
Software Construction

Integração de Software

Responsável Técnico: Paula Nunes Santos

Dezembro de 2025

1

Fábrica de Software - Brain Guia de Integração

Sumário

1 Introdução e Definições 3
1.1 Tipos e Padrões de Integração . 3

1.1.1 Tipos de Integração por Tecnologia 3
1.1.2 Padrões de Integração Empresarial (EIP) 3

2 Ferramentas e Tecnologias de Integração 4
2.1 Plataformas de Integração . 4
2.2 Integração por API (Application Programming Interface) 4

2.2.1 Tipos de APIs . 5
2.2.2 Melhores Práticas de Design de APIs (RESTful) 5
2.2.3 Ciclo de Vida da API . 6

2.3 Comparativo ESB vs iPaaS . 6

3 Procedimento para Integração de Software 6
3.1 Fases do Projeto . 7
3.2 Melhores Práticas . 8

4 Passo a Passo para o Desenvolvimento de APIs RESTful 8
4.1 Design da API (API-First) . 8
4.2 Implementação e Codificação . 9
4.3 Testes e Validação . 9
4.4 Governança e Evolução . 10

5 Leitura Recomendada 10

Página 2

Fábrica de Software - Brain Guia de Integração

1 Introdução e Definições

A integração de software é um processo fundamental no contexto de desenvolvimento
de software, onde a produção contínua de novas aplicações e a manutenção de sistemas
legados exigem que componentes díspares trabalhem de forma coesa e eficiente [1]. A
integração de sistemas (System Integration) é a disciplina que visa conectar diferentes
subsistemas ou aplicações de software, permitindo que eles troquem dados e coordenem
funcionalidades, transformando-os em um ecossistema unificado [2].

A integração é crucial para:

• Reutilização de Componentes: Conectar novos módulos a serviços existentes,
acelerando o desenvolvimento.

• Consistência de Dados: Garantir que as informações sejam sincronizadas e pre-
cisas em todos os sistemas.

• Automação de Processos: Criar fluxos de trabalho de ponta a ponta que atra-
vessam múltiplas aplicações.

1.1 Tipos e Padrões de Integração

A integração pode ser classificada de diversas maneiras, dependendo da tecnologia e do
padrão arquitetural adotado.

1.1.1 Tipos de Integração por Tecnologia

Tipo de Integra-
ção

Descrição Exemplo de Uso

Integração de Da-
dos

Foco na sincronização ou transferência
de dados entre bancos de dados ou ar-
quivos.

ETL (Extract, Trans-
form, Load) para Data
Warehousing.

Integração de Apli-
cações (A2A)

Conexão de funcionalidades de siste-
mas de software distintos.

Uso de APIs para que
um sistema de CRM
envie dados de clien-
tes para um sistema de
Faturamento.

Integração de Pro-
cessos

Orquestração de atividades que envol-
vem múltiplos sistemas.

Automação de um
processo de pedido
que passa por E-
commerce, Estoque e
Logística.

1.1.2 Padrões de Integração Empresarial (EIP)

Os Padrões de Integração Empresarial, popularizados por Hohpe e Woolf, fornecem so-
luções comprovadas para problemas comuns de integração [3]. Eles se baseiam principal-
mente em mensageria.

Página 3

Fábrica de Software - Brain Guia de Integração

Padrão de Comuni-
cação

Descrição Vantagens

Mensageria (Messa-
ging)

Sistemas se comunicam trocando men-
sagens assíncronas através de um canal
intermediário (Message Broker).

Desacoplamento (Lo-
ose Coupling), escala-
bilidade, resiliência.

Invocação Remota de
Procedimento (RPC
- Remote Procedure
Call)

Sistemas se comunicam diretamente,
com o solicitante esperando uma res-
posta síncrona.

Simplicidade, familia-
ridade com chamadas
de função.

2 Ferramentas e Tecnologias de Integração

A escolha da ferramenta de integração é um fator crítico que impacta a arquitetura, a
escalabilidade e a manutenibilidade do ecossistema de software.

2.1 Plataformas de Integração

Ferramenta Conceito Uso Típico
ESB (Enterprise
Service Bus)

Arquitetura centralizada que atua
como um barramento de comunicação
entre aplicações locais (on-premise).
Oferece roteamento, transformação e
orquestração.

Integração de sistemas
legados e complexos
dentro de um datacen-
ter.

iPaaS (Integra-
tion Platform as
a Service)

Plataforma baseada em nuvem que for-
nece ferramentas de autoatendimento
para desenvolver, executar e governar
fluxos de integração.

Integração de aplica-
ções SaaS (Software as
a Service), ambientes
híbridos (nuvem e lo-
cal) e projetos com
foco em agilidade.

API Gateway Ponto de entrada único para todas as
APIs. Lida com segurança (autenti-
cação/autorização), limitação de taxa
(rate limiting), roteamento e monitora-
mento. .

Exposição controlada
e segura de serviços de
backend para clientes
externos ou internos.

Message Broker Software intermediário que gerencia a
troca de mensagens entre sistemas de
forma assíncrona. Exemplos: Apache
Kafka, RabbitMQ.

Implementação de ar-
quiteturas orientadas
a eventos (EDA) e ga-
rantia de entrega de
mensagens em ambi-
entes distribuídos.

2.2 Integração por API (Application Programming Interface)

A integração por API é o método mais prevalente e flexível em arquiteturas modernas,
como microsserviços e sistemas distribuídos. Uma API atua como um contrato bem

Página 4

Fábrica de Software - Brain Guia de Integração

definido que permite que dois sistemas se comuniquem sem conhecer os detalhes internos
um do outro.

2.2.1 Tipos de APIs

Tipo Padrão de Co-
municação

Características Uso Típico

REST (Re-
presentati-
onal State
Transfer)

Síncrona (HTTP) Leve, sem estado (stateless), uti-
liza verbos HTTP (GET, POST,
PUT, DELETE) e recursos (re-
sources). Formato de dados mais
comum é JSON.

Integração web,
APIs públicas,
microsserviços.

SOAP (Sim-
ple Object
Access Proto-
col)

Síncrona
(XML/HTTP)

Baseado em XML, fortemente ti-
pado, utiliza WSDL (Web Servi-
ces Description Language) para
contrato. Mais complexo, mas
com alta segurança e transaciona-
lidade.

Integração com
sistemas lega-
dos, ambientes
corporativos
(Enterprise).

GraphQL Síncrona (HTTP) Linguagem de consulta para
APIs. Permite que o cliente soli-
cite exatamente os dados de que
precisa, evitando over-fetching
ou under-fetching.

Aplicações mó-
veis e web com
requisitos de da-
dos complexos e
variáveis.

gRPC (Go-
ogle Remote
Procedure
Call)

Síncrona
(HTTP/2)

Baseado em RPC, utiliza Proto-
col Buffers para serialização. Fo-
cado em alta performance, baixo
consumo de banda e comunicação
entre microsserviços.

Comunicação in-
terna de alto de-
sempenho entre
serviços.

2.2.2 Melhores Práticas de Design de APIs (RESTful)

O design de APIs deve ser tratado como um produto, focado na experiência do desenvol-
vedor (Developer Experience - DX).

• Recursos (Resources): Use substantivos (ex: /clientes, /pedidos) em vez de
verbos nos endpoints. Os verbos HTTP definem a ação (GET para buscar, POST
para criar, etc.).

• Versionamento: Inclua a versão da API na URL (ex: /api/v1/clientes) ou no
cabeçalho (Header) para permitir a evolução sem quebrar clientes existentes.

• Códigos de Status HTTP: Utilize os códigos de status padrão (200 OK, 201 Created,
400 Bad Request, 404 Not Found, 500 Internal Server Error) de forma consistente
para indicar o resultado da operação.

• Paginação e Filtragem: Implemente mecanismos de paginação (ex: ?page=1&size=20)
e filtragem para otimizar o desempenho e o uso de recursos.

Página 5

Fábrica de Software - Brain Guia de Integração

• Documentação: Mantenha a documentação da API (ex: usando OpenAPI/Swagger)
sempre atualizada, detalhando endpoints, parâmetros, exemplos de requisição/res-
posta e códigos de erro.

2.2.3 Ciclo de Vida da API

A integração por API segue um ciclo de vida que deve ser gerenciado ativamente:

1. Planejamento: Definir o propósito, o público-alvo e os requisitos de negócio.

2. Design: Modelar o contrato da API (especificação) antes da implementação.

3. Desenvolvimento: Implementar a lógica de negócio e os adaptadores de dados.

4. Teste: Realizar testes unitários, de integração e de carga.

5. Publicação: Disponibilizar a API através de um API Gateway para gerenciamento
e segurança.

6. Monitoramento: Acompanhar o desempenho, a latência e os erros em produção.

7. Descontinuação (Retirement): Gerenciar a transição para novas versões e a eventual
desativação de versões antigas.

2.3 Comparativo ESB vs iPaaS

A tendência moderna em fábricas de software é a migração de arquiteturas ESB tradici-
onais para soluções iPaaS, especialmente em ambientes de nuvem e híbridos [4].

Característica ESB (Enterprise Service
Bus)

iPaaS (Integration Plat-
form as a Service)

Modelo de Implanta-
ção

Geralmente local (on-
premise) ou em IaaS.

Baseado em nuvem (SaaS).

Foco Integração de sistemas lega-
dos e internos.

Integração de SaaS, nuvem
e ambientes híbridos.

Governança Centralizada e tipicamente
gerenciada por uma equipe
de integração dedicada.

Distribuída, permitindo que
equipes de desenvolvimento
e de negócios criem suas
próprias integrações (Citi-
zen Integrators).

Escalabilidade Limitada pela infraestru-
tura local.

Altamente escalável e elás-
tica, gerenciada pelo prove-
dor de nuvem.

3 Procedimento para Integração de Software

Um projeto de integração bem-sucedido em uma fábrica de software segue um ciclo de
vida estruturado, garantindo que os requisitos de negócio e técnicos sejam atendidos com
qualidade e segurança.

Página 6

Fábrica de Software - Brain Guia de Integração

3.1 Fases do Projeto

O procedimento pode ser dividido nas seguintes fases:

Fase 1: Planejamento e Análise de Requisitos

• Definição de Objetivos: Clarificar o porquê da integração (ex: reduzir redundância
de dados, automatizar processo X).

• Mapeamento de Sistemas: Identificar os sistemas de origem (Source) e destino (Tar-
get), suas tecnologias e capacidades de comunicação (APIs, bancos de dados, arqui-
vos).

• Análise de Dados: Mapear os campos de dados que serão trocados, definindo a
transformação (Transformation) e o formato (Schema) necessários.

• Seleção da Tecnologia: Escolher o padrão de integração (síncrono/assíncrono) e a
ferramenta (iPaaS, API Gateway, etc.) mais adequados.

Fase 2: Design e Arquitetura

• Desenho do Fluxo: Criar diagramas (ex: BPMN, UML) que detalham o fluxo de
mensagens, o roteamento e a lógica de orquestração.

• Definição de Contratos: Formalizar os contratos de interface (ex: especificações
OpenAPI/Swagger para APIs, schemas XSD/JSON para mensagens). No caso de
APIs, a especificação OpenAPI é a prática recomendada.

• Segurança: Projetar mecanismos de autenticação (ex: OAuth 2.0, JWT) e autori-
zação, garantindo a criptografia dos dados em trânsito (TLS/SSL).

• Tratamento de Erros: Definir estratégias de retry, logging, e mecanismos de com-
pensação (rollback) para falhas.

Fase 3: Implementação e Desenvolvimento

• Desenvolvimento dos Adaptadores: Criar os componentes que se comunicam com
os sistemas de origem e destino.

• Implementação da Lógica: Codificar a lógica de transformação, roteamento e or-
questração na plataforma de integração escolhida.

• Versionamento: Utilizar sistemas de controle de versão (ex: Git) para gerenciar o
código da integração.

Fase 4: Testes e Qualidade

• Testes Unitários: Testar individualmente os componentes de transformação e adap-
tadores.

• Testes de Integração: Validar o fluxo completo entre os sistemas em um ambiente
de homologação (Staging).

Página 7

Fábrica de Software - Brain Guia de Integração

• Testes de Performance e Carga: Simular o volume de transações esperado para
garantir que a solução suporte a demanda.

• Monitoramento: Configurar ferramentas de monitoramento e alertas para rastrear
o desempenho e as falhas da integração em tempo real.

Fase 5: Implantação e Operação

• Implantação (Deployment): Mover a solução para o ambiente de produção, pre-
ferencialmente utilizando práticas de CI/CD (Continuous Integration/Continuous
Delivery).

• Go-Live e Validação: Acompanhar o desempenho inicial e validar a consistência dos
dados.

• Manutenção e Evolução: A integração deve ser tratada como um produto de soft-
ware, sujeita a manutenção contínua, refatoração e evolução conforme os sistemas
conectados mudam.

3.2 Melhores Práticas

• Desacoplamento (Loose Coupling): Os sistemas devem ter o mínimo de dependência
possível. O uso de Message Brokers e APIs bem definidas promove o desacopla-
mento.

• Padrões de Integração: Sempre que possível, utilize os Enterprise Integration Pat-
terns para resolver problemas comuns de forma padronizada e robusta [3].

• Observabilidade: Implementar logging detalhado, tracing distribuído e métricas
para garantir a visibilidade completa do fluxo de dados.

• Idempotência: Garantir que a repetição de uma mensagem ou chamada de API não
cause efeitos colaterais indesejados no sistema de destino.

• Governança de APIs: Tratar as APIs como produtos, com documentação clara,
versionamento e um ciclo de vida bem definido. A utilização de um API Gateway
é essencial para aplicar políticas de segurança, limitação de taxa e monitoramento.

4 Passo a Passo para o Desenvolvimento de APIs REST-
ful

O desenvolvimento de APIs RESTful em uma Fábrica de Software deve seguir uma abor-
dagem estruturada, preferencialmente API-First, onde o contrato da API é definido
antes da implementação do código.

4.1 Design da API (API-First)

1. Identificação de Recursos: Defina os principais recursos (entidades) que a API
irá gerenciar (ex: Clientes, Produtos, Pedidos).

Página 8

Fábrica de Software - Brain Guia de Integração

2. Definição de Endpoints e Verbos: Mapeie as operações CRUD (Create, Read,
Update, Delete) para os verbos HTTP e URLs dos recursos:

• POST /recursos (Criar)

• GET /recursos (Listar)

• GET /recursos/{id} (Buscar por ID)

• PUT /recursos/{id} (Atualizar Completo)

• PATCH /recursos/{id} (Atualizar Parcial)

• DELETE /recursos/{id} (Excluir)

3. Modelagem de Dados (Payloads): Defina a estrutura exata dos dados de re-
quisição e resposta (JSON ou XML), garantindo consistência e clareza.

4. Especificação do Contrato: Crie o contrato formal da API usando ferramentas
como OpenAPI (Swagger). Este arquivo de especificação servirá como a única
fonte de verdade para o desenvolvimento do backend e para o consumo do fron-
tend/clientes.

4.2 Implementação e Codificação

1. Geração de Código (Opcional): Utilize o arquivo OpenAPI para gerar stubs de
código (esqueletos) para o servidor e para os clientes, acelerando o desenvolvimento.

2. Implementação da Lógica de Negócio: Conecte os endpoints definidos à lógica
de negócio e à camada de persistência de dados.

3. Tratamento de Erros: Implemente o tratamento de erros de forma consistente,
retornando códigos de status HTTP apropriados (4xx para erros do cliente, 5xx
para erros do servidor) e mensagens de erro claras no corpo da resposta.

4. Segurança: Implemente autenticação (ex: OAuth 2.0, JWT) e autorização em
todos os endpoints, garantindo que apenas usuários autorizados possam acessar os
recursos.

4.3 Testes e Validação

1. Testes Unitários: Teste a lógica de negócio e os controllers da API isoladamente.

2. Testes de Integração: Valide o fluxo completo da API, incluindo a comunicação
com o banco de dados e outros serviços.

3. Testes de Contrato: Use ferramentas como Postman ou Dredd para garantir
que a API implementada esteja em total conformidade com o contrato definido no
OpenAPI.

4. Testes de Performance: Verifique a latência e a capacidade de carga da API sob
estresse.

Página 9

Fábrica de Software - Brain Guia de Integração

4.4 Governança e Evolução

1. Documentação Automática: Utilize o arquivo OpenAPI para gerar documenta-
ção interativa (Swagger UI) que é acessível aos consumidores da API.

2. Versionamento: Garanta que o versionamento (ex: v1, v2) seja aplicado desde o
início para permitir a evolução da API sem quebrar clientes legados.

3. Monitoramento: Configure ferramentas de monitoramento e alertas para rastrear
o desempenho, a latência e os erros em produção.

5 Leitura Recomendada

1 Hohpe, G., & Woolf, B. Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions, Addison-Wesley, 2003. Descrição: O livro clássico e
fundamental sobre integração. Apresenta um catálogo de 65 padrões de integração
baseados em mensageria, fornecendo um vocabulário e uma notação visual para
descrever soluções de integração em larga escala. É a referência principal para
entender os mecanismos de comunicação assíncrona.

2 Newman, S. Building Microservices: Designing Fine-Grained Systems, O’Reilly,
2015. Descrição: Embora focado em microsserviços, o livro dedica uma parte signi-
ficativa à integração entre serviços, abordando comunicação síncrona (REST/RPC)
e assíncrona (mensageria), além de padrões de integração de dados e transações
distribuídas.

3 Fowler, M. Patterns of Enterprise Application Architecture, Addison-Wesley, 2002.
Descrição: Uma obra essencial sobre arquitetura de software empresarial. Embora
não seja estritamente sobre integração, os padrões apresentados (como Data Mapper,
Unit of Work, Repository) são cruciais para a construção de sistemas que se integram
de forma limpa e eficiente.

4 Bass, L., Clements, P., & Kazman, R. Software Architecture in Practice, 4th ed.,
Addison-Wesley, 2021. Descrição: Aborda a arquitetura de software de forma abran-
gente, incluindo a importância das qualidades de arquitetura (como desempenho,
segurança e manutenibilidade), que são diretamente impactadas pelas decisões de
integração.

5 Sommerville, I. Engenharia de Software, 9ª ed., Pearson, 2011. Descrição: Um
livro-texto clássico de engenharia de software que cobre o ciclo de vida completo do
desenvolvimento, incluindo a fase de integração e teste de sistemas.

6 Coulouris, G., Dollimore, J., Kindberg, T., & Blair, G. Distributed Systems: Con-
cepts and Design, 5th ed., Addison-Wesley, 2011. Descrição: Fornece a base teórica
para entender os desafios e as soluções em sistemas distribuídos, que é o contexto
de toda integração de software em larga escala. Cobre comunicação, concorrência,
tolerância a falhas e segurança.

Página 10

Fábrica de Software - Brain Guia de Integração

Referências

[1] Integração de software.. Disponível em: https://apipass.com.br/
integracao-de-software-como-funciona/

[2] Guia completo sobre Integração de Software.. Disponível em: https://www.
techverdi.com/pt/blog

[3] Enterprise Integration Patterns.. Disponível em: https://www.
enterpriseintegrationpatterns.com/

[4] iPaaS vs ESB. . Disponível em: https://latenode.com/pt-br

Página 11

https://apipass.com.br/integracao-de-software-como-funciona/
https://apipass.com.br/integracao-de-software-como-funciona/
https://www.techverdi.com/pt/blog
https://www.techverdi.com/pt/blog
https://www.enterpriseintegrationpatterns.com/
https://www.enterpriseintegrationpatterns.com/
https://latenode.com/pt-br

	Introdução e Definições
	Tipos e Padrões de Integração
	Tipos de Integração por Tecnologia
	Padrões de Integração Empresarial (EIP)

	Ferramentas e Tecnologias de Integração
	Plataformas de Integração
	Integração por API (Application Programming Interface)
	Tipos de APIs
	Melhores Práticas de Design de APIs (RESTful)
	Ciclo de Vida da API

	Comparativo ESB vs iPaaS

	Procedimento para Integração de Software
	Fases do Projeto
	Melhores Práticas

	Passo a Passo para o Desenvolvimento de APIs RESTful
	Design da API (API-First)
	Implementação e Codificação
	Testes e Validação
	Governança e Evolução

	Leitura Recomendada

