de diversas maneiras, dependendo da tecnologia e do padrão
arquitetural adotado.

6.1.1 Tipos de Integração por Tecnologia

Tipo de Inte-
gração

Descrição Exemplo de Uso

Integração de Da-
dos

Foco na sincronização ou transferência
de dados entre bancos de dados ou ar-
quivos.

ETL (Extract, Trans-
form, Load) para Data
Warehousing.

Integração de
Aplicações (A2A)

Conexão de funcionalidades de sis-
temas de software distintos.

Uso de APIs para que
um sistema de CRM
envie dados de clientes
para um sistema de
Faturamento.

Integração de Pro-
cessos

Orquestração de atividades que en-
volvem múltiplos sistemas.

Automação de um
processo de pedido
que passa por E-
commerce, Estoque e
Loǵıstica.

6.1.2 Padrões de Integração Empresarial (EIP)

Os Padrões de Integração Empresarial, popularizados por Hohpe e Woolf, fornecem soluções
comprovadas para problemas comuns de integração [3]. Eles se baseiam principalmente em
mensageria.

15

Padrão de Comu-
nicação

Descrição Vantagens

Mensageria (Messag-
ing)

Sistemas se comunicam trocando men-
sagens asśıncronas através de um canal
intermediário (Message Broker).

Desacoplamento
(Loose Coupling),
escalabilidade, re-
siliência.

Invocação Remota de
Procedimento (RPC
- Remote Procedure
Call)

Sistemas se comunicam diretamente,
com o solicitante esperando uma re-
sposta śıncrona.

Simplicidade, fa-
miliaridade com
chamadas de função.

6.2 Ferramentas e Tecnologias de Integração

A escolha da ferramenta de integração é um fator cŕıtico que impacta a arquitetura, a escala-
bilidade e a manutenibilidade do ecossistema de software.

6.3 Plataformas de Integração

Ferramenta Conceito Uso T́ıpico
ESB (Enterprise
Service Bus)

Arquitetura centralizada que atua
como um barramento de comunicação
entre aplicações locais (on-premise).
Oferece roteamento, transformação e
orquestração.

Integração de sistemas
legados e complexos
dentro de um datacen-
ter.

iPaaS (Integra-
tion Platform as
a Service)

Plataforma baseada em nuvem que
fornece ferramentas de autoatendi-
mento para desenvolver, executar e
governar fluxos de integração.

Integração de
aplicações SaaS (Soft-
ware as a Service),
ambientes h́ıbridos
(nuvem e local) e
projetos com foco em
agilidade.

API Gateway Ponto de entrada único para todas as
APIs. Lida com segurança (auten-
ticação/autorização), limitação de taxa
(rate limiting), roteamento e monitora-
mento. .

Exposição controlada
e segura de serviços de
backend para clientes
externos ou internos.

Message Broker Software intermediário que gerencia a
troca de mensagens entre sistemas de
forma asśıncrona. Exemplos: Apache
Kafka, RabbitMQ.

Implementação de ar-
quiteturas orientadas
a eventos (EDA) e
garantia de entrega de
mensagens em ambi-
entes distribúıdos.

6.4 Integração por API (Application Programming Interface)

A integração por API é o método mais prevalente e flex́ıvel em arquiteturas modernas, como
microsserviços e sistemas distribúıdos. Uma API atua como um contrato bem definido que
permite que dois sistemas se comuniquem sem conhecer os detalhes internos um do outro.

16

6.4.1 Tipos de APIs

Tipo Padrão de Co-
municação

Caracteŕısticas Uso T́ıpico

REST (Rep-
resentational
State Trans-
fer)

Śıncrona (HTTP) Leve, sem estado (stateless), uti-
liza verbos HTTP (GET, POST,
PUT, DELETE) e recursos (re-
sources). Formato de dados mais
comum é JSON.

Integração web,
APIs públicas,
microsserviços.

SOAP (Sim-
ple Object
Access Proto-
col)

Śıncrona (XM-
L/HTTP)

Baseado em XML, fortemente
tipado, utiliza WSDL (Web Ser-
vices Description Language) para
contrato. Mais complexo, mas
com alta segurança e transa-
cionalidade.

Integração com
sistemas lega-
dos, ambientes
corporativos
(Enterprise).

GraphQL Śıncrona (HTTP) Linguagem de consulta para
APIs. Permite que o cliente so-
licite exatamente os dados de que
precisa, evitando over-fetching
ou under-fetching.

Aplicações
móveis e web
com requisi-
tos de dados
complexos e
variáveis.

gRPC
(Google
Remote Pro-
cedure Call)

Śıncrona
(HTTP/2)

Baseado em RPC, utiliza Proto-
col Buffers para serialização. Fo-
cado em alta performance, baixo
consumo de banda e comunicação
entre microsserviços.

Comunicação in-
terna de alto de-
sempenho entre
serviços.

6.4.2 Melhores Práticas de Design de APIs (RESTful)

O design de APIs deve ser tratado como um produto, focado na experiência do desenvolvedor
(Developer Experience - DX).

• Recursos (Resources): Use substantivos (ex: /clientes, /pedidos) em vez de verbos
nos endpoints. Os verbos HTTP definem a ação (GET para buscar, POST para criar,
etc.).

• Versionamento: Inclua a versão da API na URL (ex: /api/v1/clientes) ou no cabeçalho
(Header) para permitir a evolução sem quebrar clientes existentes.

• Códigos de Status HTTP: Utilize os códigos de status padrão (200 OK, 201 Created,
400 Bad Request, 404 Not Found, 500 Internal Server Error) de forma consistente para
indicar o resultado da operação.

• Paginação e Filtragem: Implemente mecanismos de paginação (ex: ?page=1&size=20) e
filtragem para otimizar o desempenho e o uso de recursos.

• Documentação: Mantenha a documentação da API (ex: usando OpenAPI/Swagger) sem-
pre atualizada, detalhando endpoints, parâmetros, exemplos de requisição/resposta e
códigos de erro.

17

6.4.3 Ciclo de Vida da API

A integração por API segue um ciclo de vida que deve ser gerenciado ativamente:

1. Planejamento: Definir o propósito, o público-alvo e os requisitos de negócio.

2. Design: Modelar o contrato da API (especificação) antes da implementação.

3. Desenvolvimento: Implementar a lógica de negócio e os adaptadores de dados.

4. Teste: Realizar testes unitários, de integração e de carga.

5. Publicação: Disponibilizar a API através de um API Gateway para gerenciamento e
segurança.

6. Monitoramento: Acompanhar o desempenho, a latência e os erros em produção.

7. Descontinuação (Retirement): Gerenciar a transição para novas versões e a eventual de-
sativação de versões antigas.

6.5 Comparativo ESB vs iPaaS

A tendência moderna em fábricas de software é a migração de arquiteturas ESB tradicionais
para soluções iPaaS, especialmente em ambientes de nuvem e h́ıbridos [4].

Caracteŕıstica ESB (Enterprise Service
Bus)

iPaaS (Integration Plat-
form as a Service)

Modelo de Im-
plantação

Geralmente local (on-
premise) ou em IaaS.

Baseado em nuvem (SaaS).

Foco Integração de sistemas lega-
dos e internos.

Integração de SaaS, nuvem
e ambientes h́ıbridos.

Governança Centralizada e tipicamente
gerenciada por uma equipe
de integração dedicada.

Distribúıda, permitindo que
equipes de desenvolvimento
e de negócios criem suas
próprias integrações (Citi-
zen Integrators).

Escalabilidade Limitada pela infraestru-
tura local.

Altamente escalável e
elástica, gerenciada pelo
provedor de nuvem.

6.6 Procedimento para Integração de Software

Um projeto de integração bem-sucedido em uma fábrica de software segue um ciclo de vida
estruturado, garantindo que os requisitos de negócio e técnicos sejam atendidos com qualidade
e segurança.

6.7 Fases do Projeto

O procedimento pode ser dividido nas seguintes fases:

Fase 1: Planejamento e Análise de Requisitos

18

• Definição de Objetivos: Clarificar o porquê da integração (ex: reduzir redundância de
dados, automatizar processo X).

• Mapeamento de Sistemas: Identificar os sistemas de origem (Source) e destino (Target),
suas tecnologias e capacidades de comunicação (APIs, bancos de dados, arquivos).

• Análise de Dados: Mapear os campos de dados que serão trocados, definindo a trans-
formação (Transformation) e o formato (Schema) necessários.

• Seleção da Tecnologia: Escolher o padrão de integração (śıncrono/asśıncrono) e a ferra-
menta (iPaaS, API Gateway, etc.) mais adequados.

Fase 2: Design e Arquitetura

• Desenho do Fluxo: Criar diagramas (ex: BPMN, UML) que detalham o fluxo de men-
sagens, o roteamento e a lógica de orquestração.

• Definição de Contratos: Formalizar os contratos de interface (ex: especificações Ope-
nAPI/Swagger para APIs, schemas XSD/JSON para mensagens). No caso de APIs, a
especificação OpenAPI é a prática recomendada.

• Segurança: Projetar mecanismos de autenticação (ex: OAuth 2.0, JWT) e autorização,
garantindo a criptografia dos dados em trânsito (TLS/SSL).

• Tratamento de Erros: Definir estratégias de retry, logging, e mecanismos de compensação
(rollback) para falhas.

Fase 3: Implementação e Desenvolvimento

• Desenvolvimento dos Adaptadores: Criar os componentes que se comunicam com os sis-
temas de origem e destino.

• Implementação da Lógica: Codificar a lógica de transformação, roteamento e orquestração
na plataforma de integração escolhida.

• Versionamento: Utilizar sistemas de controle de versão (ex: Git) para gerenciar o código
da integração.

Fase 4: Testes e Qualidade

• Testes Unitários: Testar individualmente os componentes de transformação e adaptadores.

• Testes de Integração: Validar o fluxo completo entre os sistemas em um ambiente de
homologação (Staging).

• Testes de Performance e Carga: Simular o volume de transações esperado para garantir
que a solução suporte a demanda.

• Monitoramento: Configurar ferramentas de monitoramento e alertas para rastrear o de-
sempenho e as falhas da integração em tempo real.

Fase 5: Implantação e Operação

• Implantação (Deployment): Mover a solução para o ambiente de produção, preferencial-
mente utilizando práticas de CI/CD (Continuous Integration/Continuous Delivery).

• Go-Live e Validação: Acompanhar o desempenho inicial e validar a consistência dos dados.

• Manutenção e Evolução: A integração deve ser tratada como um produto de software,
sujeita a manutenção cont́ınua, refatoração e evolução conforme os sistemas conectados
mudam.

19

6.8 Melhores Práticas

• Desacoplamento (Loose Coupling): Os sistemas devem ter o mı́nimo de dependência
posśıvel. O uso de Message Brokers e APIs bem definidas promove o desacoplamento.

• Padrões de Integração: Sempre que posśıvel, utilize os Enterprise Integration Patterns
para resolver problemas comuns de forma padronizada e robusta [3].

• Observabilidade: Implementar logging detalhado, tracing distribúıdo e métricas para
garantir a visibilidade completa do fluxo de dados.

• Idempotência: Garantir que a repetição de uma mensagem ou chamada de API não cause
efeitos colaterais indesejados no sistema de destino.

• Governança de APIs: Tratar as APIs como produtos, com documentação clara, version-
amento e um ciclo de vida bem definido. A utilização de um API Gateway é essencial
para aplicar poĺıticas de segurança, limitação de taxa e monitoramento.

6.9 Passo a Passo para o Desenvolvimento de APIs RESTful

O desenvolvimento de APIs RESTful em uma Fábrica de Software deve seguir uma abordagem
estruturada, preferencialmente API-First, onde o contrato da API é definido antes da imple-
mentação do código.

6.10 Design da API (API-First)

1. Identificação de Recursos: Defina os principais recursos (entidades) que a API irá
gerenciar (ex: Clientes, Produtos, Pedidos).

2. Definição de Endpoints e Verbos: Mapeie as operações CRUD (Create, Read, Up-
date, Delete) para os verbos HTTP e URLs dos recursos:

• POST /recursos (Criar)

• GET /recursos (Listar)

• GET /recursos/{id} (Buscar por ID)

• PUT /recursos/{id} (Atualizar Completo)

• PATCH /recursos/{id} (Atualizar Parcial)

• DELETE /recursos/{id} (Excluir)

3. Modelagem de Dados (Payloads): Defina a estrutura exata dos dados de requisição
e resposta (JSON ou XML), garantindo consistência e clareza.

4. Especificação do Contrato: Crie o contrato formal da API usando ferramentas como
OpenAPI (Swagger). Este arquivo de especificação servirá como a única fonte de
verdade para o desenvolvimento do backend e para o consumo do frontend/clientes.

20

6.11 Implementação e Codificação

1. Geração de Código (Opcional): Utilize o arquivo OpenAPI para gerar stubs de código
(esqueletos) para o servidor e para os clientes, acelerando o desenvolvimento.

2. Implementação da Lógica de Negócio: Conecte os endpoints definidos à lógica de
negócio e à camada de persistência de dados.

3. Tratamento de Erros: Implemente o tratamento de erros de forma consistente, retor-
nando códigos de status HTTP apropriados (4xx para erros do cliente, 5xx para erros do
servidor) e mensagens de erro claras no corpo da resposta.

4. Segurança: Implemente autenticação (ex: OAuth 2.0, JWT) e autorização em todos os
endpoints, garantindo que apenas usuários autorizados possam acessar os recursos.

6.12 Testes e Validação

1. Testes Unitários: Teste a lógica de negócio e os controllers da API isoladamente.

2. Testes de Integração: Valide o fluxo completo da API, incluindo a comunicação com
o banco de dados e outros serviços.

3. Testes de Contrato: Use ferramentas como Postman ou Dredd para garantir que a
API implementada esteja em total conformidade com o contrato definido no OpenAPI.

4. Testes de Performance: Verifique a latência e a capacidade de carga da API sob
estresse.

6.13 Governança e Evolução

1. Documentação Automática: Utilize o arquivo OpenAPI para gerar documentação
interativa (Swagger UI) que é acesśıvel aos consumidores da API.

2. Versionamento: Garanta que o versionamento (ex: v1, v2) seja aplicado desde o ińıcio
para permitir a evolução da API sem quebrar clientes legados.

3. Monitoramento: Configure ferramentas de monitoramento e alertas para rastrear o
desempenho, a latência e os erros em produção.

21

7 Segurança de Software

A área de Segurança do Software atua como um pilar fundamental que permeia todo o
processo de CI/CD na Fábrica, garantindo que a qualidade do código e do design não se restrinja
apenas à funcionalidade, mas também à sua resiliência contra ameaças. O propósito central
desta área é incorporar a segurança em todas as etapas do ciclo de vida do desenvolvimento,
promovendo uma cultura de Security by Design.

Em linhas gerais, “a segurança está relacionada ao grau/ńıvel que um produto ou sistema
consegue proteger dados e informações, de tal forma que as pessoas, produtos/sistemas tenham
apenas acesso adequado às informações espećıficas, conforme seu tipo e ńıvel de autorização”
[?].

Diferente de uma abordagem reativa, onde vulnerabilidades são corrigidas após a detecção
em produção, o foco é na prevenção de vulnerabilidades desde a fase de concepção. Isso se
traduz diretamente na redução de risco operacional para a Fábrica, minimizando a superf́ıcie
de ataque e os custos associados a incidentes de segurança. A atuação cont́ınua assegura a
garantia de conformidade com padrões de mercado (como o OWASP Top 10) e a validação
cont́ınua dos artefatos de software.

7.1 Fundamentos Teóricos

A Engenharia de Segurança do Software na Fábrica é alicerçada em consonância com padrões
globais e práticas internas consolidadas, garantindo uma abordagem técnica e abrangente.

7.1.1 Da Visão SWEBOK v4

O Guide to the Software Engineering Body of Knowledge (SWEBOK v4) [?] estabelece a
segurança como uma Área de Conhecimento (KA) cŕıtica e integrada ao ciclo de vida. Os
fundamentos adotados pela Fábrica, com base nos Caṕıtulos 13, 3 e 4 do SWEBOK, incluem:

7.1.2 OWASP Top 10 (2021)

OOWASP Top 10 (2021) [?] é o padrão global de conscientização sobre os riscos de segurança
mais cŕıticos para aplicações web.

7.1.3 Práticas de Implementação (Codificação Segura)

A codificação segura é a aplicação prática dos prinćıpios de Construction for Security (SWE-
BOK Cap. 4) e das diretrizes do Guia de Melhores Práticas de Implementação [?]. Adota-se
uma postura de defesa em profundidade no ńıvel do código:

• Gerenciamento de Segredos e Credenciais: Segredos devem ser injetados no ambi-
ente de execução via Vaults (como HashiCorp Vault, AWS Secrets Manager) e não apenas
via variáveis de ambiente. Além disso, cada componente de software deve operar com o
menor conjunto de permissões estritamente necessário para sua função (Prinćıpio
do Menor Privilégio).

• Blindagem contra Injeção (Input Validation e Output Encoding): É mandatório
o uso de Validação de Entrada (Input Validation) para garantir que os dados recebidos
estejam no formato esperado e o Codificação de Sáıda (Output Encoding) para neu-
tralizar dados antes de serem renderizados no navegador (prevenção contra XSS).

22

Table 1: Fundamentos de Segurança do Software segundo SWEBOK v4

Fundamento Área de Conhec-
imento (KA)

Descrição e Aplicação

Segurança como disciplina
de engenharia

Software Security
(Cap. 13)

Tratar a segurança não como um recurso
opcional, mas como um requisito não-
funcional essencial, integrado ao planeja-
mento e execução.

Segurança orientada a requi-
sitos

Software Security
(Cap. 13)

Definição clara de requisitos de segurança
(ex: autenticação, autorização, auditoria)
na fase de Engenharia de Requisitos.

Padrões de design seguro Software Design
(Cap. 3)

Aplicação de padrões arquiteturais que
minimizem riscos (ex: menor privilégio,
segregação de responsabilidades), in-
cluindo tolerância a falhas e tratamento
de erros seguro.

Construction for Security Software Con-
struction (Cap. 4)

Uso de técnicas de Defensive Programming
e tratamento robusto de exceções (Excep-
tion Handling) para evitar estados inse-
guros do sistema.

Testes de segurança Software Security
(Cap. 13)

Incorporação de testes estáticos (SAST),
dinâmicos (DAST) e testes de penetração
(Pen-testing) como parte da Garantia da
Qualidade.

Gerenciamento de Vulnera-
bilidade

Software Security
(Cap. 13)

Processo cont́ınuo de identificação, classi-
ficação, priorização e remediação de vul-
nerabilidades.

• Redução de Vazamento de Informações e Logs Seguros: O tratamento de exceções
deve evitar a exposição de detalhes técnicos em produção. A prática de Logs Seguros
exige a sanitização de dados senśıveis (PII, senhas, tokens) antes do registro.

• Gestão Proativa de Dependências Vulneráveis: A Análise de Composição de Soft-
ware (SCA) deve ser integrada ao pipeline de CI/CD para bloquear automaticamente
builds que contenham dependências com vulnerabilidades cŕıticas (CVSS > 7.0).

7.2 Segurança na Implementação (AppSec)

Segurança não é responsabilidade exclusiva da área de “Segurança do Software”. A vulnerabil-
idade nasce no momento em que o código é digitado. Adotamos a filosofia Shift Left : pensar
em segurança desde a primeira linha de código.

7.2.1 Gerenciamento de Segredos (Credenciais)

[colback=red!5!white,colframe=red!75!black,title=Crime Capital]
NUNCA, sob hipótese alguma, comite senhas, tokens, chaves de API ou strings de conexão

no Git. O histórico do Git é eterno.

• Problema: API KEY = ‘‘12345’’ no código.

• Solução: Use Variáveis de Ambiente (.env).

23

• Ferramenta: Em Python, use python-dotenv. Em C#, use appsettings.json (com
User Secrets) ou Key Vault.

7.2.2 Blindagem contra Injeção (SQL Injection)

A falha mais antiga e comum. Ocorre quando você concatena strings para formar uma query
de banco de dados.

Regra: Jamais concatene input de usuário diretamente em comandos SQL ou de Sistema
Operacional. Use Parameterized Queries (Prepared Statements).

1

2 # VULNERAVEL (Concatenacao de String)

3

4 # Se o usuario enviar: " ’ OR ’1’=’1 "

5

6 # Ele apaga ou le todo o seu banco.

7

8 query = f"SELECT * FROM users WHERE name = ’{user_input}’"

9

10 cursor.execute(query)

11

12

13

14 # SEGURO (Query Parametrizada)

15

16 # O banco trata o input estritamente como dado , nao como comando.

17

18 query = "SELECT * FROM users WHERE name = %s"

19

20 cursor.execute(query , (user_input ,))

Listing 1: SQL Injection: O Jeito Errado vs Certo

7.2.3 Validação e Sanitização de Entrada

Adote o prinćıpio de Zero Trust. Todo dado que vem de fora (Frontend, API externa, Arquivo)
é potencialmente malicioso.

• Validação de Tipo: Se o campo é idade, aceite apenas inteiros. Recuse strings.

• Allow-list (Lista Branca): Em vez de tentar bloquear caracteres ruins (o que é dif́ıcil),
aceite apenas os bons.

– Exemplo: Para um campo “UF”, aceite apenas [A-Z]{2}. Qualquer outra coisa é
rejeitada.

7.2.4 Vazamento de Informação (Error Handling)

Erros detalhados são úteis para o desenvolvedor, mas são mapas do tesouro para atacantes.

• Stack Trace: Nunca mostre o “caminho das pedras” (ex: Line 40 in /var/www/auth.py:

ConnectionRefused). Isso revela sua estrutura de pastas e tecnologia.

• Mensagens Genéricas:

– Ruim: “A senha para o usuário ’admin’ está incorreta.” (Revela que o usuário
‘admin’ existe).

– Bom: “Usuário ou senha inválidos.”

24

7.2.5 5. Dependências Vulneráveis (Supply Chain)

Bibliotecas modernas facilitam a vida, mas podem conter falhas. Não use versões antigas.

• O responsável pela área de Segurança do Software pode rodar scanners, mas o desenvolve-
dor deve estar atento aos alertas do GitHub/GitLab (Dependabot) e atualizar os pacotes
(pip, npm, nuget) regularmente.

7.2.6 As 10 Melhores Práticas de Segurança do CERT/CC

O Computer Emergency Response Team (CERT/CC) [?] publica diretrizes de segurança essen-
ciais para a construção de software seguro:

1. Validar a entrada (Validate input): Nunca confie em dados externos. Valide formato,
tipo, tamanho e conteúdo de toda entrada.

2. Prestar atenção aos avisos do compilador (Heed compiler warnings): Trate
avisos de compilador como erros, pois podem indicar vulnerabilidades (ex: estouro de
buffer).

3. Arquitetar e projetar para poĺıticas de segurança: A segurança deve ser um req-
uisito de design. Inclua a modelagem de ameaças (Threat Modeling).

4. Manter a simplicidade (Keep it simple): Reduza a complexidade para minimizar a
superf́ıcie de ataque e facilitar a auditoria.

5. Negação por padrão (Default deny): Por padrão, todo acesso, permissão ou fun-
cionalidade deve ser negado.

6. Aderir ao prinćıpio do menor privilégio: Cada componente deve ter apenas as
permissões mı́nimas necessárias para executar sua função.

7. Sanitizar dados enviados a outro software: Remova ou neutralize conteúdo malicioso
antes de enviar dados para outro componente (ex: banco de dados, navegador).

8. Praticar defesa em profundidade (Practice defense in depth): Implemente
múltiplas camadas de segurança independentes.

9. Usar técnicas eficazes de garantia de qualidade: Utilize testes de segurança (SAST,
DAST, fuzzing) e revisões de código rigorosas.

10. Adotar um padrão de codificação segura: Utilize e siga um conjunto de regras de
codificação segura (ex: padrões CERT C/C++ ou Java).

7.2.7 Principais Responsabilidades

O responsável pela Segurança do Software atua como um consultor técnico e auditor, garantindo
que os prinćıpios de segurança sejam aplicados em todas as fases do desenvolvimento de soft-
ware.

25

7.2.8 Na Fase de Definição e Design

Esta fase é cŕıtica para o Security by Design.

• Security Requirements: Colaborar com a Engenharia de Requisitos (Leonardo) para
definir requisitos não-funcionais de segurança claros e mensuráveis (ex: MFA).

• Ameaças (Threat Modeling): Conduzir a modelagem de ameaças para identificar
potenciais vetores de ataque e vulnerabilidades no design antes da codificação.

• Regras arquiteturais mı́nimas: Definir padrões de segurança para a arquitetura (ex:
segmentação de rede, uso de WAF, padrões de criptografia).

• Revisão de riscos: Avaliar o risco de segurança de novas funcionalidades ou integrações.

Durante Implementação
Apoiar a Implementação (Gabriel) na aplicação das práticas de codificação segura.

• Codificação Segura: Garantir que as práticas detalhadas no Guia de Implementação
[?] (Seção 7) sejam seguidas (sanitização de inputs, logs seguros, tratamento de exceções).

• Análise Estática de Código (SAST): Configurar e monitorar ferramentas de SAST
nos pipelines de CI/CD para identificar padrões de código inseguros.

Durante Testes e Entrega
Garantir que o produto final esteja em conformidade com os padrões de segurança antes da

liberação.

• Segurança em APIs: Revisão de segurança de APIs, garantindo a aplicação correta de
autenticação e autorização em todos os endpoints.

• Testes de intrusão: Coordenar e validar os resultados de testes de intrusão (Pen-tests)
realizados por Q&A (Giovana) ou terceiros.

• Revisão de dependências: Auditoria final de todas as dependências de terceiros para
garantir que não haja vulnerabilidades cŕıticas conhecidas.

• Conformidade com OWASP: Certificar que o software não apresente nenhuma das
vulnerabilidades listadas no OWASP Top 10.

26

Table 2: OWASP Top 10 (2021) e Práticas de Mitigação Internas

Categoria
OWASP
(2021)

Resumo do Risco Prática Interna de Mitigação

A01: Quebra
de Controle
de Acesso

Falhas na restrição do que
usuários autenticados po-
dem acessar ou fazer.

Implementação rigorosa de poĺıticas de au-
torização em todas as camadas (API e UI).

A02: Falhas
Criptográficas

Falhas relacionadas à crip-
tografia de dados senśıveis
em trânsito e em repouso.

Uso obrigatório de protocolos seguros (TL-
S/HTTPS) e algoritmos de criptografia
fortes e validados.

A03: Injeção Dados não confiáveis envi-
ados ao interpretador como
parte de um comando ou
consulta.

Uso de Prepared Statements (consultas
parametrizadas) e ORMs para blindagem
contra SQL Injection.

A04: Design
Inseguro

Falhas de segurança que re-
sultam de um design ausente
ou ineficaz.

Aplicação de Threat Modeling na fase de
design e revisão arquitetural mı́nima.

A05: Con-
figuração
Incorreta de
Segurança

Configurações padrão
inseguras, recursos
desnecessários habilita-
dos ou erros de configuração
de nuvem.

Uso de imagens base seguras e
padronizadas para deploy e automação de
validação de configuração.

A06: Com-
ponentes Vul-
neráveis e De-
satualizados

Uso de bibliotecas, frame-
works ou outros módulos
de software com vulnerabil-
idades conhecidas.

Revisão automatizada de dependências
(SAST/SCA) e atualização proativa de pa-
cotes.

A07: Falhas
de Identi-
ficação e
Autenticação

Falhas que permitem que at-
acantes comprometam sen-
has, chaves ou tokens de
sessão.

Uso de mecanismos de autenticação cen-
tralizados e fortes (MFA obrigatório).

A08: Falhas
de Integridade
de Software e
Dados

Falhas na integridade de da-
dos e pipelines de atual-
ização.

Validação de integridade de uploads e
uso de assinaturas digitais em atualizações
cŕıticas.

A09: Falhas
de Log e Mon-
itoramento

Falhas que impedem a de-
tecção, escalonamento ou re-
sposta a um ataque.

Implementação de Logs Estruturados
(JSON) com ńıveis padronizados e alertas
configurados.

A10: Falsi-
ficação de
Solicitação
do Lado do
Servidor

O aplicativo busca um re-
curso remoto sem validar a
URL fornecida pelo usuário.

Validação rigorosa de todas as URLs exter-
nas e uso de whitelists para recursos per-
mitidos.

27

8 Melhores Práticas

Todo código desenvolvido na fábrica deve aderir aos seguintes prinćıpios:

8.1 KISS (Keep It Simple, Stupid)

A complexidade é o inimigo da segurança e da manutenção. Evite super-engenharia. Se uma
função faz “coisas demais”, ela deve ser quebrada. O objetivo da fábrica não é produzir código
“inteligente” que ninguém entende, mas sim código óbvio que funciona.

8.1.1 O que é Simplicidade?

Simplicidade não significa simplismo. Significa resolver o problema sem adicionar camadas
desnecessárias de abstração ou “complexidade acidental”.

• Se você precisa de um diagrama complexo para explicar uma única função de 20 linhas,
ela viola o KISS.

• Se você está implementando uma estrutura genérica para “caso a gente precise no futuro”,
pare. (Ver prinćıpio YAGNI - You Ain’t Gonna Need It).

8.1.2 Sinais de Alerta (Code Smells)

O revisor deve rejeitar o código se encontrar:

• Ninhada Profunda (Deep Nesting): Muitos ‘if’ dentro de ‘for’ dentro de ‘if’. Isso
aumenta a carga cognitiva.

• Funções Gigantes: Funções com mais de 20-30 linhas geralmente fazem coisas demais.

• Nomes Genéricos: Variáveis chamadas ‘data’, ‘info’ ou ‘manager’ geralmente escondem
complexidade mal definida.

8.1.3 Técnica Prática: Guard Clauses

Para aplicar o KISS e evitar a “seta de código” (código que cresce para a direita devido à
indentação), utilize Guard Clauses (retorno antecipado).

1

2 # VIOLACAO DO KISS (Complexo e aninhado)

3

4 def process_payment(order):

5

6 if order:

7

8 if order.status == ’OPEN’:

9

10 if order.balance > 0:

11

12 order.pay()

13

14 return True

15

16 else:

17

18 return False

19

28

20 else:

21

22 return False

23

24 else:

25

26 return False

27

28

29

30 # APLICANDO KISS (Simples e plano)

31

32 def process_payment(order):

33

34 # Validacoes iniciais (Guard Clauses)

35

36 if not order:

37

38 return False

39

40 if order.status != ’OPEN’:

41

42 return False

43

44 if order.balance <= 0:

45

46 return False

47

48

49

50 # Execucao principal limpa

51

52 order.pay()

53

54 return True

Listing 2: Aplicando KISS com Guard Clauses

8.2 DRY (Don’t Repeat Yourself)

O prinćıpio DRY preconiza que “cada parte do conhecimento deve ter uma representação única,
não amb́ıgua e definitiva dentro do sistema”. Não se trata apenas de economizar digitação, mas
de garantir consistência.

8.2.1 O Problema da Duplicação

A duplicação é a maior causa de bugs de regressão (quando algo que funcionava para de fun-
cionar).

• Manutenção Pesadelo: Se a regra de validação de CPF muda, e você tem essa validação
espalhada em 3 telas diferentes, a chance de esquecer de atualizar uma delas é alt́ıssima.

• Inconsistência: O usuário percebe o sistema como “quebrado” quando a API recusa
um dado que o Front-end aceitou (lógicas duplicadas e divergentes).

29

8.2.2 A “Regra de Três” (Rule of Three)

Evite abstração prematura. Às vezes, criar uma função genérica cedo demais aumenta a com-
plexidade (violando o KISS). Utilize a seguinte heuŕıstica:

1. Primeira vez: Escreva o código.

2. Segunda vez: Copie e cole (se necessário), mas fique alerta.

3. Terceira vez: Pare. Refatore para uma função, classe ou componente reutilizável.

8.2.3 Falsa Duplicação (Cuidado)

Nem tudo que parece igual é duplicado. Se dois trechos de código fazem a mesma coisa, mas
por motivos de negócio diferentes (ex: validação de cadastro de cliente vs. validação de
cadastro de fornecedor), eles podem evoluir de formas diferentes. Unificá-los forçadamente cria
um acoplamento ruim.

8.2.4 Exemplo Prático: Centralização de Lógica

1

2 # VIOLACAO DO DRY (Logica repetida)

3

4 # File A (Report)

5

6 final_price = product.value * 1.15 # Taxa de 15% hardcoded

7

8 print(f"Total: {final_price}")

9

10

11

12 # File B (Checkout)

13

14 total_to_pay = cart.sum * 1.15 # A mesma taxa repetida

15

16 print(f"Total: {total_to_pay}")

17

18

19

20 # ---

21

22

23

24 # APLICANDO DRY

25

26 # File: constants.py

27

28 SERVICE_TAX_RATE = 1.15

29

30

31

32 def calculate_price_with_tax(base_value):

33

34 return base_value * SERVICE_TAX_RATE

35

36

37

38 # Uso no sistema

30

39

40 final_price = calculate_price_with_tax(product.value)

41

42 total_to_pay = calculate_price_with_tax(cart.sum)

Listing 3: Aplicando DRY (Single Source of Truth)

8.3 SOLID Principles

O acrônimo SOLID representa cinco prinćıpios de design de classes orientados a objetos. O
objetivo não é seguir regras cegamente, mas criar software que tolere mudanças.

8.3.1 S - Single Responsibility Principle (SRP)

“Uma classe deve ter um, e apenas um, motivo para mudar.”
Se você tem uma classe chamada PedidoManager que: 1) Calcula o total, 2) Salva no banco

e 3) Envia e-mail de confirmação, ela está errada. Se a regra de e-mail mudar, você corre o
risco de quebrar o cálculo do pedido.

1

2 # VIOLACAO (Classe "Deus" que faz tudo)

3

4 class Order:

5

6 def calculate_total(self): ...

7

8 def save_to_database(self): ... # Mistura persistencia

9

10 def send_email_confirmation(self): ... # Mistura notificacao

11

12

13

14 # CORRETO (Cada um com sua responsabilidade)

15

16 class Order:

17

18 def calculate_total(self): ... # Regra de negocio

19

20

21

22 class OrderRepository:

23

24 def save(self , order): ... # Banco de dados

25

26

27

28 class EmailService:

29

30 def send_confirmation(self , order): ... # Notificacao

Listing 4: Aplicando SRP

8.3.2 O - Open/Closed Principle (OCP)

“Entidades de software devem estar abertas para extensão, mas fechadas para
modificação.”

Você deve ser capaz de adicionar novas funcionalidades sem alterar o código fonte existente.
Isso evita introduzir bugs em funcionalidades que já estão estáveis.

31

1

2 # VIOLACAO (Muitos IFs)

3

4 class Discount:

5

6 def calculate(self , type , value):

7

8 if type == "VIP": return value * 0.8

9

10 elif type == "BLACK_FRIDAY": return value * 0.5

11

12

13

14 # CORRETO (Uso de Interface/Heranca)

15

16 class DiscountRule(ABC):

17

18 @abstractmethod

19

20 def calculate(self , value): pass

21

22

23

24 class VipDiscount(DiscountRule):

25

26 def calculate(self , value): return value * 0.8

27

28

29

30 class BlackFridayDiscount(DiscountRule):

31

32 def calculate(self , value): return value * 0.5

Listing 5: Aplicando OCP com Polimorfismo

8.3.3 L - Liskov Substitution Principle (LSP)

“Subclasses devem ser substitúıveis por suas classes base.”
Se a classe B herda de A, o sistema deve funcionar usando B no lugar de A sem quebrar. O

exemplo clássico é: um Pinguim é uma Ave, mas se a classe Ave tem um método voar(), o
Pinguim não pode herdar dela (ou lançará um erro inesperado).

1

2 # VIOLACAO

3

4 class Exemplos:

5

6 def fly(self): ...

7

8

9

10 class Penguin(Exemplo):

11

12 def fly(self):

13

14 raise Exception("Penguins can’t fly!") # Quebra o contrato!

15

16

17

18 # CORRETO

32

19

20 class Exemplos: ... # Classe base geral

21

22

23

24 class FlyingExemplo(Exemplo):

25

26 def fly(self): ...

27

28

29

30 class Penguin(Exemplo): ... # Nao herda de FlyingExemplo

Listing 6: Respeitando a Substituicao de Liskov

8.3.4 I - Interface Segregation Principle (ISP)

“Muitas interfaces espećıficas são melhores do que uma interface única geral.”
Não force uma classe a implementar métodos que ela não usa. Isso cria dependências

fantasmas.

1

2 # VIOLACAO (Interface gorda)

3

4 class SmartDevice(ABC):

5

6 def print(self): pass

7

8 def scan(self): pass

9

10 def fax(self): pass

11

12

13

14 class SimplePrinter(SmartDevice):

15

16 def print(self): print("Printing ...")

17

18 def scan(self): pass # Forcado a implementar inutilmente

19

20 def fax(self): pass # Forcado a implementar inutilmente

21

22

23

24 # CORRETO

25

26 class Printer(ABC):

27

28 def print(self): pass

29

30

31

32 class Scanner(ABC):

33

34 def scan(self): pass

35

36

37

38 class SimplePrinter(Printer): ...

Listing 7: Segregacao de Interfaces

33

8.3.5 D - Dependency Inversion Principle (DIP)

“Dependa de abstrações, não de implementações.”
Este é o ponto mais crucial para a Qualidade e Testes. Classes de alto ńıvel (Regra de

Negócio) não devem instanciar classes de baixo ńıvel (Conexão MySQL) diretamente dentro
delas. Elas devem receber a dependência “injetada”.

1

2 # VIOLACAO (Alto acoplamento)

3

4 class ReportService:

5

6 def __init__(self):

7

8 # Preso ao MySQL para sempre. Dificil de testar.

9

10 self.db = MySQLConnection ()

11

12

13

14 # CORRETO (Injecao de Dependencia)

15

16 class ReportService:

17

18 # Aceita QUALQUER coisa que siga o contrato "DatabaseInterface"

19

20 def __init__(self , db: DatabaseInterface):

21

22 self.db = db

23

24

25

26 # Production:

27

28 service = ReportService(MySQLConnection ())

29

30 # Tests (Mock):

31

32 service = ReportService(MockDatabase ())

Listing 8: Inversao de Dependencia

8.4 Convenções de Estilo e Nomenclatura

Embora a Fábrica de Software trabalhe commúltiplas tecnologias, a legibilidade é um prinćıpio
universal. Um código bem escrito deve ser autoexplicativo, independente se é Python, C# ou
Java.

A responsabilidade de configurar as ferramentas de validação é da área de Padrões, mas a
execução diária é dever de quem implementa.

8.4.1 Idioma do Código: Inglês

Para alinhar a Fábrica com padrões globais e facilitar a integração open-source, o idioma oficial
do código (variáveis, funções, classes) será o Inglês.

Exceção (Domı́nio Espećıfico): Termos de negócio estritamente brasileiros devem ser
mantidos no original para evitar perda de sentido (ex: cpf, pix, bairro).

34

8.4.2 Sintaxe: Tabela de Referência por Linguagem

Como cada linguagem tem sua “gramática” própria, respeite o padrão nativo da tecnologia:

brainBlue
Linguagem

Variáveis Funções/Métodos Classes

Python snake case

user id
snake case

get user()
PascalCase

UserHandler
Java / TS camelCase

userId
camelCase

getUser()
PascalCase

UserHandler
C# camelCase

userId
PascalCase

GetUser()
PascalCase

UserHandler

8.4.3 Semântica de Nomenclatura (Regras Universais)

Independente da linguagem, o significado do nome deve seguir estas regras:
Funções são Ações (Verbos)
O nome da função deve dizer o que ela faz. Se você precisa ler o código da função para

entender o nome, refatore.

• Ruim: pdf report() (Parece um objeto).

• Bom: generate pdf report() (Python) ou GeneratePdfReport() (C#).

• Prefixos comuns: get, set, is, has, calc, validate.

Classes são Entidades (Substantivos)
Classes representam o “sujeito” da ação.

• Ruim: ManageUser (Verbo).

• Bom: UserManager ou UserRepository (Substantivo).

Variáveis Booleanas (Perguntas)
Variáveis que guardam True/False devem soar como perguntas de sim ou não.

• Ruim: open, valid, admin.

• Bom: is open, is valid, has admin permission.

8.4.4 Segurança de Tipos (Type Safety)

Erros de tipo são a maior causa de bugs em produção.

• Em C#/Java: A tipagem é obrigatória pelo compilador. Use tipos expĺıcitos em vez de
var sempre que a leitura ficar amb́ıgua.

• Em Python: O uso de Type Hints é obrigatório nas assinaturas de métodos públicos.

35

1

2 from typing import List , Dict

3

4

5

6 # RUIM (O que e ’data ’? O que retorna ?)

7

8 def process(data):

9

10 return data[’val’] * 2

11

12

13

14 # BOM (Contrato claro)

15

16 def process_transaction(transaction_data: Dict[str , float]) -> float:

17

18 """

19

20 Receives transaction data and returns the final value.

21

22 """

23

24 return transaction_data.get(’value’, 0.0) * 2

Listing 9: Exemplo de Tipagem (Python Reference)

Exemplo Prático: Refatoração e Clareza
O exemplo abaixo está em Python, mas o conceito de “Evitar Números Mágicos” aplica-

se a C#, Java e qualquer outra linguagem.

1

2 # RUIM (Mistura de idiomas e numeros magicos)

3

4 # O que e 86400? Por que estamos multiplicando?

5

6 def converter_dias(lista):

7

8 res = []

9

10 for x in lista:

11

12 res.append(x * 86400)

13

14 return res

15

16

17

18 # ---

19

20

21

22 # BOM (Ingles Tecnico , Constantes e Clareza)

23

24 SECONDS_IN_A_DAY = 86400

25

26

27

28 def convert_days_to_seconds(days_list: List[int]) -> List[int]:

29

30 seconds_list = []

31

36

32 for day in days_list:

33

34 seconds = day * SECONDS_IN_A_DAY

35

36 seconds_list.append(seconds)

37

38 return seconds_list

Listing 10: De Código Obscuro para Clean Code

8.4.5 Ferramentas de Automação (Qualidade Cont́ınua)

Para garantir que a equipe produza código com padrão industrial e não artesanal, o uso de
ferramentas de análise estática é mandatório.

O objetivo não é burocratizar, mas sim automatizar o esforço operacional desnecessário.
O Code Review deve focar em lógica de negócio e arquitetura, e não em discussões sobre espaços,
v́ırgulas ou indentação.

Nossa estratégia de automação se baseia em três pilares fundamentais, que devem ser apli-
cados em qualquer linguagem utilizada no projeto:

Pilar 1: Formatter Automatizado
Cada linguagem tem uma ferramenta que reescreve o código automaticamente para seguir

o guia de estilo oficial.

• O que faz: Remove espaços extras, ajusta quebras de linha e padroniza a indentação ao
salvar o arquivo.

• Por que usar: Elimina 100% das discussões subjetivas sobre estética. O código de um
estagiário e de um sênior tornam-se visualmente idênticos.

• Ferramentas Oficiais:

– Python: Black (Rigoroso, sem configuração).

– C#: dotnet format (Nativo do SDK .NET).

– Java: Google Java Format (Padrão de mercado).

Pilar 2: Analisador Estático (Linter)
Enquanto o formatador cuida da estética, o Linter cuida da “saúde” do código.

• O que faz: Analisa o código estaticamente em busca de:

– Variáveis declaradas mas não usadas.

– Funções complexas demais (violação do KISS).

– Bugs lógicos óbvios (ex: if (x == x)).

• Por que usar: Impede que “code smells” (cheiro de código ruim) se acumulem, garantindo
que a d́ıvida técnica seja paga antes do commit.

• Ferramentas Oficiais:

– Python: Pylint ou Flake8.

– C# / Java: SonarLint (Plugin poderoso que roda direto na IDE).

37

Pilar 3: Type Checker
Erros de tipo são os bugs mais comuns e evitáveis em engenharia de software.

• O que faz: Garante que se uma função pede um Número, ela não receba um Texto.

• Por que usar: Em linguagens compiladas (C#/Java), isso é nativo, mas warnings não
devem ser ignorados. Em Python, evita quebras em tempo de execução (Runtime Errors).

• Ferramentas Oficiais:

– Python: Mypy (Verifica a consistência dos Type Hints).

– C# / Java: O próprio Compilador (Configurado com Treat Warnings as Errors).

[colback=red!5!white,colframe=red!75!black,title=Regra de Ouro (Atenção)]
Código que não passa nessas ferramentas não deve ser aceito no repositório. O re-

sponsável por “Padrões” deve configurar o pipeline (CI/CD ou Pre-commit) para rejeitar
automaticamente qualquer entrega fora do padrão.

8.4.6 Documentação e Legibilidade

Código é lido muito mais vezes do que é escrito. A documentação não serve para explicar o que
o código faz (o código já diz isso), mas sim para explicar ‘como usar’ (interface) e ‘por que foi
feito assim’ (decisões).

Regra de Ouro

• Código ruim não deve ser documentado, deve ser refatorado. Não escreva co-
mentários para explicar variáveis com nomes ruins como x ou val. Renomeie-as.

• APIs Públicas: Toda função, classe ou método que pode ser acessado por outro módulo
deve ter documentação formal (Docstring).

8.4.7 Padrões de Docstrings (API)

Docstrings são a documentação que acompanha o código e permite a geração automática de
manuais (via Sphinx, Swagger, Javadoc). A Fábrica adota os seguintes padrões de mercado:

brainBlue
Linguagem

Padrão Adotado Ferramenta de Geração

Python Google Style Docstrings Sphinx / MkDocs
C# XML Documentation DocFX / Swagger
Java Javadoc Javadoc / Maven Site

Estrutura Obrigatória
Uma boa documentação de função deve responder a quatro perguntas, nesta ordem:

1. Resumo: O que isso faz? (Verbo no imperativo: “Calcula”, “Busca”, “Envia”).

2. Args (Parâmetros): O que eu preciso passar? Qual o tipo? Existem restrições?

3. Returns (Retorno): O que sai de lá?

4. Raises (Exceções): O que pode dar errado? (Essencial para quem vai fazer o try/catch).

Exemplo Prático (Python - Google Style)

38

1

2 # RUIM (Docstring preguicosa)

3

4 def calculate_churn(users):

5

6 """Calcula o churn."""

7

8 ...

9

10

11

12 # BOM (Padrao Google Style)

13

14 def calculate_churn_rate(active_users: int , lost_users: int) -> float:

15

16 """

17

18 Calculates the monthly churn rate based on user data.

19

20

21

22 Args:

23

24 active_users (int): Total number of users at the start of the period

.

25

26 lost_users (int): Number of users who cancelled the service.

27

28

29

30 Returns:

31

32 float: The churn rate as a percentage (0.0 to 100.0).

33

34

35

36 Raises:

37

38 ValueError: If active_users is zero or negative.

39

40 """

41

42 if active_users <= 0:

43

44 raise ValueError("Active users must be greater than zero.")

45

46

47

48 return (lost_users / active_users) * 100.0

Listing 11: Documentacao de API Profissional

Comentários Internos (O “Porquê”)
Enquanto a Docstring é para quem usa a função, o comentário é para quem mantém a

função. Use comentários para registrar d́ıvidas técnicas e decisões de negócio não óbvias.

• NÃO COMENTE O ÓBVIO:

1

2 i = i + 1 # Incrementa i (INUTIL - O codigo ja diz isso)

3

4

39

• COMENTE A DECISÃO:

1

2 # Usamos uma query bruta (SQL) aqui em vez do ORM porque

3

4 # a performance do ORM estava causando timeout em relatorios > 1GB.

5

6 # Ver ticket JIRA -123.

7

8 results = db.execute_raw_sql (...)

9

10

Tags de Manutenção (Anotações)
Em um ambiente colaborativo, use tags padronizadas para sinalizar pendências no código.

A maioria das IDEs mapeia isso automaticamente.

• TODO: Algo que precisa ser feito, mas não bloqueia a entrega atual.

• FIXME: Um código que funciona, mas é “gambiarra” e precisa de correção urgente.

• DEPRECATED: Funcionalidade antiga que será removida na próxima versão.

• NOTE: Um aviso importante sobre o comportamento do bloco.

1

2 def validate_cpf(cpf: str) -> bool:

3

4 # TODO: Implementar validacao completa com digito verificador.

5

6 # Atualmente valida apenas o tamanho para nao travar o MVP.

7

8 return len(cpf) == 11

Listing 12: Uso de Tags

Tratamento de Erros e Observabilidade (Logs)
Esta disciplina é a ponte entre o Desenvolvimento e a Operação. Um sistema sem logs

adequados é uma “caixa preta” cara de manter.
Não logamos apenas para “debugar”, logamos para ‘monitorar a saúde’ do negócio.
“A Morte do print”
O uso de print() (Python) ou System.out.println (Java) é “proibido” em código de

produção.

• Por quê? Prints não possuem ‘timestamp’, não possuem ńıvel de severidade (ERROR vs
INFO) e, em muitas linguagens, bloqueiam a thread principal (I/O blocking), degradando
a performance.

• Solução: Use sempre a instância de Logger configurada pelo framework (Log4j, Serilog,
Python Logging).

Logs Estruturados (JSON)
Em vez de frases soltas, nossos logs devem ser objetos estruturados. Isso permite que

ferramentas (ELK Stack, Datadog, CloudWatch) indexem os campos.

40

1

2 # RUIM (Texto Plano - Dificil de filtrar)

3

4 logger.info(f"Usuario {user_id} comprou o item {item_id}")

5

6

7

8 # BOM (Estruturado - Facil de criar dashboards)

9

10 # O log sai como um JSON: {" event": "purchase", "user_id ": 123, "item": 99}

11

12 logger.info("Purchase completed", extra={

13

14 "event": "purchase_success",

15

16 "user_id": user_id ,

17

18 "item_id": item_id ,

19

20 "amount": 50.00

21

22 })

Listing 13: Texto vs Logs Estruturados

Nı́veis de Log (Padronização)
O uso incorreto dos ńıveis gera alertas falsos ou silêncio perigoso.

brainBlue
Nı́vel

Quando usar?

DEBUG Informações granulares para desenvolvimento. Desligado
em Produção. (Ex: Payload completo de uma requisição).

INFO Eventos de negócio bem sucedidos. (Ex: “Pedido criado”,
“Job de sincronização finalizado”).

WARNING Algo inesperado aconteceu, mas o sistema se recuperou. Não
requer acordar ninguém de madrugada. (Ex: “Tentativa de
login falhou”, “API demorou mas respondeu”).

ERROR Uma operação falhou. O usuário percebeu o erro. Requer
investigação futura. (Ex: “Falha ao salvar no banco”, “Null-
PointerException”).

CRITICAL O sistema (ou uma parte vital dele) parou. Requer atuação
imediata da Operação. (Ex: “Banco de dados fora do ar”).

Segurança no Log (Sanitização)
[colback=red!5!white,colframe=red!75!black,title=Risco Cŕıtico (LGPD)]
Nunca, sob hipótese alguma, logue Dados Pessoais Senśıveis (PII), Senhas, Tokens ou Chaves

de API.

• Ruim: logger.info(f‘‘User login: {password}’’)

• Bom: logger.info(f‘‘User login attempt for: {username}’’)

8.4.8 Tratamento de Exceções (Exception Handling)

Tratar erros não é apenas evitar que o programa feche (“crash”), é garantir que o sistema falhe
de forma segura e informativa.

41

Regra 1: Não engula exceções (Silent Failure)
O catch vazio é o maior inimigo da manutenção. Se você capturou um erro, você tem três

opções:

1. Logar e lançar: Registra e deixa o erro subir.

2. Recuperar: Aplica uma lógica de correção (ex: tenta de novo).

3. Envelopar: Transforma uma exceção técnica em uma exceção de negócio.

Regra 2: Envelopamento (Pattern de Camadas)
Não exponha erros de banco de dados (SQL Injection risk) para o usuário final/frontend.

1

2 try:

3

4 user = db.find_user(user_id)

5

6 except DatabaseConnectionError as original_error:

7

8 # 1. Logamos o erro tecnico (para o responsavel pela area de Operacao

ver no servidor)

9

10 logger.error("DB connection failed", exc_info=original_error)

11

12

13

14 # 2. Lancamos um erro limpo de negocio (para o Frontend receber)

15

16 # O usuario recebe "Servico indisponivel", nao "Error 500 at line 40..."

17

18 raise ServiceUnavailableError("User service is temporarily down.")

Listing 14: Envelopamento de Excecao (Python)

Regra 3: Correlation ID (Rastreabilidade)
Em sistemas distribúıdos (como o Open Gateway), um erro pode ocorrer em um serviço

profundo. Todo log deve conter um correlation id (gerado na entrada da requisição) que é
repassado para todas as funções internas.

1

2 def process_payment(order_id , correlation_id):

3

4 try:

5

6 payment_gateway.charge(order_id)

7

8 except Exception as e:

9

10 # O responsavel por Operacao consegue pesquisar pelo ID e ver todo o

rastro

11

12 logger.error("Payment failed", extra={

13

14 "correlation_id": correlation_id ,

15

16 "order_id": order_id ,

17

18 "error": str(e)

19

20 })

42

21

22 raise

Listing 15: Exemplo com Correlation ID

43

9 Usabilidade

9.1 Visão Geral

A área de Usabilidade é responsável por assegurar que as interações entre os sistemas e seus
usuários (sejam eles humanos ou outros sistemas) sejam intuitivas, eficientes e propensas ao
sucesso. O objetivo é reduzir a carga cognitiva necessária para operar ou integrar as soluções
da empresa.

Aqui, definimos os padrões que garantem a Consistência (o sistema se comporta sempre
da mesma forma), a Previsibilidade (o usuário sabe o que esperar) e a Recuperabilidade
(facilidade em corrigir erros), atuando como uma ponte de qualidade entre a necessidade do
negócio e a implementação técnica.

9.2 Fundamentos Teóricos

A prática de usabilidade nesta organização é fundamentada nas seguintes Áreas de Conheci-
mento (KAs) do SWEBOK v4 e normas globais:

• Software Design (Cap. 2): Aplicação de prinćıpios de Design de Interface de Usuário
(UI) para garantir interações eficazes.

• Software Quality (Cap. 10): Utilização de modelos de qualidade (como a ISO/IEC
25010), onde a Usabilidade é tratada como um requisito não funcional cŕıtico (Operabil-
idade e Apreensibilidade).

• Heuŕısticas de Usabilidade (Nielsen/Norman): Aplicação de prinćıpios universais
como “Visibilidade do Status do Sistema” e “Prevenção de Erros”.

9.3 Principais Responsabilidades

A atuação da área de Usabilidade permeia todo o ciclo de vida do software, com foco na
experiência de quem consome a tecnologia.

9.3.1 Na Fase de Definição e Design

Nesta etapa, a Usabilidade estabelece as “regras do jogo” para garantir coerência entre sistemas.
Ação: Criação e manutenção de Guias de Estilo (Style Guides) e padrões de interação.

Definição de um vocabulário controlado para garantir que os mesmos termos sejam utilizados
de forma consistente em todos os sistemas.

9.3.2 Na Fase de Avaliação (Testing)

Responsabilidade de auditar se a solução proposta é fácil de usar antes de ser massificada, em
conformidade com as práticas de Software Testing (SWEBOK, Caṕıtulo 4).

Ação: Avaliação heuŕıstica das interfaces e APIs. Verificação da clareza das mensagens de
feedback (sucesso e erro) e da qualidade da documentação de apoio.

9.4 Integração com o Time

A seguir, detalha-se como a área de Usabilidade interage com as demais áreas da Software
House.

44

9.4.1 Com Engenharia de Requisitos

Entrada: Necessidades do negócio e perfil dos usuários.
Ação: Garantir que o requisito não gere complexidade desnecessária. A Usabilidade valida

se o fluxo proposto pela Engenharia de Requisitos é cognitivamente simples ou se exige esforço
excessivo do usuário final.

9.4.2 Com Q&A / Testes

Entrada: Versões estáveis do sistema para homologação.
Ação: Enquanto o Q&A foca em defeitos de código (bugs), a Usabilidade foca em defeitos

de design (confusão). A área de Usabilidade apoia o Q&A identificando fluxos que, embora
tecnicamente corretos, induzem o usuário ao erro.

45

10 Integração e Fluxo de Trabalho

A área de Implementação atua como o motor da fábrica, transformando definições em produto
real. Para isso, atua no centro de um fluxo de comunicação constante:

10.1 Fluxo de Entrada (Antes de Codificar)

Nesta etapa, o objetivo é garantir que o problema foi bem compreendido antes de gastar horas
programando.

• Engenharia de Requisitos: O código deve resolver o problema de negócio descrito no
ERS.

– Atenção: Não confie cegamente apenas nos diagramas técnicos. Se o diagrama
parecer contradizer a regra de negócio do ERS, consulte o responsável pela área
imediatamente. A regra de negócio sempre tem precedência sobre o desenho técnico.

• Projeto e Modelagem:

– Viabilidade: Se a arquitetura proposta ou o diagrama de classes for inviável de
implementar no prazo estipulado, é dever do Implementador levantar a mão (“Push-
back”).

– Fidelidade: O código deve refletir os diagramas. Se você precisou mudar a es-
trutura da classe durante o código, o diagrama precisa ser atualizado. Código e
Documentação devem andar juntos.

10.2 Fluxo de Apoio (Durante a Codificação)

Você não está codando sozinho. Use os especialistas para blindar seu código.

• Segurança: Adote a postura de Shift Left. Não espere o código estar pronto para
perguntar se ele é seguro.

– Exemplo: Perguntando ao responsável por Segurança do Código - “Vou usar essa lib
para gerar PDF, ela tem alguma vulnerabilidade conhecida?”

• Padrões: Se o Linter ou o Pipeline estiverem travando seu commit injustamente, acione
o responsável para ajustar as regras de automação. Não tente burlar as regras locais.

10.3 Fluxo de Sáıda (Entrega)

A implementação só termina quando o próximo da fila consegue trabalhar.

• QA e Entrega:

– Smoke Test: Nunca entregue código que “nem builda”. Antes de passar para QA,
rode o caminho feliz (happy path) na sua máquina.

– Testes Unitários: O código deve ir para QA com a cobertura mı́nima de testes
unitários definida no projeto. QA foca em testes integrados e de sistema, não deveria
perder tempo pegando erro de sintaxe.

• Operação:

46

– “Na minha máquina funciona”: Essa frase é proibida. Garanta que todas as
dependências novas estejam no requirements.txt ou Dockerfile.

– Variáveis de Ambiente: Se você criou uma nova chave ou configuração, avise
o responsável da Operação para que ele possa configurá-la no ambiente de Ho-
mologação/Produção.

47

11 Checklist de Code Review (Pull Request)

OCode Review é a última linha de defesa antes de um bug ou vulnerabilidade chegar à produção.
O revisor não deve aprovar o PR se qualquer um dos itens abaixo não for atendido.

11.1 Padrões e Legibilidade

Idioma: O código (variáveis, funções) está 100% em Inglês? (Exceto termos de domı́nio
local).

Clean Code: Nomes de variáveis e funções revelam claramente a intenção?

Documentação: Funções públicas possuem Docstrings no padrão definido (Args, Re-
turns, Raises)?

Sujeira: Código comentado, prints de debug e imports não usados foram removidos?

Automação: O código passou no pipeline de Linter, Formatter e Type Checker sem
erros?

11.2 Arquitetura e Design (SOLID/KISS)

KISS: Existem funções complexas demais que poderiam ser quebradas? (Ninhada de
if/else).

DRY: Existe lógica de negócio duplicada que deveria virar uma função auxiliar?

Responsabilidade: A classe/função faz apenas uma coisa? (Prinćıpio SRP).

Fidelidade: A implementação reflete os diagramas e arquitetura desenhados pelo time
de Projeto?

11.3 Segurança e Performance (Cŕıtico)

Segredos: GARANTIA de que não há senhas, tokens ou chaves hardcoded?

Injeção: Queries SQL estão parametrizadas (sem concatenação de string)?

Validação: Inputs externos são validados e sanitizados antes do processamento?

Loops: Existe algum loop (for/while) perigoso que pode travar com grandes volumes
de dados?

11.4 Operação e Observabilidade

Logs: Os logs estão estruturados (JSON)? O ńıvel (INFO/ERROR) está correto?

LGPD: Garantia de que nenhum dado senśıvel (PII) ou senha está sendo logado?

Tratamento de Erro: As exceções são tratadas ou envelopadas corretamente (sem
try/catch vazios)?

48

11.5 Testes

Cobertura: Existem testes unitários cobrindo o Happy Path - “Caminho Feliz” - e as
principais falhas?

Independência: Os testes rodam isolados (Mock) sem depender de banco de dados real?

49

12 Anexo Técnico: Setup do Ambiente de Desenvolvi-

mento

Para garantir a padronização, utilizamos automação de *git hooks*. Abaixo estão as instruções
de configuração separadas por stack tecnológica.

12.1 Perfil A: Stack Python (Projetos de Backend / Scripts)

Este perfil utiliza o framework nativo pre-commit e é o padrão para projetos de ciência de
dados e APIs em Python.

12.1.1 Instalação

O arquivo requirements-dev.txt deve conter: black, mypy, pylint, pre-commit.

1

2 # No terminal (ambiente virtual ativo):

3

4 pip install -r requirements -dev.txt

5

6 pre -commit install

Listing 16: Setup Python

12.1.2 Configuração (.pre-commit-config.yaml)

1

2 repos:

3

4 - repo: https :// github.com/psf/black

5

6 rev: 23.9.1

7

8 hooks:

9

10 - id: black

11

12 language_version: python3

13

14

15

16 - repo: https :// github.com/pre -commit/mirrors -mypy

17

18 rev: v1.5.1

19

20 hooks:

21

22 - id: mypy

23

24 additional_dependencies: [types -requests]

25

26

27

28 - repo: local

29

30 hooks:

31

32 - id: pylint

50

33

34 name: pylint

35

36 entry: pylint

37

38 language: system

39

40 types: [python]

41

42 args: ["-rn", "-sn"]

Listing 17: Configuração Padrão Python

12.2 Perfil B: Stack C# / .NET

Para projetos .NET, utilizamos a ferramenta oficial dotnet format combinada com hooks
locais.

12.2.1 Instalação das Ferramentas

1

2 # Instala o formatador globalmente ou localmente no projeto

3

4 dotnet tool install -g dotnet -format

Listing 18: Setup C

12.2.2 Automação (Husky.Net ou Script)

Recomendamos o uso do pacote Husky.Net para gerenciar os commits.

1

2 dotnet new tool -manifest

3

4 dotnet tool install Husky

5

6 dotnet husky install

Adicione a tarefa no arquivo task-runner.json gerado pelo Husky:

1

2 {

3

4 "tasks ": [

5

6 {

7

8 "name": "dotnet -format",

9

10 "command ": "dotnet",

11

12 "args": [" format", "--verify -no -changes"],

13

14 "group ": "pre -commit"

15

16 }

17

18]

19

51

20 }

Listing 19: Tarefa do Husky para C

12.3 Perfil C: Stack Java

Para Java, a validação é feita via plugins do Maven/Gradle.

12.3.1 Configuração no pom.xml (Maven)

Adicione o plugin Spotless (Formatação) e Checkstyle (Lint) no pom.xml:

1

2 <plugin >

3

4 <groupId >com.diffplug.spotless </groupId >

5

6 <artifactId >spotless -maven -plugin </artifactId >

7

8 <version >2.40.0 </version >

9

10 <configuration >

11

12 <java>

13

14 <googleJavaFormat />

15

16 </java>

17

18 </configuration >

19

20 </plugin >

Listing 20: Exemplo Spotless Maven

12.4 Integração com IDE (VS Code)

Para feedback visual em tempo real, instale as extensões conforme sua linguagem:

• Python:

– Extensão: Black Formatter (Microsoft)

– Extensão: Mypy Type Checker

• C# / .NET:

– Extensão: C# Dev Kit

– Extensão: SonarLint

• Java:

– Extensão: Extension Pack for Java

– Extensão: Checkstyle for Java

52

13 Leitura Recomendada

1 Hohpe, G., & Woolf, B. Enterprise Integration Patterns: Designing, Building, and De-
ploying Messaging Solutions, Addison-Wesley, 2003. Descrição: O livro clássico e funda-
mental sobre integração. Apresenta um catálogo de 65 padrões de integração baseados
em mensageria, fornecendo um vocabulário e uma notação visual para descrever soluções
de integração em larga escala. É a referência principal para entender os mecanismos de
comunicação asśıncrona.

2 Newman, S. Building Microservices: Designing Fine-Grained Systems, O’Reilly, 2015.
Descrição: Embora focado em microsserviços, o livro dedica uma parte significativa à
integração entre serviços, abordando comunicação śıncrona (REST/RPC) e asśıncrona
(mensageria), além de padrões de integração de dados e transações distribúıdas.

3 Fowler, M. Patterns of Enterprise Application Architecture, Addison-Wesley, 2002. De-
scrição: Uma obra essencial sobre arquitetura de software empresarial. Embora não
seja estritamente sobre integração, os padrões apresentados (como Data Mapper, Unit of
Work, Repository) são cruciais para a construção de sistemas que se integram de forma
limpa e eficiente.

4 Bass, L., Clements, P., & Kazman, R. Software Architecture in Practice, 4th ed., Addison-
Wesley, 2021. Descrição: Aborda a arquitetura de software de forma abrangente, in-
cluindo a importância das qualidades de arquitetura (como desempenho, segurança e
manutenibilidade), que são diretamente impactadas pelas decisões de integração.

5 Sommerville, I. Engenharia de Software, 9ª ed., Pearson, 2011. Descrição: Um livro-texto
clássico de engenharia de software que cobre o ciclo de vida completo do desenvolvimento,
incluindo a fase de integração e teste de sistemas.

6 Coulouris, G., Dollimore, J., Kindberg, T., & Blair, G. Distributed Systems: Concepts and
Design, 5th ed., Addison-Wesley, 2011. Descrição: Fornece a base teórica para entender
os desafios e as soluções em sistemas distribúıdos, que é o contexto de toda integração
de software em larga escala. Cobre comunicação, concorrência, tolerância a falhas e
segurança.

53

References

[1] Integração de software.. Dispońıvel em: https://apipass.com.br/

integracao-de-software-como-funciona/

[2] Guia completo sobre Integração de Software.. Dispońıvel em: https://www.techverdi.

com/pt/blog

[3] Enterprise Integration Patterns.. Dispońıvel em: https://www.

enterpriseintegrationpatterns.com/

[4] iPaaS vs ESB. . Dispońıvel em: https://latenode.com/pt-br

54

https://apipass.com.br/integracao-de-software-como-funciona/
https://apipass.com.br/integracao-de-software-como-funciona/
https://www.techverdi.com/pt/blog
https://www.techverdi.com/pt/blog
https://www.enterpriseintegrationpatterns.com/
https://www.enterpriseintegrationpatterns.com/
https://latenode.com/pt-br

	Requisitos de Sistema
	Requisitos Funcionais
	Requisitos Não-Funcionais
	Protótipo
	Detalhamento das Telas do Protótipo

	Projeto de Software
	Diagramas de Interação
	Diagramas de Classes
	Persistência de Dados
	Mapeamento de Ferramentas
	Linguagem de Programação
	Frameworks e Bibliotecas
	Ferramentas de Desenvolvimento
	Containerização e Automação

	Versionamento
	Introdução
	Configuração do Ambiente
	Versionamento Semântico (SemVer)
	Estrutura da Versão (X.Y.Z)

	O Modelo Git Flow
	Branches Permanentes
	Feature Branches (feature/*)
	Release Branches (release/*)
	Hotfix Branches (hotfix/*)

	Exemplo:
	Glossário de Comandos
	Configuração Inicial
	Operações Diárias
	Boas Práticas de Commit

	Deploy e Ambientes
	Infraestrutura
	Processo de Deploy
	Ambiente de Produção e Homologação
	Ambiente de Homologação
	Ambiente de Produção
	Controle de Acesso e Segurança (Opcional)

	Padrões de Adoção de Versões no Mercado
	APIs de Segurança, localização e telecom
	Java / JDK
	Protocolos de Rede
	APIs de Pagamento e Financeiro
	Linguagens de Programação
	Bancos de Dados
	Infraestrutura / DevOps
	Recomendações
	Fontes Recomendadas

	QA
	Tipos de Testes
	Testes de Requisitos (Validação Inicial)
	Testes Funcionais
	Testes de Integração
	Testes de Regressão
	Testes de Aceitação (UAT)
	Testes de Performance Básicos
	Smoke Test Pós-Deploy

	Processo de QA (Passo a Passo)
	Planejamento (Antes da Implementação)
	Design dos Testes
	Preparação
	Execução
	Reteste e Regressão
	Encerramento

	Critérios de Entrada e Saída
	Entrada para Início dos Testes da Sprint/Projeto
	Saída para Liberação em Produção

	Métricas de Qualidade

	Processo de Integração
	Tipos e Padrões de Integração
	Tipos de Integração por Tecnologia
	Padrões de Integração Empresarial (EIP)

	Ferramentas e Tecnologias de Integração
	Plataformas de Integração
	Integração por API (Application Programming Interface)
	Tipos de APIs
	Melhores Práticas de Design de APIs (RESTful)
	Ciclo de Vida da API

	Comparativo ESB vs iPaaS
	Procedimento para Integração de Software
	Fases do Projeto
	Melhores Práticas
	Passo a Passo para o Desenvolvimento de APIs RESTful
	Design da API (API-First)
	Implementação e Codificação
	Testes e Validação
	Governança e Evolução

	Segurança de Software
	Fundamentos Teóricos
	Da Visão SWEBOK v4
	OWASP Top 10 (2021)
	Práticas de Implementação (Codificação Segura)

	Segurança na Implementação (AppSec)
	Gerenciamento de Segredos (Credenciais)
	Blindagem contra Injeção (SQL Injection)
	Validação e Sanitização de Entrada
	Vazamento de Informação (Error Handling)
	5. Dependências Vulneráveis (Supply Chain)
	As 10 Melhores Práticas de Segurança do CERT/CC
	Principais Responsabilidades
	Na Fase de Definição e Design

	Melhores Práticas
	KISS (Keep It Simple, Stupid)
	O que é Simplicidade?
	Sinais de Alerta (Code Smells)
	Técnica Prática: Guard Clauses

	DRY (Don't Repeat Yourself)
	O Problema da Duplicação
	A ``Regra de Três'' (Rule of Three)
	Falsa Duplicação (Cuidado)
	Exemplo Prático: Centralização de Lógica

	SOLID Principles
	S - Single Responsibility Principle (SRP)
	O - Open/Closed Principle (OCP)
	L - Liskov Substitution Principle (LSP)
	I - Interface Segregation Principle (ISP)
	D - Dependency Inversion Principle (DIP)

	Convenções de Estilo e Nomenclatura
	Idioma do Código: Inglês
	Sintaxe: Tabela de Referência por Linguagem
	Semântica de Nomenclatura (Regras Universais)
	Segurança de Tipos (Type Safety)
	Ferramentas de Automação (Qualidade Contínua)
	Documentação e Legibilidade
	Padrões de Docstrings (API)
	Tratamento de Exceções (Exception Handling)

	Usabilidade
	Visão Geral
	Fundamentos Teóricos
	Principais Responsabilidades
	Na Fase de Definição e Design
	Na Fase de Avaliação (Testing)

	Integração com o Time
	Com Engenharia de Requisitos
	Com Q&A / Testes

	Integração e Fluxo de Trabalho
	Fluxo de Entrada (Antes de Codificar)
	Fluxo de Apoio (Durante a Codificação)
	Fluxo de Saída (Entrega)

	Checklist de Code Review (Pull Request)
	Padrões e Legibilidade
	Arquitetura e Design (SOLID/KISS)
	Segurança e Performance (Crítico)
	Operação e Observabilidade
	Testes

	Anexo Técnico: Setup do Ambiente de Desenvolvimento
	Perfil A: Stack Python (Projetos de Backend / Scripts)
	Instalação
	Configuração (.pre-commit-config.yaml)

	Perfil B: Stack C# / .NET
	Instalação das Ferramentas
	Automação (Husky.Net ou Script)

	Perfil C: Stack Java
	Configuração no pom.xml (Maven)

	Integração com IDE (VS Code)

	Leitura Recomendada

