
Documentação Técnica e Compartilhamento de
Conhecimento

Coleta de Dados da Rede Móvel com Aplicativo React
Native

Davi Rocha

24 de julho de 2025

1 Objetivo

Este documento tem como objetivo transmitir o conhecimento adquirido no processo de
desenvolvimento de um aplicativo que coleta dados da rede móvel de forma passiva e otimi-
zada, com foco na preservação da experiência do usuário. A proposta é servir como material
base para desenvolvedores, pesquisadores ou engenheiros que desejem entender, reproduzir
ou evoluir essa solução.

2 Resumo do Projeto

O trabalho consiste no desenvolvimento de um aplicativo em React Native CLI com código
nativo em Kotlin, que realiza coleta periódica de dados como intensidade e qualidade do
sinal da rede móvel (RSRP, RSRQ, CellID), além da localização GPS. A coleta ocorre a cada
15 minutos, em background, e pode ser exportada para um servidor remoto sem consumo de
dados pelo usuário.

3 Tecnologias Utilizadas

• React Native CLI — interface do aplicativo e integração com bibliotecas.

• Kotlin / Android SDK — coleta nativa de dados de rede e execução em segundo
plano.

• WorkManager — execução periódica resistente a reinicializações do sistema.

• TelephonyManager & PhoneStateListener — APIs para extrair dados da rede
celular.
https://stackoverflow.com/questions/19805880/get-signal-strength-in-android

https://www.youtube.com/watch?v=hojwvo99584

1

https://stackoverflow.com/questions/19805880/get-signal-strength-in-android
https://www.youtube.com/watch?v=hojwvo99584


• @react-native-community/geolocation — biblioteca para localização GPS.
https://github.com/react-native-geolocation/react-native-geolocation

• TrafficStats API — para análise de throughput (volume de dados).
https://developer.android.com/reference/android/net/TrafficStats

• AWS EC2 + S3 — infraestrutura para receber os dados coletados.

4 Etapas de Desenvolvimento

4.1 1. Estudo e Escopo Inicial

O projeto teve ińıcio com o estudo da tese de Daniel, que já havia realizado uma coleta
massiva de dados da rede móvel. Com base nessa análise, decidiu-se focar primeiramente na
entrega de um protótipo funcional do app, postergando a modelagem matemática para uma
fase posterior.

4.2 2. Criação do App de Testes

Um aplicativo em React Native CLI foi iniciado, na mesma versão usada pelo app Algar
Varejo. Isso garantiu compatibilidade com o sistema alvo e permitiu testes mais realistas.

4.3 3. Coleta de Dados com TelephonyManager

Foi realizada a integração com a API TelephonyManager, que permite o acesso aos dados da
rede celular do Android. A coleta incluiu:

• RSRP (potência do sinal recebido);

• RSRQ (qualidade do sinal recebido);

• Cell ID (identificador da torre conectada).

O acesso a essas informações exige permissões como ACCESS FINE LOCATION e READ PHONE STATE.

4.4 4. Latitude e Longitude

A geolocalização foi obtida usando a biblioteca @react-native-community/geolocation.
Para isso, também foi necessário lidar com permissões e falhas comuns de dispositivos Android
que bloqueiam a localização em segundo plano.

4.5 5. Execução em Background com WorkManager

Inicialmente, tentou-se usar bibliotecas JS para tarefas em segundo plano. No entanto, essas
soluções não garantiam execução confiável com o app fechado ou após reińıcio do sistema.
Assim, optou-se pelo uso do WorkManager nativo em Kotlin, que:

2

https://github.com/react-native-geolocation/react-native-geolocation
https://developer.android.com/reference/android/net/TrafficStats


• Executa tarefas mesmo com o app fechado;

• Suporta regras de energia e conectividade;

• Foi configurado para rodar a cada 15 minutos com persistência.

4.6 6. Salvamento Local dos Dados

Os dados coletados são salvos em arquivos locais (.txt ou .json) usando react-native-fs.
Isso permite inspeção local e exportação posterior para servidores.

4.7 7. Transmissão sem Consumo de Dados — APN + EC2

Para evitar consumo do pacote de dados do usuário, estudou-se o funcionamento da APN
(Access Point Name), que é a configuração do ponto de acesso à internet da operadora.
A ideia foi:

• Criar uma exceção na APN para não tarifar conexões com um IP fixo;

• Substituir o bucket S3 por uma instância EC2 com IP fixo público;

• Configurar os dispositivos com uma APN personalizada com essa exceção.

Essa abordagem exige testes com a equipe da operadora (Algar) e validação com os
responsáveis do app oficial.

4.8 8. Próximos Passos: Modelagem e Throughput

Com os dados em mãos, o próximo passo será:

• Aplicar modelos como Processos Gaussianos e Redes Neurais para estimar a co-
bertura da rede na cidade;

• Estudar formas de medir throughput (taxa de transmissão de dados), usando a
API TrafficStats.getMobileRxBytes() e getMobileTxBytes() para obter os by-
tes transmitidos e recebidos;

• Executar testes apenas em horários estratégicos (ex: durante a madrugada e com o
celular carregando), visando economia de bateria e dados.

5 Desafios e Decisões Técnicas

• SINR foi descartado — embora inicialmente considerado, foi descartado por ori-
entação técnica de especialista, dado seu baixo valor prático na modelagem inicial.

• Coleta passiva e energética — decisões sempre priorizaram baixo consumo e não
interferência na experiência do usuário.

• Integração nativa foi essencial — soluções apenas em JS se mostraram instáveis
em segundo plano.

3



6 Referências

• PhoneStateListener (YouTube): https://www.youtube.com/watch?v=hojwvo99584

• TelephonyManager (StackOverflow): https://stackoverflow.com/questions/
19805880/get-signal-strength-in-android

• Geolocalização (React Native): https://github.com/react-native-geolocation/
react-native-geolocation

• Throughput (Android TrafficStats): https://developer.android.com/reference/
android/net/TrafficStats

• AWS EC2/S3: https://aws.amazon.com/pt/documentation/

• WorkManager: https://developer.android.com/topic/libraries/architecture/
workmanager

7 Conclusão

Este documento registra, em detalhe, a construção de um sistema capaz de coletar dados
da rede móvel de forma passiva e eficiente, visando aplicações futuras em modelagem de
cobertura e diagnóstico de qualidade. A abordagem combina tecnologias h́ıbridas (React
Native e Kotlin), boas práticas de eficiência energética, e integração com infraestrutura em
nuvem.

O conteúdo aqui apresentado pode ser facilmente atualizado e evolúıdo, tornando-se uma
base viva para novas contribuições e pesquisas.

4

https://www.youtube.com/watch?v=hojwvo99584
https://stackoverflow.com/questions/19805880/get-signal-strength-in-android
https://stackoverflow.com/questions/19805880/get-signal-strength-in-android
https://github.com/react-native-geolocation/react-native-geolocation
https://github.com/react-native-geolocation/react-native-geolocation
https://developer.android.com/reference/android/net/TrafficStats
https://developer.android.com/reference/android/net/TrafficStats
https://aws.amazon.com/pt/documentation/
https://developer.android.com/topic/libraries/architecture/workmanager
https://developer.android.com/topic/libraries/architecture/workmanager

	Objetivo
	Resumo do Projeto
	Tecnologias Utilizadas
	Etapas de Desenvolvimento
	1. Estudo e Escopo Inicial
	2. Criação do App de Testes
	3. Coleta de Dados com TelephonyManager
	4. Latitude e Longitude
	5. Execução em Background com WorkManager
	6. Salvamento Local dos Dados
	7. Transmissão sem Consumo de Dados — APN + EC2
	8. Próximos Passos: Modelagem e Throughput

	Desafios e Decisões Técnicas
	Referências
	Conclusão

