Projeto de Software - BIRD

BIRD
2025

Sumario

1

Requisitos do Sistema

1.1 Requisitos Funcionais
1.2 Requisitos Nao-Funcionais o
1.3 Prototipo
1.3.1 Detalhamento das Telas do Prototipo
Projeto de Software
2.1 Diagramas de Interacao
2.2 Diagramas de Classes e
2.3 PersistEncia de Dadoso oo
2.4 Mapeamento de Ferramentaso
2.4.1 Linguagem de Programacao
2.4.2 Frameworks e Bibliotecas.
2.4.3 Ferramentas de Desenvolvimento
2.4.4 Containerizacao e Automacao
Versionamento
3.1 Introducao
3.2 Configuracao do Ambiente L o
3.3 Versionamento Semantico (SemVer)o L
3.3.1 Estrutura da Versao (X.Y.Z)
3.4 O Modelo Git Flow o
3.4.1 Branches Permanentes
3.4.2 Feature Branches (feature/*)
3.4.3 Release Branches (release/*)
3.4.4 Hotfix Branches (hotfix/*)
3.5 Exemplo:
3.6 Glossario de Comandos
3.6.1 Configuracao Inicial oL
3.6.2 Operagoes Didrias
3.6.3 Boas Praticas de Commit L.
Deploy
4.1 Infraestrutura
4.2 Processo de Deploy
Ambiente de Producao e Homologacao
5.1 Ambiente de Homologacao
5.2 Ambiente de Producao
5.3 Controle de Acesso e Seguranca (Opcional)
QA
6.1 Tiposde Testes
6.1.1 Testes de Requisitos (Validagao Inicial)
6.1.2 Testes Funcionais
6.1.3 Testes de Integracaoo
6.1.4 Testes de Regressao
6.1.5 Testes de Aceitagao (UAT),
6.1.6 Testes de Performance Bésicos

10
10
10
10

6.1.7 Smoke Test Pos-Deployo

6.2 Processo de QA (Passoa Passo)
6.2.1 Planejamento (Antes da Implementagao)
6.2.2 Design dos Testeso
6.2.3 Preparacao
6.2.4 Execucao
6.2.5 Reteste e Regressao
6.2.6 Encerramento e
6.3 Critérios de Entrada e Saida L
6.3.1 Entrada para Inicio dos Testes da Sprint/Projeto
6.3.2 Saida para Liberacao em Producao
6.4 Métricas de Qualidade
7 Padroes de Adocao de Versoes no Mercado
7.1 APIs de Telecomunicagoes (CAMARA / Open Gateway)
7.2 Java /JDK ..o
7.3 Protocolosde Rede
7.4 APIs de Pagamento e Financeiro
7.5 Linguagens de Programacao
7.6 Bancosde Dados
7.7 Infraestrutura / DevOps
7.8 Recomendagoes
7.9 Fontes Recomendadas
8 Processo de Integracao
8.1 Tipos e Padroes de Integracao oL
8.1.1 Tipos de Integracao por Tecnologia
8.1.2 Padroes de Integracao Empresarial (EIP)
9 Ferramentas e Tecnologias de Integracao
9.1 Plataformas de Integracao
9.2 Integracao por API (Application Programming Interface)
9.2.1 Tiposde APIs.
9.2.2 Melhores Praticas de Design de APIs (RESTful)
9.2.3 Ciclode Vidada APT.
9.3 Comparativo ESB vsiPaaS L
10 Procedimento para Integracao de Software
10.1 Fases do Projeto
10.2 Melhores Praticas
11 Passo a Passo para o Desenvolvimento de APIs RESTful
11.1 Design da API (API-First)
11.2 Implementacao e Codificacao
11.3 Testes e Validacao
11.4 Governanca e Evolugao

12 Seguranca de Software
12.1 Fundamentos Tedricos

12.1.1 Da Visao SWEBOK v4 s,
12.1.2 OWASP Top 10 (2021) oo o oo

14
14
14
14
14
14
15
15
15
15

16
16
16
16

18
18
18
18
18
19
20

21
21
22

23
23
23
23
24

12.2

12.1.3 Préticas de Implementagao (Codificagdo Segura)

12.1.4 As 10 Melhores Praticas de Seguranga do CERT/CC

Principais Responsabilidades
12.2.1 Na Fase de Definicao e Design
12.2.2 Durante Implementacao
12.2.3 Durante Testes e Entrega

13 Principios Fundamentais (Clean Code)

13.1

13.2

13.3

KISS (Keep It Simple, Stupid)
13.1.1 O que é Simplicidade?
13.1.2 Sinais de Alerta (Code Smells)
13.1.3 Técnica Préatica: Guard Clauses
DRY (Don’t Repeat Yourself)
13.2.1 O Problema da Duplicacao
13.2.2 A “Regra de Trés” (Rule of Three)
13.2.3 Falsa Duplicagao (Cuidado)
13.2.4 Exemplo Pratico: Centralizacao de Logica . .
SOLID Principles
13.3.1 S - Single Responsibility Principle (SRP) . . .
13.3.2 O - Open/Closed Principle (OCP)
13.3.3 L - Liskov Substitution Principle (LSP)
13.3.4 I - Interface Segregation Principle (ISP) . . .
13.3.5 D - Dependency Inversion Principle (DIP) . .

14 Convencgoes de Estilo e Nomenclatura

14.1
14.2
14.3

14.4
14.5

Idioma do Coédigo: Ingles
Sintaxe: Tabela de Referéncia por Linguagem
Semantica de Nomenclatura (Regras Universais) . . .
14.3.1 Fungoes sao Agoes (Verbos)
14.3.2 Classes sao Entidades (Substantivos)
14.3.3 Variaveis Booleanas (Perguntas)
Seguranga de Tipos (Type Safety)
Exemplo Pratico: Refatoragao e Clareza

15 Ferramentas de Automacao (Qualidade Continua)

15.1
15.2
15.3

Pilar 1: Formatter Automatizado
Pilar 2: Analisador Estético (Linter)
Pilar 3: Type Checker

16 Documentacao e Legibilidade

16.1
16.2

16.3
16.4

Regrade Ouro
Padroes de Docstrings (API)
16.2.1 Estrutura Obrigatéria
16.2.2 Exemplo Prético (Python - Google Style) . . .
Comentérios Internos (O “Porqué”)
Tags de Manutencao (Anotagoes)

17 Tratamento de Erros e Observabilidade (Logs)

17.1
17.2
17.3

“A Morte do print”o
Logs Estruturados (JSON)
Niveis de Log (Padronizagao)

17.4 Seguranca no Log (Sanitizagao)
17.5 Tratamento de Excegoes (Exception Handling)
17.5.1 Regra 1: Nao engula excegoes (Silent Failure)
17.5.2 Regra 2: Envelopamento (Pattern de Camadas)
17.5.3 Regra 3: Correlation ID (Rastreabilidade)

18 Seguranca na Implementagao (AppSec)
18.1 Gerenciamento de Segredos (Credenciais)
18.2 Blindagem contra Injecao (SQL Injection)
18.3 Validacao e Sanitizacao de Entrada
18.4 Vazamento de Informagao (Error Handling)
18.5 5. Dependéncias Vulnerdveis (Supply Chain)

19 Integracgao e Fluxo de Trabalho
19.1 Fluxo de Entrada (Antes de Codificar),
19.2 Fluxo de Apoio (Durante a Codificagdo)
19.3 Fluxo de Saida (Entrega) Lo o

20 Checklist de Code Review (Pull Request)
20.1 Padroes e Legibilidade oo
20.2 Arquitetura e Design (SOLID/KISS)
20.3 Seguranga e Performance (Critico)
20.4 Operacgao e Observabilidade
20.5 Testes L e e

21 Anexo Técnico: Setup do Ambiente de Desenvolvimento
21.1 Perfil A: Stack Python (Projetos de Backend / Scripts)
21.1.1 Imstalagao
21.1.2 Configuragao (.pre-commit-config.yaml)
21.2 Perfil B: Stack C# / NET
21.2.1 Instalagao das Ferramentas.
21.2.2 Automacao (Husky.Net ou Seript)
21.3 Perfil C: Stack Java
21.3.1 Configuracao no pom.xml (Maven)
21.4 Integragdo com IDE (VS Code)

22 Usabilidade
22.1 Visao Geral
22.2 Fundamentos Tedricos Lo
22.3 Principais Responsabilidades oL
22.3.1 Na Fase de Definicao e Design
22.3.2 Na Fase de Avaliagao (Testing)
22.4 Integracao com o Time L. Lo
22.4.1 Com Engenharia de Requisitos
2242 Com Q&A / Testes

23 Leitura Recomendada

1 Requisitos do Sistema

Texto Base (Instrugao):

Esta secao deve definir o propdsito deste documento ERS. O texto deve explicar por que o
documento estd sendo escrito e quem é o piblico-alvo (ex: desenvolvedores, testadores, cliente).
Ele deve deixar claro que este documento servird como um ”contrato” ou acordo formal entre
a equipe de desenvolvimento e o cliente sobre o que o software fara.

Exemplo:

70 objetivo desta ERS (Especificacdo de Requisitos de Software) consiste em documentar
os requisitos do software a ser produzido. Este documento visa garantir que o cliente (usuério
do software) e os desenvolvedores tenham um entendimento comum e inequivoco de todas
as funcionalidades, capacidades e restrigoes do software, servindo como base para o design,
desenvolvimento, testes e validacao do produto final.”

Texto Base (Instrugao):

Descreva o escopo do produto de software. Responda as perguntas:

e Qual é o nome do sistema?
e Qual é o propdsito principal do sistema? (Qual problema ele resolve?)
e QQuais sao os principais objetivos de negocio?

e (Opcional, mas recomendado) O que o sistema nao fard? (Escopo Negativo). Isso é
crucial para gerenciar as expectativas.

Exemplo:

70 sistema tem como propédsito [Propédsito principal, ex: otimizar o processo de
gestao de inventario] para a [Empresa/Cliente|. Dentre os principais objetivos destacam-
se um maior controle de [Entidade, ex: estoque] e a organizacdo de [Entidade, ex: pe-
didos].1 O software permitird ao usudrio [Fung¢ao principal 1, ex: cadastrar produtos],
[Funcao principal 2, ex: registrar entradas e saidas] e [Fungao principal 3, ex: gerar
relatérios de inventario].

Escopo Negativo: Este sistema nao fard o processamento de folha de pagamento ou
faturamento, que continuarao sendo realizados pelo sistema ERP existente.”

1.1 Requisitos Funcionais

Neste item devem ser apresentados os requisitos funcionais que especificam agoes que um sistema
deve ser capaz de executar, ou seja, as funcgoes do sistema. Os requisitos funcionais geralmente
sao melhor descritos em diagramas de caso de uso, juntamente com o detalhamento dos atores
e de cada caso de uso. Cada ator do diagrama de caso de uso deve ser descrito de forma
sucinta e cada caso de uso deve ser especificado. A seguir sao apresentados itens bésicos para
a especificacao dos casos de uso do diagrama.

e Nome do Caso de Uso

Breve descrigao

Atores envolvidos

Pré-condigoes

Fluxo Principal de Eventos

1.2

Pés-condicoes
Fluxo Secundario de Eventos

Observacoes

Requisitos Nao-Funcionais

Neste item devem ser apresentados os requisitos nao funcionais, que especificam restrigoes
sobre os servigos ou funcoes providas pelo sistema. Eles abrangem aspectos como desempenho,
seguranca, usabilidade, confiabilidade e escalabilidade.

1.3

Requisitos de sistema : Requisitos que especificam o comportamento do produto.Ex.
portabilidade; tempo na execucao; confiabilidade,mobilidade, etc.

Requisitos da organizacao: Requisitos decorrentes de politicas e procedimentos corpora-
tivos. Ex. padroes, infra-estrutura,etc.

Requisitos externos: Requisitos decorrentes de fatores externos ao sistema e ao processo
de desenvolvimento. Ex. requisitos de interoperabilidade, legislacao,localizacao geografica
etc.

Requisitos de facilidade de uso. Ex.: usudrios deverao operar o sistema apds um deter-
minado tempo de treinamento.

Requisitos de eficiéncia. Ex.: o sistema devera processar n requisi¢oes por um determinado
tempo.

Requisitos de confiabilidade. Ex.: o sistema devera ter alta disponibilidade, por.exemplo,

99
Requisitos de portabilidade. Ex.: o sistema devera rodar em qualquer plataforma.

Requisitos de entrega.Ex.: um relatério de acompanhamento devera ser fornecido toda
segunda-feira.

Requisitos de implementacao.: Ex.: o sistema devera ser desenvolvido na linguagem Java.
Requisitos de padroes.: Ex. uso de programacao orientada a objeto sob a plataforma A.
Requisitos de interoperabilidade.:Ex. o sistema devera se comunicar com o SQL Server.

Requisitos éticos. Ex.: o sistema nao apresentara aos usuarios quaisquer dados de cunho
privativo.

Requisitos legais. Ex.: o sistema devera atender as normas legais, tais como padroes, leis,
etc.

Requisitos de Integracao. Ex.: o sistema integra com outra aplicacao.

Protétipo

O prototipo do sistema é a materializacao inicial e das funcionalidades principais. Ele serve
como um produto minimo vidvel (MVP) visual, que é construido e aprimorado de forma in-
cremental. O objetivo central é estabelecer um ciclo de feedback continuo e atingir o consenso
total com o usudrio final sobre os requisitos do sistema.

1.3.1 Detalhamento das Telas do Protétipo

A implementacao visual das telas pode ser realizada utilizando ferramentas de mockup dedi-
cadas ou o ambiente de desenvolvimento final. EE mandatorio que cada tela seja acompanhada
de uma especificacao funcional detalhada, que deve contemplar os seguintes atributos-chave:

e Objetivo: Declaracao concisa da finalidade da tela.

e Relagao de Navegacao: Indicacao do modulo ou tela de origem e a lista de telas sucessoras
que podem ser invocadas.

e Regras e Restrigoes:

— Regras de Dominio: Especificacoes técnicas dos componentes de input, tais como for-
mato de dados (ex: numérico, alfanumérico), restri¢oes de cardinalidade (tamanho),
e valores padrao (default).

— Perfis de Acesso: Defini¢ao clara dos papéis de usudrio (ex: Administrador, Oper-
ador, Leitor) autorizados a visualizar e interagir com a tela.

2 Projeto de Software

Texto Base (Instrugao):
Esta secao descreve o design (o ”como”) do software, traduzindo os requisitos (o "o qué”)
em uma especificacao de implementacgao. Esta secao é voltada para os desenvolvedores.

2.1 Diagramas de Interagao

Texto Base (Instrugao):

Insira aqui os Diagramas de Interagdo da UML (Diagramas de Sequéncia detalhados ou
Diagramas de Comunicagao). Diferente do DSS (3.1.4), estes diagramas mostram a colaboracao
interna entre as classes e objetos de software (ex: Controladores, Repositérios, Entidades) para
realizar um Caso de Uso.

2.2 Diagramas de Classes

Texto Base (Instrugao):

Insira aqui o Diagrama de Classes de Projeto (UML). Este diagrama é mais detalhado que
o Modelo Conceitual (3.2). Ele deve incluir as classes de software (ex: classes de Interface,
Controle e Entidade), seus atributos (com tipos de dados e visibilidade -/+) e seus métodos
(com parametros e visibilidade).

2.3 PersistEncia de Dados

O banco de dados utilizado no projeto é o [nome do SGBD — ex.: PostgreSQL, MySQL,
MongoDB], classificado como [relacional — nao relacional]. Sua escolha se deve a [justi-
ficativa sucinta, como desempenho, escalabilidade, compatibilidade tecnolégica ou
suporte a transagoes].

Para bancos de dados relacionais, a persisténcia dos dados é realizada por meio de mapea-
mento objeto-relacional (ORM), no qual as classes do Diagrama de Classes sdo mapeadas para
tabelas, e seus atributos para colunas, respeitando chaves primarias, estrangeiras e relaciona-
mentos.

Para bancos de dados nao relacionais, a persisténcia ocorre por meio de colegoes e docu-
mentos, onde as classes sao representadas por documentos (por exemplo, JSON), estruturados
conforme a modelagem definida no Diagrama de Classes.

2.4 Mapeamento de Ferramentas

Texto Base (Instrugao):

Descreva as ferramentas utilizadas no desenvolvimento, versionamento, testes e deploy do
sistema, justificando brevemente a escolha de cada uma em relacao aos requisitos do projeto,
como escalabilidade, manutencao, produtividade e integracao.

2.4.1 Linguagem de Programacao

A linguagem [LINGUAGEM] foi adotada neste projeto por apresentar melhor aderéncia as
necessidades da aplicagao, especialmente no que se refere a [tipo de aplicacao, ex: aplicagoes
web, APIs, processamento de dados, sistemas distribuidos]. Entre os principais motivos
para sua escolha destacam-se:

e vantagem 1: ex. produtividade, tipagem, performance, comunidade

e vantagem 2

e vantagem 3

2.4.2 Frameworks e Bibliotecas

O framework [FRAMEWORK PRINCIPAL] foi utilizado para estruturar a aplicagao, pois
oferece [motivagao: ex. padrao arquitetural, seguranga, rapidez no desenvolvimento,
suporte a ORM, middlewares]. Outras bibliotecas relevantes incluem:

e Biblioteca 1: utilizada para [finalidade]

e Biblioteca 2: utilizada para [finalidade]

2.4.3 Ferramentas de Desenvolvimento

Para o desenvolvimento e apoio ao projeto, foram utilizadas as seguintes ferramentas:

IDE/Editor — [ex: VS Code]: para edigao e organizacao do c6digo-fonte

Ferramenta de modelagem — [ex: draw.io, StarUML)]: para criacao de diagramas UML

Ferramenta de testes de API — [ex: Postman, Insomnia]: para validagao das rotas e
Servicos

Ferramenta de mock/teste — [ex: WireMock]: para simulagdo de servigos externos
(quando aplicdvel)

2.4.4 Containerizacao e Automacgao

A ferramenta [Docker / Outra] foi utilizada para padronizar o ambiente de desenvolvimento
e facilitar o deploy da aplicacao, garantindo que ela funcione de forma consistente em diferentes
ambientes.

3 Versionamento

3.1 Introducgao

Nesse guia padronizaremos a forma como o time desenvolve, integra e entrega software. Us-
aremos o Git Flow para organizar as ramificagoes e o Versionamento Semantico para
comunicar o impacto das mudangas.

3.2 Configuragcao do Ambiente

Teremos uma organizacao do Bird no github, com os pesquisadores adicionados como colabo-
radores, onde serao criados repositérios especificos para cada projeto.

3.3 Versionamento Semantico (SemVer)

Vamos usar o padrao Major.Minor.Patch (ex: v1.2.0). A alteracao dos nimeros depende
do impacto das mudancas feitas no cédigo:*

3.3.1 Estrutura da Versao (X.Y.Z)

e MAJOR (X.0.0) - Quebra de Compatibilidade: Incrementada quando ha mudangas
drasticas. E geralmente quando acaba a retrocompatibilidade.

e MINOR (0.Y.0) - Nova Funcionalidade: Incrementada quando tem novas funcional-
idades adicionadas, mas que ainda sao compativeis com versoes anteriores. Exemplo:
Adicionar um novo botao na interface.

e PATCH (0.0.Z) - Correcao de Bug: Incrementada para corregoes de falhas simples
que nao alteram funcionalidades. Exemplo: Corrigir um erro de digitagao, ajustar uma
cor CSS ou corrigir um calculo.

3.4 O Modelo Git Flow

A estrutura do repositério vai ser composta pelas seguintes branches principais:?

3.4.1 Branches Permanentes

e main: Representa a Producao. Nao recebe commit direto. So6 recebe cédigo via
Merge de release ou hotfix. Cada commit deve ter uma Tag de versao.

e develop: Representa o Desenvolvimento Continuo, é a branch de integragao. Ela
contém as funcionalidades completas para a préxima versao.

3.4.2 Feature Branches (feature/x)

e Objetivo: Desenvolver uma nova funcionalidade.
e Nasce em: develop.

e Morre em: develop.

1Se quiserem ler mais sobre versionamento seméantico podem acessar a especificacio.
2Se quiserem ler mais sobre o modelo do Git Flow, podem encontrar o artigo original do Vincent Driessen
(2010), ” A successful Git branching model” ou esse em portugués.

https://github.com/Brain-BIRDs
https://semver.org/lang/pt-BR/
https://nvie.com/posts/a-successful-git-branching-model/
https://medium.com/trainingcenter/utilizando-o-fluxo-git-flow-e63d5e0d5e04

e Fluxo: O dev cria a branch, trabalha nela e abre um PR para a develop. Apds o merge,
a branch local pode ser apagada.

3.4.3 Release Branches (release/*)

e Objetivo: Congela o c6digo para testes de QA e preparacao final (documentagao, versao),
aqui acontece o Staging. Ela é exclusiva para isso, nenhuma feature nova entra
aqui.

e Nasce em: develop (quando o time decide que vai langar uma versao).
e Morre em: Dois lugares. Ao finalizar a release, ela é mergeada na:

1. main: Para atualizar a producao.

2. develop: Para garantir que corregoes de bugs feitas durante a fase de release voltem
para o desenvolvimento.

e O nome da branch deve seguir o SemVer (ex: release/v1.2.0).

3.4.4 Hotfix Branches (hotfix/*)

e Objetivo: Resolver bugs criticos em producao.
e Nasce em: main.
e Morre em: Assim como a release, ela é mergeada na:

1. main: Para corrigir o erro imediatamente (gera nova Tag Patch).

2. develop: Para garantir que o erro nao volte a aparecer na proxima release.

e Geralmente incrementa o Patch (ex: hotfix/v1.2.1).

3.5 Exemplo:

Por exemplo, imagine que estamos na versao v1.1.0.

1. Inicio do Trabalho: O dev quer criar um ”"Modo Escuro”. Ele cria a branch
feature/dark-mode a partir da develop.

2. Integracgao: Ele termina, abre PR e mergeia na develop. Outros devs também mergeiam
suas features.

3. Corte da Release: O time decide langar. E criada a branch release/v1.2.0 a partir
da develop.

4. Fase de QA: O QA testa a release/v1.2.0. Encontra um bug no CSS.
5. Correcao na Release: O dev corrige o bug na branch release/v1.2.0 (commit de fix).
6. Lancamento: A release é aprovada.

e Mergeiam a release/v1.2.0 na main — Cria-se a Tag v1.2.0.

e MErgeiam a release/v1.2.0 na develop (o bug é corrigido na develop também).

7. Hotfix: No dia seguinte, descobrem que o login parou de funcionar na produgao (main).

7

V]

8. Correcao do Hotfix:

e Criam hotfix/v1.2.1 a partir da main.
e Corrigem o erro.

e Mergeiam na main (Tag v1.2.1) e na develop.

3.6 Glossario de Comandos

Aqui temos um glossario dos comandos que mais usaremos no git, caso alguém nao se lembre ou
nao esteja acostumado. Pode também rodar o comando git --help direto no terminal, acessar

a documentc¢ao do Git ou o glossario da Atlassian.

3.6.1 Configuragao Inicial

git clone https://github.com/Brain-BIRDs/seu-projeto.git

cd seu-projeto

3.6.2 Operacgoes Diarias

Fluxo Basico para Feature:

1
git
git

2.

git

#

3.

git
git
git

Garanta que esta atualizado
checkout develop
pull origin develop

Crie sua branch
checkout -b feature/minha-tarefa

Trabalho sendo feito

Salve e envie
add

commit -m "feat: Adiciona nova tela"
push origin feature/minha-tarefa

3.6.3 Boas Praticas de Commit

Para que seja facil entender e encontrar o que desejamos, é bom seguir padroes de commit:

feat: Nova funcionalidade.

fix: Correcao de bug.

docs: Alteragao em documentacao.

style: Formatagao (ponto e virgula, espacos).

refactor: Melhoria de cédigo sem mudar funcionalidade.

https://git-scm.com/docs/git/pt_BR
https://www.atlassian.com/br/git/glossary#commands

4 Deploy

Texto Base (Instrugao):

Descreva como o sistema é empacotado e disponibilizado para execugao, incluindo infraestru-
tura, servicos utilizados e forma de publicacao. O ambiente de deploy do sistema é composto por
[tipo de infraestrutura — ex: servidor local, VPS, cloud], onde a aplicacao é distribuida
utilizando [tecnologia — ex: Docker, pipeline CI/CD, scripts manuais].

4.1 Infraestrutura

A aplicagao ¢ hospedada em [PROVEDOR ou AMBIENTE — ex: AWS, Azure, VPS
prépria], utilizando:

e Sistema Operacional: [ex: Linux Ubuntu XX]
e Servidor de aplicagao: [ex: Gunicorn, Node.js, Tomcat]

e Servidor web (quando aplicdvel): [ex: Nginx, Apache]

4.2 Processo de Deploy

O processo de deploy ocorre da seguinte forma:
1. ex: Build da aplicacao
2. Criagao de imagens Docker
3. Publicacao no servidor
4. Inicializagao dos containers/servigos

Esse processo pode ser manual / automatizado, dependendo da configuracao adotada.

5 Ambiente de Producao e Homologacao

Texto Base (Instrugao):
Descreva os ambientes de homologagao e producao, destacando suas diferencas e finalidades.

5.1 Ambiente de Homologacao

O ambiente de homologacao é destinado a testes e validagoes, sendo utilizado para:
e Testes funcionais
e Validacao de regras de negocio
e Avaliacao de integracoes
Ele possui configuragao similar ao ambiente de producao, porém com:
e Base de dados de teste

e Acesso restrito

e Logs em nivel mais detalhado

5.2 Ambiente de Producao

O ambiente de producao é o ambiente final do sistema, destinado aos usuéarios finais. Neste
ambiente:

e Sao utilizados dados reais
e acesso é controlado por [mecanismos de seguranga

e O sistema opera com foco em desempenho, estabilidade e disponibilidade

5.3 Controle de Acesso e Seguranca (Opcional)

Sao adotadas as seguintes medidas de seguranca:
e Autenticagao / Autorizacao
e Uso de HTTPS
e Controle de permissoes

e Backups periddicos

10

6 QA

6.1 Tipos de Testes
6.1.1 Testes de Requisitos (Validagao Inicial)

e Revisar histoérias e requisitos com foco em:

— clareza;
— critérios de aceitacao;

— cendrios de excegao.

e Entrega: requisitos ”prontos para teste”, ou seja, compreensiveis e testaveis.

6.1.2 Testes Funcionais

e Verificar se cada funcionalidade faz exatamente o que foi especificado.

e Basear os testes nos critérios de aceitacao e cenarios de negdbcio.

6.1.3 Testes de Integracao

e Verificar a comunicacao entre médulos e sistemas(API’s, webhooks, servigos externos).

e Validar contratos de integracao, formatos de mensagens e tratamento de erros.

6.1.4 Testes de Regressao

e Executar um conjunto de casos principais a cada nova release.

e Garantir que funcionalidades ja existentes nao foram quebradas por alteracoes recentes.

6.1.5 Testes de Aceitacao (UAT)

e envolver representantes de negdcio ou usuarios internos, quando fizer sentido.

e Validar se a solugao atende as expectativas reais de uso antes de ir para producao.

6.1.6 Testes de Performance Basicos

e Avaliar tempo de resposta em cendrios tipicos.

e Identificar travamentos ou lentidoes evidentes nas principais jornadas.

6.1.7 Smoke Test Pés-Deploy
e Apds o deploy, checar se o sistema ”respira”:
— acessos ao sistema;
— login;
— fluxo principal de negécios;

— funcionalidades criticas.

11

6.2 Processo de QA (Passo a Passo)
6.2.1 Planejamento (Antes da Implementacao)
e Participacao do QA nas reunides de requisitos e projeto.
e Identificacao de riscos, dependéncias e funcionalidades criticas.

e Inicio da lista de cenarios e casos de teste.

6.2.2 Design dos Testes
e Criagao ou atualizacao dos casos de teste.
e Definicao da massa de dados de teste.

e Identificacao de necessidades especificas de ambiente.

6.2.3 Preparacao
e Garantir que o ambiente de testes esta pronto:

— versao correta implantada;
— acessos liberados;

— massa de dados criada ou carregada.

e Validar se os artefatos necessérios (requisitos, fluxogramas, protétipos) estao disponiveis.

6.2.4 Execugao
e Executar os cases de teste planejados.
e Registrar o resultado de cada caso como: Aprovado, Reprovado ou Bloqueado.
e Registrar bugs com, no minimo:

— passos para reproduzir;

— ambiente em que ocorreu;

— evidéncias (prints, videos, logs);

— severidade e prioridade sugeridas.
6.2.5 Reteste e Regressao

e Apéds a correcao do bug, o QA deve retestar o cenario.

e Em defeitos criticos, executar uma regressao rapida nos fluxos impactados.

6.2.6 Encerramento
e Verificar se os critérios de saida foram atendidos.
e Registrar um resumo de testes da release, incluindo:

— quantidade de casos executados;
— taxa de aprovacao;
— numero de bugs por severidade;

— principais riscos conhecidos.

12

6.3 Critérios de Entrada e Saida

6.3.1 Entrada para Inicio dos Testes da Sprint/Projeto

Os testes s6 devem iniciar quando:
e requisitos estiverem completos, aprovados e disponiveis;
e protétipos, fluxogramas ou demais artefatos (quando existirem) estiverem acessiveis;
e build adequada estiver implantada no ambiente de testes;

e QA tiver usudarios, acessos e massa de teste minima disponivel.

6.3.2 Saida para Liberacao em Producao
A release s6 deve ser liberada para producao quando:
e 100% dos casos de teste criticos e altos estiverem aprovados;
e 1nao houver bugs criticos abertos;
e bugs médios e baixos estiverem conhecidos, documentados e aceitos pelo time de negécio;

e houver registro do resumo de testes e dos riscos remanescentes.

6.4 Meétricas de Qualidade

As métricas abaixo serao utilizadas para acompanhar a qualidade dos produtos e a efetividade
do processo de testes:

e Percentual de casos de teste executados por sprint: razao entre casos executados e casos
planejados.

e Percentual de aprovacao dos casos: proporg¢ao de casos aprovados sobre o total executado.

e Numero de bugs por severidade: contagem de defeitos categorizados em Critico, Alto,
Médio e Baixo.

e Bugs encontrados em producao: quantidade de defeitos que escaparam do QA e foram
detectados apds o deploy.

Essas métricas serao analisadas periodicamente pela area de KPI em conjunto com o QA e
demais areas envolvidas, servindo como base para acoes de melhoria continua no processo da
Fabrica de Software.

13

7 Padroes de Adocao de Versoes no Mercado

Objetivo: Identificar a diferenca entre as versoes mais recentes das tecnologias e aquelas
efetivamente adotadas pelo mercado, auxiliando fabricas de software a alinhar decisoes técnicas

com a realidade do mercado.

7.1 APIs de Telecomunicacoes (CAMARA / Open Gateway)

API Recente | Mercado | Observacao

SIM Swap v2.1.0 v0.4.0 Versao alpha ainda ¢ padrao
global

Number Verification | v1.0.0+ v0.3.0 Muitas operadoras usam versao
inicial

Device Location v1.0.0+ | v0.2 / v0.3 | Adocao lenta por privacidade

OTP Validation v0.2.0+ v0.1.0 Primeira versao predominante

7.2 Java / JDK

Versao Recente | Mercado | Observacao
JDK 21+ (LTS) | JDK 8 / 11 | Java 8 ainda muito utilizado; JDK 11
em ampla adogao

7.3 Protocolos de Rede

Tecnologia Recente Mercado Observacao

HTTP HTTP/3 HTTP/1.1 / 2 | Baixa ado¢ao do HTTP/3
TLS TLS 1.3 TLS 1.2 Compatibilidade mantém 1.2
IPv4 vs IPv6 IPv6 IPv4 IPv4 ainda domina o trafego
DNS DNS over HTTPS | DNS tradicional | DoH ainda pouco adotado

7.4 APIs de Pagamento e Financeiro

API Recente | Mercado | Observagao

PIX DICT v2.0+ vl.x Instituicoes em estabilizacao
Open Banking BR Fase 4 Fase 2/3 | Adogao parcial

PCI DSS 4.0 3.2.1 Migracao até 2025

3D Secure 2.3+ 2.1 / 2.2 | Gateways defasados

7.5 Linguagens de Programacao

Linguagem | Recente Mercado Observacao

Python 3.12+ 3.8 /3.9/3.10 Produgao concentra-se em 3.10+
Node.js v22+ v18 / v20 LTS Priorizar LTS

PHP 8.3+ 74 /80 /81 Legado ainda relevante

NET NET 8+ | .NET 6 / Framework 4.8 | Alto uso do Framework

14

7.6

7.7

7.8

Bancos de Dados

Banco Recente | Mercado | Observagao
PostgreSQL 16+ 12-14 Versoes mais usadas
MySQL 8.x 5.7 / 8.0 | 5.7 ainda comum
MongoDB 7.x 4.4-6.0 | Atualizacao gradual
Redis 7.x 6.x Padrao em producao

Infraestrutura / DevOps

Tecnologia | Recente | Mercado | Observagao

Kubernetes 1.304 1.26-1.28 | Sempre algumas versoes atras

Docker 25+ 20-24 Diferenca entre Desktop e Engine

Terraform 1.7+ 1.0-1.5 | Estabilidade priorizada
Recomendacoes

Pesquisar versoes realmente suportadas pelo mercado.
Priorizar versoes LT'S.
Manter compatibilidade com versoes anteriores.

Documentar justificativas técnicas.

Fontes Recomendadas
CAMARA Project

GSMA Open Gateway
JetBrains Developer Survey

Stack Overflow Developer Survey

Banco Central do Brasil (PIX)

15

8 Processo de Integracao

A integracao de software é um processo fundamental no contexto de desenvolvimento de soft-
ware, onde a producao continua de novas aplicagoes e a manutencao de sistemas legados exigem
que componentes dispares trabalhem de forma coesa e eficiente [1]. A integracdo de sistemas
(System Integration) é a disciplina que visa conectar diferentes subsistemas ou aplicagdes de
software, permitindo que eles troquem dados e coordenem funcionalidades, transformando-os
em um ecossistema unificado [2].

A integracao é crucial para:

e Reutilizacao de Componentes: Conectar novos médulos a servigos existentes, acelerando
o desenvolvimento.

e Consisténcia de Dados: Garantir que as informacgoes sejam sincronizadas e precisas
em todos os sistemas.

e Automacao de Processos: Criar fluxos de trabalho de ponta a ponta que atravessam

multiplas aplicacoes.

8.1 Tipos e Padroes de Integracao

A integracao pode ser classificada de diversas maneiras, dependendo da tecnologia e do padrao
arquitetural adotado.

8.1.1 Tipos de Integragao por Tecnologia

Tipo de Inte- | Descricao Exemplo de Uso

gracao

Integragdo de Da- | Foco na sincronizagao ou transferéncia | ETL (Extract, Trans-

dos de dados entre bancos de dados ou ar- | form, Load) para Data
quivos. Warehousing.

Integracao de | Conexao de funcionalidades de sis- | Uso de APIs para que

Aplicacgoes (A2A) | temas de software distintos. um sistema de CRM

envie dados de clientes
para um sistema de

Faturamento.
Integracao de Pro- | Orquestragao de atividades que en- | Automacao de um
Cessos volvem multiplos sistemas. processo de pedido

que passa por E-
commerce, Estoque e
Logistica.

8.1.2 Padroes de Integragao Empresarial (EIP)

Os Padroes de Integracao Empresarial, popularizados por Hohpe e Woolf, fornecem solucoes
comprovadas para problemas comuns de integracao [3]. Eles se baseiam principalmente em
mensageria.

16

Padrao de Comu- | Descricao Vantagens

nicagao

Mensageria (Messag- | Sistemas se comunicam trocando men- | Desacoplamento

ing) sagens assincronas através de um canal | (Loose Coupling),
intermediario (Message Broker). escalabilidade, re-

siliencia.
Invocagao Remota de | Sistemas se comunicam diretamente, | Simplicidade, fa-
Procedimento (RPC | com o solicitante esperando uma re- | miliaridade com

- Remote Procedure

Call)

sposta sincrona.

chamadas de funcao.

17

9 Ferramentas e Tecnologias de Integracao

A escolha da ferramenta de integracao é um fator critico que impacta a arquitetura, a escala-

bilidade e a manutenibilidade do ecossistema de software.

9.1

Plataformas de Integracao

Ferramenta

Conceito

Uso Tipico

ESB (Enterprise
Service Bus)

Arquitetura centralizada que atua
como um barramento de comunicacao
entre aplicagbes locais (on-premise).
Oferece roteamento, transformacao e
orquestracao.

Integracao de sistemas
legados e complexos
dentro de um datacen-
ter.

iPaaS (Integra-
tion Platform as
a Service)

Plataforma baseada em nuvem que
fornece ferramentas de autoatendi-
mento para desenvolver, executar e
governar fluxos de integracao.

Integracao de
aplicagoes SaaS (Soft-
ware as a Service),

ambientes hibridos
(nuvem e local) e
projetos com foco em
agilidade.

API Gateway

Ponto de entrada tunico para todas as
APIs. Lida com seguranga (auten-
ticagao/autorizacao), limitacao de taxa
(rate limiting), roteamento e monitora-
mento. .

Exposicao controlada
e segura de servigos de
backend para clientes
externos ou internos.

Message Broker

Software intermedidrio que gerencia a
troca de mensagens entre sistemas de
forma assincrona. Exemplos: Apache
Kafka, RabbitMQ.

Implementagao de ar-
quiteturas orientadas
a eventos (EDA) e
garantia de entrega de
mensagens em ambi-
entes distribuidos.

9.2 Integragao por API (Application Programming Interface)

A integracao por API é o método mais prevalente e flexivel em arquiteturas modernas, como
microsservicos e sistemas distribuidos. Uma API atua como um contrato bem definido que
permite que dois sistemas se comuniquem sem conhecer os detalhes internos um do outro.
9.2.1 Tipos de APIs

9.2.2 Melhores Praticas de Design de APIs (RESTful)

O design de APIs deve ser tratado como um produto, focado na experiéncia do desenvolvedor
(Developer Experience - DX).

e Recursos (Resources): Use substantivos (ex: /clientes, /pedidos) em vez de verbos
nos endpoints. Os verbos HTTP definem a agao (GET para buscar, POST para criar,
etc.).

18

Tipo Padrao de Co- | Caracteristicas Uso Tipico

municagao

REST (Rep- | Sincrona (HTTP) | Leve, sem estado (stateless), uti- | Integracdo web,

resentational liza verbos HTTP (GET, POST, | APIs publicas,

State Trans- PUT, DELETE) e recursos (re- | microsservigos.

fer) sources). Formato de dados mais
comum ¢ JSON.

SOAP (Sim- | Sincrona (XM- | Baseado em XML, fortemente | Integracdo com

ple Object | L/HTTP) tipado, utiliza WSDL (Web Ser- | sistemas lega-

Access Proto- vices Description Language) para | dos, ambientes

col) contrato. Mais complexo, mas | corporativos
com alta seguranca e transa- | (Enterprise).
cionalidade.

GraphQL Sincrona (HTTP) Linguagem de consulta para | Aplicacoes
APIs. Permite que o cliente so- | méveis e web
licite exatamente os dados de que | com requisi-
precisa, evitando over-fetching | tos de dados
ou under-fetching. complexos e

variaveis.

gRPC Sincrona Baseado em RPC, utiliza Proto- | Comunicacao in-

(Google (HTTP/2) col Buffers para serializagdo. Fo- | terna de alto de-

Remote Pro- cado em alta performance, baixo | sempenho entre

cedure Call) consumo de banda e comunicacao | servigos.
entre microsservigos.

e Versionamento: Inclua a versao da API na URL (ex: /api/v1/clientes) ou no cabegalho
(Header) para permitir a evolugao sem quebrar clientes existentes.

e Cédigos de Status HTTP: Utilize os cédigos de status padrao (200 OK, 201 Created,
400 Bad Request, 404 Not Found, 500 Internal Server Error) de forma consistente para
indicar o resultado da operacao.

e Paginacao e Filtragem: Implemente mecanismos de paginacao (ex: ?page=1&size=20) e
filtragem para otimizar o desempenho e o uso de recursos.

e Documentagao: Mantenha a documentagao da API (ex: usando OpenAPI/Swagger) sem-
pre atualizada, detalhando endpoints, parametros, exemplos de requisi¢ao/resposta e
codigos de erro.

9.2.3 Ciclo de Vida da API

A integracao por API segue um ciclo de vida que deve ser gerenciado ativamente:
1. Planejamento: Definir o propdsito, o piblico-alvo e os requisitos de negocio.
2. Design: Modelar o contrato da API (especifica¢ao) antes da implementagao.
3. Desenvolvimento: Implementar a légica de negdcio e os adaptadores de dados.
4. Teste: Realizar testes unitarios, de integragao e de carga.

5. Publicacao: Disponibilizar a API através de um API Gateway para gerenciamento e
seguranca.

19

6. Monitoramento: Acompanhar o desempenho, a laténcia e os erros em producao.

7. Descontinuagao (Retirement): Gerenciar a transigao para novas versoes e a eventual de-
sativacao de versoes antigas.

9.3 Comparativo ESB vs iPaaS

A tendéncia moderna em fabricas de software é a migracao de arquiteturas ESB tradicionais

para solugoes iPaaS, especialmente em ambientes de nuvem e hibridos [4].

Caracteristica ESB (Enterprise Service | iPaaS (Integration Plat-
Bus) form as a Service)
Modelo de Im- | Geralmente local (on- | Baseado em nuvem (SaaS).
plantacao premise) ou em laaS.
Foco Integracao de sistemas lega- | Integracao de SaaS, nuvem
dos e internos. e ambientes hibridos.
Governanca Centralizada e tipicamente | Distribuida, permitindo que
gerenciada por uma equipe | equipes de desenvolvimento
de integragao dedicada. e de negdcios criem suas
préprias integragoes (Citi-
zen Integrators).
Escalabilidade Limitada pela infraestru- | Altamente escalavel e
tura local. elastica, gerenciada pelo
provedor de nuvem.

20

10 Procedimento para Integracao de Software

Um projeto de integragao bem-sucedido em uma fabrica de software segue um ciclo de vida
estruturado, garantindo que os requisitos de negocio e técnicos sejam atendidos com qualidade
e seguranca.

10.1 Fases do Projeto

O procedimento pode ser dividido nas seguintes fases:

Fase 1: Planejamento e Analise de Requisitos

e Definigao de Objetivos: Clarificar o porqué da integragao (ex: reduzir redundancia de
dados, automatizar processo X).

e Mapeamento de Sistemas: Identificar os sistemas de origem (Source) e destino (Target),
suas tecnologias e capacidades de comunicagao (APIs, bancos de dados, arquivos).

e Anélise de Dados: Mapear os campos de dados que serdo trocados, definindo a trans-
formagao (Transformation) e o formato (Schema) necessarios.

e Selecao da Tecnologia: Escolher o padrao de integracdo (sincrono/assincrono) e a ferra-
menta (iPaaS, API Gateway, etc.) mais adequados.

Fase 2: Design e Arquitetura

e Desenho do Fluxo: Criar diagramas (ex: BPMN, UML) que detalham o fluxo de men-
sagens, o roteamento e a légica de orquestracao.

e Definigao de Contratos: Formalizar os contratos de interface (ex: especificacoes Ope-
nAPI/Swagger para APIs, schemas XSD/JSON para mensagens). No caso de APIs, a
especificacao OpenAPI é a prética recomendada.

e Seguranga: Projetar mecanismos de autenticacao (ex: OAuth 2.0, JWT) e autorizacgao,
garantindo a criptografia dos dados em transito (TLS/SSL).

e Tratamento de Erros: Definir estratégias de retry, logging, e mecanismos de compensacao
(rollback) para falhas.

Fase 3: Implementacao e Desenvolvimento

e Desenvolvimento dos Adaptadores: Criar os componentes que se comunicam com oS Sis-
temas de origem e destino.

e Implementacao da Légica: Codificar a logica de transformacao, roteamento e orquestracao
na plataforma de integracao escolhida.

e Versionamento: Utilizar sistemas de controle de versao (ex: Git) para gerenciar o cédigo
da integracao.

Fase 4: Testes e Qualidade
e Testes Unitarios: Testar individualmente os componentes de transformagao e adaptadores.

e Testes de Integracao: Validar o fluxo completo entre os sistemas em um ambiente de
homologacao (Staging).

21

Testes de Performance e Carga: Simular o volume de transagoes esperado para garantir
que a solucao suporte a demanda.

Monitoramento: Configurar ferramentas de monitoramento e alertas para rastrear o de-
sempenho e as falhas da integracao em tempo real.

Fase 5: Implantacao e Operagao

Implantacao (Deployment): Mover a solu¢ao para o ambiente de produgao, preferencial-
mente utilizando praticas de CI/CD (Continuous Integration/Continuous Delivery).

Go-Live e Validacao: Acompanhar o desempenho inicial e validar a consisténcia dos dados.

Manutencao e Evolucao: A integragao deve ser tratada como um produto de software,
sujeita a manutencao continua, refatoracao e evolucao conforme os sistemas conectados
mudam.

10.2 Melhores Praticas

Desacoplamento (Loose Coupling): Os sistemas devem ter o minimo de dependéncia
possivel. O uso de Message Brokers e APIs bem definidas promove o desacoplamento.

Padroes de Integracao: Sempre que possivel, utilize os Enterprise Integration Patterns
para resolver problemas comuns de forma padronizada e robusta [3].

Observabilidade: Implementar logging detalhado, tracing distribuido e métricas para
garantir a visibilidade completa do fluxo de dados.

Idempoténcia: Garantir que a repeticao de uma mensagem ou chamada de API nao cause
efeitos colaterais indesejados no sistema de destino.

Governanca de APIs: Tratar as APIs como produtos, com documentagao clara, version-
amento e um ciclo de vida bem definido. A utilizacao de um API Gateway é essencial
para aplicar politicas de seguranca, limitacao de taxa e monitoramento.

22

11 Passo a Passo para o Desenvolvimento de APIs REST-
ful

O desenvolvimento de APIs RESTful em uma Fabrica de Software deve seguir uma abordagem
estruturada, preferencialmente API-First, onde o contrato da API é definido antes da imple-
mentacao do cédigo.

11.1 Design da API (API-First)

1. Identificacao de Recursos: Defina os principais recursos (entidades) que a API ird
gerenciar (ex: Clientes, Produtos, Pedidos).

2. Definicao de Endpoints e Verbos: Mapeie as operagoes CRUD (Create, Read, Up-
date, Delete) para os verbos HT'TP e URLs dos recursos:

e POST /recursos (Criar)

GET /recursos (Listar)

GET /recursos/{id} (Buscar por ID)

PUT /recursos/{id} (Atualizar Completo)
PATCH /recursos/{id} (Atualizar Parcial)
DELETE /recursos/{id} (Excluir)

3. Modelagem de Dados (Payloads): Defina a estrutura exata dos dados de requisigao
e resposta (JSON ou XML), garantindo consisténcia e clareza.

4. Especificacao do Contrato: Crie o contrato formal da API usando ferramentas como
OpenAPI (Swagger). Este arquivo de especificagao servird como a tunica fonte de
verdade para o desenvolvimento do backend e para o consumo do frontend/clientes.

11.2 Implementacao e Codificagao

1. Geragao de Cédigo (Opcional): Utilize o arquivo OpenAPI para gerar stubs de cédigo
(esqueletos) para o servidor e para os clientes, acelerando o desenvolvimento.

2. Implementacao da Légica de Negodcio: Conecte os endpoints definidos a légica de
negocio e a camada de persisténcia de dados.

3. Tratamento de Erros: Implemente o tratamento de erros de forma consistente, retor-
nando c6digos de status HT'TP apropriados (4xx para erros do cliente, 5xx para erros do
servidor) e mensagens de erro claras no corpo da resposta.

4. Seguranca: Implemente autenticacao (ex: OAuth 2.0, JWT) e autorizacdo em todos os
endpoints, garantindo que apenas usudrios autorizados possam acessar 0s recursos.

11.3 Testes e Validacao

1. Testes Unitarios: Teste a légica de negdcio e os controllers da API isoladamente.

2. Testes de Integragao: Valide o fluxo completo da API, incluindo a comunica¢ao com
o banco de dados e outros servigos.

23

3. Testes de Contrato: Use ferramentas como Postman ou Dredd para garantir que a
API implementada esteja em total conformidade com o contrato definido no OpenAPI.

4. Testes de Performance: Verifique a laténcia e a capacidade de carga da API sob

estresse.

11.4 Governanca e Evolucao

1. Documentagao Automatica: Utilize o arquivo OpenAPI para gerar documentagao
interativa (Swagger UI) que é acessivel aos consumidores da API.

2. Versionamento: Garanta que o versionamento (ex: v1, v2) seja aplicado desde o inicio
para permitir a evolugdo da API sem quebrar clientes legados.

3. Monitoramento: Configure ferramentas de monitoramento e alertas para rastrear o
desempenho, a laténcia e os erros em producao.

24

12 Seguranca de Software

A area de Seguranca do Software atua como um pilar fundamental que permeia todo o
processo de CI/CD na Fébrica, garantindo que a qualidade do cédigo e do design nao se restrinja
apenas a funcionalidade, mas também a sua resiliéncia contra ameagas. O propésito central
desta area é incorporar a seguranca em todas as etapas do ciclo de vida do desenvolvimento,
promovendo uma cultura de Security by Design.

Em linhas gerais, “a seguranca estd relacionada ao grau/nivel que um produto ou sistema
consegue proteger dados e informagdes, de tal forma que as pessoas, produtos/sistemas tenham
apenas acesso adequado as informacoes especificas, conforme seu tipo e nivel de autorizagao”
[?].

Diferente de uma abordagem reativa, onde vulnerabilidades sao corrigidas apds a detecgao
em produgao, o foco é na prevengao de vulnerabilidades desde a fase de concepgao. Isso se
traduz diretamente na reducao de risco operacional para a Fabrica, minimizando a superficie
de ataque e os custos associados a incidentes de seguranca. A atuacdo continua assegura a
garantia de conformidade com padrdes de mercado (como o OWASP Top 10) e a validacao
continua dos artefatos de software.

12.1 Fundamentos Teoricos

A Engenharia de Seguranca do Software na Fébrica é alicercada em consonancia com padroes
globais e praticas internas consolidadas, garantindo uma abordagem técnica e abrangente.

12.1.1 Da Visao SWEBOK v4

O Guide to the Software Engineering Body of Knowledge (SWEBOK v4) [?] estabelece a
seguranga como uma Area de Conhecimento (KA) critica e integrada ao ciclo de vida. Os
fundamentos adotados pela Fabrica, com base nos Capitulos 13, 3 e 4 do SWEBOK, incluem:

12.1.2 OWASP Top 10 (2021)

O OWASP Top 10 (2021) [?] é o padrao global de conscientizagao sobre os riscos de seguranga
mais criticos para aplicacoes web.

12.1.3 Praticas de Implementacao (Codificagao Segura)

A codificagao segura é a aplicagao pratica dos principios de Construction for Security (SWE-
BOK Cap. 4) e das diretrizes do Guia de Melhores Préticas de Implementacao [?]. Adota-se
uma postura de defesa em profundidade no nivel do codigo:

e Gerenciamento de Segredos e Credenciais: Segredos devem ser injetados no ambi-
ente de execugao via Vaults (como HashiCorp Vault, AWS Secrets Manager) e ndo apenas
via variaveis de ambiente. Além disso, cada componente de software deve operar com o
menor conjunto de permissoes estritamente necessario para sua func¢ao (Principio
do Menor Privilégio).

¢ Blindagem contra Injegao (Input Validation e Output Encoding): E mandatério
o uso de Validagao de Entrada (Input Validation) para garantir que os dados recebidos
estejam no formato esperado e o Codificagao de Saida (Output Encoding) para neu-
tralizar dados antes de serem renderizados no navegador (prevencao contra XSS).

25

Table 1: Fundamentos de Segurancga do Software segundo SWEBOK v4

Fundamento

Area de Conhec-
imento (KA)

Descrigao e Aplicagao

Seguranca como disciplina
de engenharia

Seguranca orientada a requi-
sitos

Padroes de design seguro

Construction for Security

Testes de seguranca

Gerenciamento de Vulnera-

bilidade

Software Security
(Cap. 13)

Software Security
(Cap. 13)

Software Design
(Cap. 3)
Software Con-

struction (Cap. 4)

Software Security
(Cap. 13)

Software Security

(Cap. 13)

Tratar a seguranga nao como um recurso
opcional, mas como um requisito nao-
funcional essencial, integrado ao planeja-
mento e execucgao.

Definicao clara de requisitos de seguranca
(ex: autenticacdo, autorizacdo, auditoria)
na fase de Engenharia de Requisitos.
Aplicagao de padroes arquiteturais que
minimizem riscos (ex: menor privilégio,
segregacao de responsabilidades), in-
cluindo tolerancia a falhas e tratamento
de erros seguro.

Uso de técnicas de Defensive Programming
e tratamento robusto de excegoes (FExcep-
tion Handling) para evitar estados inse-
guros do sistema.

Incorporagao de testes estaticos (SAST),
dinamicos (DAST) e testes de penetragao
(Pen-testing) como parte da Garantia da
Qualidade.

Processo continuo de identificacao, classi-
ficagdo, priorizacao e remediacao de vul-
nerabilidades.

¢ Reducgao de Vazamento de Informacgoes e Logs Seguros: O tratamento de excegoes
deve evitar a exposicao de detalhes técnicos em producao. A pratica de Logs Seguros
exige a sanitizacao de dados sensiveis (PII, senhas, tokens) antes do registro.

e Gestao Proativa de Dependéncias Vulneraveis: A Analise de Composicao de Soft-
ware (SCA) deve ser integrada ao pipeline de CI/CD para bloquear automaticamente
builds que contenham dependéncias com vulnerabilidades criticas (CVSS > 7.0).

12.1.4 As 10 Melhores Préaticas de Seguranga do CERT/CC

O Computer Emergency Response Team (CERT /CC) [?] publica diretrizes de seguranga essen-
ciais para a construcao de software seguro:

1. Validar a entrada (Validate input): Nunca confic em dados externos. Valide formato,
tipo, tamanho e contetido de toda entrada.

2. Prestar atencao aos avisos do compilador (Heed compiler warnings): Trate
avisos de compilador como erros, pois podem indicar vulnerabilidades (ex: estouro de

buffer).

3. Arquitetar e projetar para politicas de seguranca: A seguranca deve ser um req-
uisito de design. Inclua a modelagem de ameacas (Threat Modeling).

26

10.

Manter a simplicidade (Keep it simple): Reduza a complexidade para minimizar a
superficie de ataque e facilitar a auditoria.

Negacao por padrao (Default deny): Por padrao, todo acesso, permissao ou fun-
cionalidade deve ser negado.

Aderir ao principio do menor privilégio: Cada componente deve ter apenas as
permissoes minimas necessarias para executar sua funcao.

Sanitizar dados enviados a outro software: Remova ou neutralize conteido malicioso
antes de enviar dados para outro componente (ex: banco de dados, navegador).

Praticar defesa em profundidade (Practice defense in depth): Implemente
multiplas camadas de seguranca independentes.

Usar técnicas eficazes de garantia de qualidade: Utilize testes de seguranga (SAST,
DAST, fuzzing) e revisoes de cédigo rigorosas.

Adotar um padrao de codificagao segura: Utilize e siga um conjunto de regras de
codificagao segura (ex: padroes CERT C/C++ ou Java).

12.2 Principais Responsabilidades

O responsavel pela Seguranca do Software atua como um consultor técnico e auditor, garantindo
que os principios de seguranca sejam aplicados em todas as fases do desenvolvimento de soft-

ware.

12.2.1 Na Fase de Definicao e Design

Esta fase é critica para o Security by Design.

Security Requirements: Colaborar com a Engenharia de Requisitos (Leonardo) para
definir requisitos nao-funcionais de seguranca claros e mensuraveis (ex: MFA).

Ameacgas (Threat Modeling): Conduzir a modelagem de ameagas para identificar
potenciais vetores de ataque e vulnerabilidades no design antes da codificacao.

Regras arquiteturais minimas: Definir padroes de seguranca para a arquitetura (ex:
segmentagao de rede, uso de WAF, padroes de criptografia).

Revisao de riscos: Avaliar o risco de seguranca de novas funcionalidades ou integracoes.

12.2.2 Durante Implementacao

Apoiar a Implementacao (Gabriel) na aplicagao das préticas de codificagao segura.

e Codificacao Segura: Garantir que as praticas detalhadas no Guia de Implementacao

[?7] (Secao 7) sejam seguidas (sanitizacao de inputs, logs seguros, tratamento de excegoes).

e Andlise Estatica de Cédigo (SAST): Configurar e monitorar ferramentas de SAST

nos pipelines de CI/CD para identificar padroes de cédigo inseguros.

27

12.2.3 Durante Testes e Entrega

Garantir que o produto final esteja em conformidade com os padroes de seguranca antes da
liberacao.

e Seguranca em APIs: Revisao de seguranca de APIs, garantindo a aplicagao correta de
autenticacao e autorizagao em todos os endpoints.

e Testes de intrusao: Coordenar e validar os resultados de testes de intrusao (Pen-tests)
realizados por Q&A (Giovana) ou terceiros.

e Revisao de dependéncias: Auditoria final de todas as dependéncias de terceiros para
garantir que nao haja vulnerabilidades criticas conhecidas.

e Conformidade com OWASP: Certificar que o software nao apresente nenhuma das
vulnerabilidades listadas no OWASP Top 10.

28

Table 2: OWASP Top 10 (2021) e Préticas de Mitigagao Internas

Categoria Resumo do Risco Pratica Interna de Mitigacao
OWASP

(2021)

A01: Quebra Falhas na restricaio do que Implementacao rigorosa de politicas de au-
de Controle usudrios autenticados po- torizacao em todas as camadas (API e UI).
de Acesso dem acessar ou fazer.

A02: Falhas Falhas relacionadas & crip- Uso obrigatério de protocolos seguros (TL-
Criptogréficas tografia de dados sensiveis S/HTTPS) e algoritmos de criptografia

A03: Injegao

A04: Design

Inseguro

A05:

figuragao
Incorreta
Seguranca

Con-

de

A06: Com-
ponentes Vul-
neraveis e De-
satualizados
A07: Falhas
de Identi-
ficacao e
Autenticacao
A08: Falhas
de Integridade
de Software e
Dados

A09: Falhas
de Log e Mon-
itoramento
A10: Falsi-
ficacao de
Solicitacao
do Lado do
Servidor

em transito e em repouso.
Dados nao confiaveis envi-
ados ao interpretador como
parte de um comando ou
consulta.

Falhas de seguranca que re-
sultam de um design ausente
ou ineficaz.

Configuragoes padrao
inseguras, recursos
desnecessarios habilita-

dos ou erros de configuragao
de nuvem.

Uso de bibliotecas, frame-
works ou outros modulos
de software com vulnerabil-
idades conhecidas.

Falhas que permitem que at-
acantes comprometam sen-
has, chaves ou tokens de
Sessao.

Falhas na integridade de da-
dos e pipelines de atual-
izagao.

Falhas que impedem a de-
tecgao, escalonamento ou re-
sposta a um ataque.

O aplicativo busca um re-
curso remoto sem validar a
URL fornecida pelo usuario.

fortes e validados.

Uso de Prepared Statements (consultas
parametrizadas) e ORMs para blindagem
contra SQL Injection.

Aplicacao de Threat Modeling na fase de
design e revisao arquitetural minima.

Uso de imagens base seguras e
padronizadas para deploy e automacao de
validagao de configuracao.

Revisao automatizada de dependéncias
(SAST/SCA) e atualizagao proativa de pa-
cotes.

Uso de mecanismos de autenticacao cen-
tralizados e fortes (MFA obrigatério).

Validagao de integridade de wploads e
uso de assinaturas digitais em atualizacgoes
criticas.

Implementagao de Logs FEstruturados
(JSON) com niveis padronizados e alertas
configurados.

Validagao rigorosa de todas as URLs exter-
nas e uso de whitelists para recursos per-
mitidos.

29

13 Principios Fundamentais (Clean Code)

Todo cbdigo desenvolvido na fabrica deve aderir aos seguintes principios:

13.1 KISS (Keep It Simple, Stupid)

A complexidade é o inimigo da seguranga e da manutengao. Evite super-engenharia. Se uma
funcao faz “coisas demais”, ela deve ser quebrada. O objetivo da fabrica nao é produzir cédigo
“inteligente” que ninguém entende, mas sim coédigo 6bvio que funciona.

13.1.1 O que é Simplicidade?

Simplicidade nao significa simplismo. Significa resolver o problema sem adicionar camadas
desnecessarias de abstracao ou “complexidade acidental”.

e Se voceé precisa de um diagrama complexo para explicar uma unica fungao de 20 linhas,
ela viola o KISS.

e Se voce esta implementando uma estrutura genérica para “caso a gente precise no futuro”,
pare. (Ver principio YAGNI - You Ain’t Gonna Need It).

13.1.2 Sinais de Alerta (Code Smells)

O revisor deve rejeitar o codigo se encontrar:

e Ninhada Profunda (Deep Nesting): Muitos ‘if’ dentro de ‘for’ dentro de ‘if’. Isso
aumenta a carga cognitiva.

e Funcoes Gigantes: Funcoes com mais de 20-30 linhas geralmente fazem coisas demais.

e Nomes Genéricos: Varidveis chamadas ‘data’, ‘info’ ou ‘manager’ geralmente escondem
complexidade mal definida.

13.1.3 Técnica Pratica: Guard Clauses

Para aplicar o KISS e evitar a “seta de codigo” (cddigo que cresce para a direita devido a
indentagao), utilize Guard Clauses (retorno antecipado).

VIOLACAO DO KISS (Complexo e aninhado)
def process_payment (order):
if order:
if order.status == ’0PEN’:
if order.balance > O:
order .pay ()
return True
else:

return False

30

else:
return False
else:

return False

APLICANDO KISS (Simples e plano)

> def process_payment (order):

Validacoes iniciais (Guard Clauses)
if not order:
return False
if order.status != ’0OPEN’:
return False
if order.balance <= O:

return False

Execucao principal limpa
order .pay ()

return True

Listing 1: Aplicando KISS com Guard Clauses

13.2 DRY (Don’t Repeat Yourself)

O principio DRY preconiza que “cada parte do conhecimento deve ter uma representagao tnica,
nao ambigua e definitiva dentro do sistema”. Nao se trata apenas de economizar digitacao, mas
de garantir consisténcia.

13.2.1 O Problema da Duplicagao

A duplicagao ¢ a maior causa de bugs de regressao (quando algo que funcionava para de fun-
cionar).

e Manutencao Pesadelo: Se a regra de validacao de CPF muda, e vocé tem essa validagao
espalhada em 3 telas diferentes, a chance de esquecer de atualizar uma delas é altissima.

e Inconsisténcia: O usuario percebe o sistema como “quebrado” quando a API recusa
um dado que o Front-end aceitou (légicas duplicadas e divergentes).

31

13.2.2 A “Regra de Trés” (Rule of Three)

Evite abstracao prematura. As vezes, criar uma fungao genérica cedo demais aumenta a com-
plexidade (violando o KISS). Utilize a seguinte heuristica:

1. Primeira vez: Escreva o codigo.
2. Segunda vez: Copie e cole (se necesséario), mas fique alerta.

3. Terceira vez: Pare. Refatore para uma funcao, classe ou componente reutilizavel.

13.2.3 Falsa Duplicagao (Cuidado)

Nem tudo que parece igual é duplicado. Se dois trechos de cédigo fazem a mesma coisa, mas
por motivos de negécio diferentes (ex: validagdo de cadastro de cliente vs. validacao de
cadastro de fornecedor), eles podem evoluir de formas diferentes. Unifica-los forgadamente cria
um acoplamento ruim.

13.2.4 Exemplo Pratico: Centralizagao de Légica

VIOLACAO DO DRY (Logica repetida)
File A (Report)
final_price = product.value * 1.15 # Taxa de 157 hardcoded

print (f"Total: {final_pricel}")

File B (Checkout)

total_to_pay = cart.sum * 1.15 # A mesma taxa repetida

; print (£"Total: {total_to_payl}")

APLICANDO DRY

; # File: constants.py

s SERVICE_TAX_RATE = 1.15

def calculate_price_with_tax(base_value):

return base_value * SERVICE_TAX_RATE

Uso no sistema

32

39
10
11

12

final_price = calculate_price_with_tax(product.value)

total_to_pay = calculate_price_with_tax(cart.sum)

Listing 2: Aplicando DRY (Single Source of Truth)

13.3 SOLID Principles

O acronimo SOLID representa cinco principios de design de classes orientados a objetos. O
objetivo nao é seguir regras cegamente, mas criar software que tolere mudancas.

13.3.1 S - Single Responsibility Principle (SRP)

“Uma classe deve ter um, e apenas um, motivo para mudar.”

Se vocé tem uma classe chamada PedidoManager que: 1) Calcula o total, 2) Salva no banco
e 3) Envia e-mail de confirmagao, ela estd errada. Se a regra de e-mail mudar, vocé corre o
risco de quebrar o calculo do pedido.

VIOLACAO (Classe "Deus" que faz tudo)
class Order:
def calculate_total(self):
def save_to_database(self): ... # Mistura persistencia

def send_email_confirmation(self): ... # Mistura notificacao

CORRETO (Cada um com sua responsabilidade)

i class Order:

def calculate_total(self): ... # Regra de negocio

class OrderRepository:

def save(self, order): ... # Banco de dados

class EmailService:

def send_confirmation(self, order): ... # Notificacao

Listing 3: Aplicando SRP

13.3.2 O - Open/Closed Principle (OCP)

“Entidades de software devem estar abertas para extensao, mas fechadas para
modificagao.”

Voce deve ser capaz de adicionar novas funcionalidades sem alterar o cédigo fonte existente.
Isso evita introduzir bugs em funcionalidades que ja estao estaveis.

33

18

VIOLACAO (Muitos I
class Discount:

def calculate(se
n

if type ==

elif type ==

Fs)

1f, type, value):
VIP": return value * 0.8

"BLACK_FRIDAY": return value * 0.5

CORRETO (Uso de Interface/Heranca)

; class DiscountRule (A

@abstractmethod

def calculate (se

class VipDiscount (Di

def calculate (se

class BlackFridayDis

def calculate(se

BC):

1f, value): pass

scountRule) :

1f, value): return value * 0.8

count (DiscountRule) :

1f, value): return value * 0.5

Listing 4: Aplicando OCP com Polimorfismo

13.3.3 L - Liskov Substitution Principle (LSP)

“Subclasses devem ser substituiveis por suas classes base.”

Se a classe B herda de A, o sistema deve funcionar usando B no lugar de A sem quebrar. O
exemplo classico é: um Pinguim é uma Ave, mas se a classe Ave tem um método voar(), o

Pinguim nao pode herdar dela (ou lancarda um erro inesperado).

VIOLACAO
class Bird:

def fly(self):

class Penguin(Bird):

def fly(self):

raise Except

CORRETO

ion("Penguins can’t fly!") # Quebra o contrato!

34

class Bird: ... # Classe base geral

class FlyingBird(Bird):

def fly(self):

class Penguin(Bird): ... # Nao herda de FlyingBird
Listing 5: Respeitando a Substituicao de Liskov

13.3.4 I - Interface Segregation Principle (ISP)

“Muitas interfaces especificas sao melhores do que uma interface tunica geral.”
Nao force uma classe a implementar métodos que ela nao usa. Isso cria dependéncias
fantasmas.

VIOLACAO (Interface gorda)
class SmartDevice (ABC):
def print(self): pass
def scan(self): pass

def fax(self): pass

class SimplePrinter (SmartDevice):
def print(self): print("Printing...")
def scan(self): pass # Forcado a implementar inutilmente

def fax(self): pass # Forcado a implementar inutilmente

CORRETO
; class Printer (ABC):

def print(self): pass

class Scanner (ABC):

def scan(self): pass

s class SimplePrinter (Printer):

Listing 6: Segregacao de Interfaces

35

13.3.5 D - Dependency Inversion Principle (DIP)

“Dependa de abstracoes, nao de implementacgoes.”

Este é o ponto mais crucial para a Qualidade e Testes. Classes de alto nivel (Regra de
Negécio) nao devem instanciar classes de baixo nivel (Conexao MySQL) diretamente dentro
delas. Elas devem receber a dependéncia “injetada”.

VIOLACAO (Alto acoplamento)
class ReportService:
def __init__(self):
Preso ao MySQL para sempre. Dificil de testar.

self.db = MySQLConnection ()

CORRETO (Injecao de Dependencia)

class ReportService:
Aceita QUALQUER coisa que siga o contrato "DatabaseInterface"
def __init__(self, db: DatabaselInterface):

self .db = db

; # Production:

service = ReportService (MySQLConnection())
Tests (Mock):

service = ReportService (MockDatabase ())

Listing 7: Inversao de Dependencia

36

14 Convencoes de Estilo e Nomenclatura

Embora a Fabrica de Software trabalhe com multiplas tecnologias, a legibilidade é um principio
universal. Um cédigo bem escrito deve ser autoexplicativo, independente se é Python, C# ou
Java.

A responsabilidade de configurar as ferramentas de validagao é da area de Padroes, mas a
execucao diaria é dever de quem implementa.

14.1 Idioma do Cdédigo: Inglés

Para alinhar a Fabrica com padroes globais e facilitar a integragao open-source, o idioma oficial
do codigo (varidveis, fungoes, classes) serd o Inglés.

Excegao (Dominio Especifico): Termos de negécio estritamente brasileiros ou siglas da
Algar devem ser mantidos no original para evitar perda de sentido (ex: cpf, pix, bairro).

14.2 Sintaxe: Tabela de Referéncia por Linguagem

Como cada linguagem tem sua “gramatica” prépria, respeite o padrao nativo da tecnologia:

brainBlue

Python snake_case snake_case PascalCase
user_id get_user() UserHandler

Java / TS camelCase camelCase PascalCase
userld getUser() UserHandler

C# camelCase PascalCase PascalCase
userld GetUser() UserHandler

14.3 Semantica de Nomenclatura (Regras Universais)

Independente da linguagem, o significado do nome deve seguir estas regras:

14.3.1 Fungoes sao Agoes (Verbos)

O nome da fungao deve dizer o que ela faz. Se voce precisa ler o codigo da funcao para entender
o nome, refatore.

e Ruim: pdf_report() (Parece um objeto).
o generate_pdf report() (Python) ou GeneratePdfReport() (C#).

e Prefixos comuns: get, set, is, has, calc, validate.

14.3.2 Classes sao Entidades (Substantivos)

Classes representam o “sujeito” da acao.

e Ruim: ManageUser (Verbo).

° UserManager ou UserRepository (Substantivo).

37

14.3.3 Variaveis Booleanas (Perguntas)

Variaveis que guardam True/False devem soar como perguntas de sim ou nao.

e Ruim: open, valid, admin.

) is_open, is_valid, has_admin permission.

14.4 Seguranca de Tipos (Type Safety)

Erros de tipo sao a maior causa de bugs em producao.

e Em C#/Java: A tipagem ¢é obrigatéria pelo compilador. Use tipos explicitos em vez de
var sempre que a leitura ficar ambigua.

e Em Python: O uso de Type Hints é obrigatdério nas assinaturas de métodos publicos.

from typing import List, Dict
RUIM (0 que e ’data’? 0 que retorna?)
def process(data):

return datal[’val’] * 2

BOM (Contrato claro)

; def process_transaction(transaction_data: Dict[str, float]) -> float:

Receives transaction data and returns the final value.

return transaction_data.get(’value’, 0.0) * 2

Listing 8: Exemplo de Tipagem (Python Reference)

14.5 Exemplo Pratico: Refatoracao e Clareza

O exemplo abaixo esta em Python, mas o conceito de “Evitar Niimeros Magicos” aplica-se
a C#, Java e qualquer outra linguagem.

RUIM (Mistura de idiomas e numeros magicos)
0 que e 864007 Por que estamos multiplicando?
def converter_dias(lista):

res = []

38

for x in lista:
res.append(x * 86400)

return res

BOM (Ingles Tecnico, Constantes e Clareza)

SECONDS_IN_A_DAY = 86400

def convert_days_to_seconds (days_list: List[int]) -> List[int]:
seconds_list = []
for day in days_list:
seconds = day * SECONDS_IN_A_DAY
seconds_list.append(seconds)

return seconds_list

Listing 9: De Coédigo Obscuro para Clean Code

39

15 Ferramentas de Automacao (Qualidade Continua)

Para garantir que a equipe produza coédigo com padrao industrial e nao artesanal, o uso de
ferramentas de andlise estatica ¢ mandatério.

O objetivo nao é burocratizar, mas sim automatizar o esforco operacional desnecessario.
O Code Review deve focar em logica de negdcio e arquitetura, e nao em discussoes sobre espacos,
virgulas ou indentagao.

Nossa estratégia de automacao se baseia em trés pilares fundamentais, que devem ser apli-
cados em qualquer linguagem utilizada no projeto:

15.1 Pilar 1: Formatter Automatizado

Cada linguagem tem uma ferramenta que reescreve o cddigo automaticamente para seguir o
guia de estilo oficial.

e O que faz: Remove espacos extras, ajusta quebras de linha e padroniza a indentagao ao
salvar o arquivo.

e Por que usar: Elimina 100% das discussoes subjetivas sobre estética. O cédigo de um
estagiario e de um sénior tornam-se visualmente idénticos.

e Ferramentas Oficiais:

— Python: Black (Rigoroso, sem configuragao).
— C#: dotnet format (Nativo do SDK .NET).

— Java: Google Java Format (Padrao de mercado).

15.2 Pilar 2: Analisador Estatico (Linter)

Enquanto o formatador cuida da estética, o Linter cuida da “satide” do codigo.
e O que faz: Analisa o cédigo estaticamente em busca de:

— Varidveis declaradas mas nao usadas.
— Fungoes complexas demais (violagao do KISS).

— Bugs légicos ébvios (ex: if (x == x)).

e Por que usar: Impede que “code smells” (cheiro de c6digo ruim) se acumulem, garantindo
que a divida técnica seja paga antes do commit.

e Ferramentas Oficiais:

— Python: Pylint ou Flake8.
— C# / Java: SonarLint (Plugin poderoso que roda direto na IDE).

40

15.3 Pilar 3: Type Checker
Erros de tipo sao os bugs mais comuns e evitaveis em engenharia de software.
e O que faz: Garante que se uma funcao pede um Numero, ela nao receba um Texto.

e Por que usar: Em linguagens compiladas (C#/Java), isso é nativo, mas warnings nao
devem ser ignorados. Em Python, evita quebras em tempo de execugao (Runtime Errors).

e Ferramentas Oficiais:

— Python: Mypy (Verifica a consisténcia dos Type Hints).
— C# / Java: O préprio Compilador (Configurado com Treat Warnings as Errors).

[colback=red!5!white,colframe=red!75!black,title=Regra de Ouro (Atengao)]

Cédigo que nao passa nessas ferramentas nao deve ser aceito no repositorio. O re-
sponsavel por “Padrées” deve configurar o pipeline (CI/CD ou Pre-commit) para rejeitar
automaticamente qualquer entrega fora do padrao.

41

16 Documentacao e Legibilidade

Cédigo é lido muito mais vezes do que é escrito. A documentacao nao serve para explicar o que
o cédigo faz (o cédigo ja diz isso), mas sim para explicar ‘como usar’ (interface) e ‘por que foi
feito assim’ (decisoes).

16.1 Regra de Ouro

e Cddigo ruim nao deve ser documentado, deve ser refatorado. Nao escreva co-
mentarios para explicar varidveis com nomes ruins como x ou val. Renomeie-as.

e APIs Publicas: Toda funcao, classe ou método que pode ser acessado por outro médulo
deve ter documentacao formal (Docstring).

16.2 Padroes de Docstrings (API)

Docstrings sao a documentagao que acompanha o cédigo e permite a geracao automatica de
manuais (via Sphinx, Swagger, Javadoc). A Fébrica adota os seguintes padrdes de mercado:

brainBlue

Python Google Style Docstrings | Sphinx / MkDocs
C# XML Documentation DocFX / Swagger
Java Javadoc Javadoc / Maven Site

16.2.1 Estrutura Obrigatdria

Uma boa documentacao de funcao deve responder a quatro perguntas, nesta ordem:
1. Resumo: O que isso faz? (Verbo no imperativo: “Calcula”, “Busca”, “Envia”).
2. Args (Parametros): O que eu preciso passar? Qual o tipo? Existem restrigdes?
3. Returns (Retorno): O que sai de 147

4. Raises (Excegoes): O que pode dar errado? (Essencial para quem vai fazer o try/catch).

16.2.2 Exemplo Préatico (Python - Google Style)

RUIM (Docstring preguicosa)
def calculate_churn(users):

"""Calcula o churn."""

BOM (Padrao Google Style)

def calculate_churn_rate(active_users: int, lost_users: int) -> float:

42

Calculates the

Args:

active_users (int): Total number of users at the start of the period

lost_users

Returns:

float: The

Raises:

ValueError:

monthly churn rate based on user data.

(int): Number of users who cancelled the service.

churn rate as a percentage (0.0 to 100.0).

If active_users is zero or negative.

if active_users <= O0:

raise ValueError ("Active users must be greater than zero.")

return (lost_users / active_users) * 100.0

Listing 10: Documentacao de API Profissional

16.3 Comentarios Internos (O “Porqué”)

Enquanto a Docstring é para quem usa a fungao, o comentario é para quem mantém a funcao.

Use comentdarios para registrar dividas técnicas e decisoes de negocio nao 6bvias.

e NAO COMENTE O OBVIO:

1
2
3

1

i=1+1

Incrementa i (INUTIL - 0 codigo ja diz isso)

e COMENTE A DECISAO:

Usamos uma query bruta (SQL) aqui em vez do ORM porque

a performance do ORM estava causando timeout em relatorios > 1GB.

Ver ticket JIRA-123.

results =

db.execute_raw_sql(...)

43

1

2
3
4
5

6

16.4 Tags de Manutencao (Anotagoes)

Em um ambiente colaborativo, use tags padronizadas para sinalizar pendéncias no cédigo. A
maioria das IDEs mapeia isso automaticamente.

e TODO: Algo que precisa ser feito, mas nao bloqueia a entrega atual.
e FIXME: Um cédigo que funciona, mas é “gambiarra” e precisa de correcao urgente.
e DEPRECATED: Funcionalidade antiga que serd removida na préxima versao.

e NOTE: Um aviso importante sobre o comportamento do bloco.

def validate_cpf (cpf: str) -> bool:
TODO: Implementar validacao completa com digito verificador.
Atualmente valida apenas o tamanho para nao travar o MVP.

return len(cpf) == 11
Listing 11: Uso de Tags

44

gl W N =

17 Tratamento de Erros e Observabilidade (Logs)

Esta disciplina é a ponte entre o Desenvolvimento e a Operacao. Um sistema sem logs adequados
é uma ‘“caixa preta” cara de manter.
Nao logamos apenas para “debugar”, logamos para ‘monitorar a saide’ do negdécio.

17.1 “A Morte do print”

O uso de print () (Python) ou System.out.println (Java) é “proibido” em cddigo de producao.

e Por qué? Prints ndo possuem ‘timestamp’, nao possuem nivel de severidade (ERROR vs
INFO) e, em muitas linguagens, bloqueiam a thread principal (I/O blocking), degradando
a performance.

e Solucgao: Use sempre a instancia de Logger configurada pelo framework (Log4j, Serilog,

Python Logging).

17.2 Logs Estruturados (JSON)

Em vez de frases soltas, nossos logs devem ser objetos estruturados. Isso permite que ferra-
mentas (ELK Stack, Datadog, CloudWatch) indexem os campos.

RUIM (Texto Plano - Dificil de filtrar)

logger.info (f"Usuario {user_id} comprou o item {item_id}")

s # BOM (Estruturado - Facil de criar dashboards)

0 log sai como um JSON: {"event": "purchase", "user_id": 123, "item": 99}
2 logger.info ("Purchase completed", extra={
"event": "purchase_success",
"user_id": user_id,
"item_id": item_id,

"amount": 50.00

2 3
Listing 12: Texto vs Logs Estruturados

17.3 Niveis de Log (Padronizagao)

O uso incorreto dos niveis gera alertas falsos ou siléncio perigoso.

45

brainBlue

DEBUG Informagoes granulares para desenvolvimento. Desligado
em Producao. (Ex: Payload completo de uma requisigao).
INFO Eventos de negécio bem sucedidos. (Ex: “Pedido criado”,

“Job de sincronizagao finalizado”).

WARNING | Algo inesperado aconteceu, mas o sistema se recuperou. Nao
requer acordar ninguém de madrugada. (Ex: “Tentativa de
login falhou”, “API demorou mas respondeu”).

ERROR Uma operacao falhou. O usuério percebeu o erro. Requer
investigagao futura. (Ex: “Falha ao salvar no banco”, “Null-
PointerException”).

CRITICAL | O sistema (ou uma parte vital dele) parou. Requer atuagao
imediata da Operacao. (Ex: “Banco de dados fora do ar”).

17.4 Segurancga no Log (Sanitizacao)

[colback=red!5!white,colframe=red!75!black,title=Risco Critico (LGPD)]
Nunca, sob hipdtese alguma, logue Dados Pessoais Sensiveis (PII), Senhas, Tokens ou Chaves
de API.

e Ruim: logger.info(f‘‘User login: {password}’’)

o logger.info(f‘‘User login attempt for: {username}’’)

17.5 Tratamento de Excecoes (Exception Handling)

Tratar erros ndo é apenas evitar que o programa feche (“crash”), é garantir que o sistema falhe
de forma segura e informativa.

17.5.1 Regra 1: Nao engula excegoes (Silent Failure)

O catch vazio é o maior inimigo da manutencao. Se vocé capturou um erro, vocé tem treés
opgoes:

1. Logar e lancgar: Registra e deixa o erro subir.
2. Recuperar: Aplica uma logica de corre¢ao (ex: tenta de novo).

3. Envelopar: Transforma uma excecao técnica em uma excegao de negocio.

17.5.2 Regra 2: Envelopamento (Pattern de Camadas)

Nao exponha erros de banco de dados (SQL Injection risk) para o usudrio final/frontend.

try:
user = db.find_user (user_id)
except DatabaseConnectionError as original_error:

1. Logamos o erro tecnico (para o responsavel pela area de Operacao
ver no servidor)

46

logger.error ("DB connection failed", exc_info=original_error)

2. Lancamos um erro limpo de negocio (para o Frontend receber)
0 usuario recebe "Servico indisponivel", nao "Error 500 at line 40..."

raise ServiceUnavailableError ("User service is temporarily down.")

Listing 13: Envelopamento de Excecao (Python)

17.5.3 Regra 3: Correlation ID (Rastreabilidade)

Em sistemas distribuidos (como o Open Gateway), um erro pode ocorrer em um Servigo pro-
fundo. Todo log deve conter um correlation id (gerado na entrada da requisigdo) que é
repassado para todas as fungoes internas.

def process_payment (order_id, correlation_id):

try:
payment_gateway.charge (order_id)
except Exception as e:

0 responsavel por Operacao consegue pesquisar pelo ID e ver todo o

rastro
logger.error ("Payment failed", extra={
"correlation_id": correlation_id,
"order_id": order_id,
"error": str(e)
b
raise

Listing 14: Exemplo com Correlation ID

47

20

18 Seguranga na Implementagao (AppSec)

Seguranga nao é responsabilidade exclusiva da area de “Seguranga do Software”. A vulnerabil-
idade nasce no momento em que o codigo é digitado. Adotamos a filosofia Shift Left: pensar
em seguranca desde a primeira linha de cédigo.

18.1 Gerenciamento de Segredos (Credenciais)

[colback=red!5!white,colframe=red!75!black,title=Crime Capital]
NUNCA, sob hipétese alguma, comite senhas, tokens, chaves de API ou strings de conexao
no Git. O histérico do Git é eterno.

e Problema: API KEY = ‘12345’ no codigo.
e Solugao: Use Variaveis de Ambiente (.env).
e Ferramenta: Em Python, use python-dotenv. Em C#, use appsettings.json (com

User Secrets) ou Key Vault.

18.2 Blindagem contra Inje¢ao (SQL Injection)

A falha mais antiga e comum. Ocorre quando vocé concatena strings para formar uma query
de banco de dados.

Regra: Jamais concatene input de usuario diretamente em comandos SQL ou de Sistema
Operacional. Use Parameterized Queries (Prepared Statements).

VULNERAVEL (Concatenacao de String)
Se o usuario enviar: " ’ OR ’1’=’1 "
Ele apaga ou le todo o seu banco.

query = f"SELECT * FROM users WHERE name = ’{user_input}’"

cursor.execute (query)

SEGURO (Query Parametrizada)

; # 0 banco trata o input estritamente como dado, nao como comando.

query = "SELECT * FROM users WHERE name = %s"

cursor .execute (query, (user_input,))

Listing 15: SQL Injection: O Jeito Errado vs Certo

18.3 Validacao e Sanitizacao de Entrada

Adote o principio de Zero Trust. Todo dado que vem de fora (Frontend, API externa, Arquivo)
é potencialmente malicioso.

e Validagao de Tipo: Se o campo é idade, aceite apenas inteiros. Recuse strings.

48

e Allow-list (Lista Branca): Em vez de tentar bloquear caracteres ruins (o que é dificil),
aceite apenas os bons.

— Ezemplo: Para um campo “UF” | aceite apenas [A-Z]{2}. Qualquer outra coisa é
rejeitada.

18.4 Vazamento de Informagao (Error Handling)

Erros detalhados sao tteis para o desenvolvedor, mas sao mapas do tesouro para atacantes.

e Stack Trace: Nunca mostre o “caminho das pedras” (ex: Line 40 in /var/www/auth.py:
ConnectionRefused). Isso revela sua estrutura de pastas e tecnologia.

e Mensagens Genéricas:

— Ruim: “A senha para o usudrio ’admin’ estd incorreta.” (Revela que o usuério
‘admin’ existe).

— “Usuério ou senha invalidos.”

18.5 5. Dependéncias Vulneraveis (Supply Chain)
Bibliotecas modernas facilitam a vida, mas podem conter falhas. Nao use versoes antigas.
e O responsavel pela drea de Seguranca do Software pode rodar scanners, mas o desenvolve-

dor deve estar atento aos alertas do GitHub/GitLab (Dependabot) e atualizar os pacotes
(pip, npm, nuget) regularmente.

49

19 Integracao e Fluxo de Trabalho

A area de Implementacao atua como o motor da fabrica, transformando defini¢oes em produto
real. Para isso, atua no centro de um fluxo de comunicacao constante:

19.1 Fluxo de Entrada (Antes de Codificar)

Nesta etapa, o objetivo é garantir que o problema foi bem compreendido antes de gastar horas
programando.

e Engenharia de Requisitos: O cddigo deve resolver o problema de negdcio descrito no
ERS.

— Atenc¢ao: Nao confie cegamente apenas nos diagramas técnicos. Se o diagrama
parecer contradizer a regra de negécio do ERS, consulte o responsdvel pela area
imediatamente. A regra de negdcio sempre tem precedéncia sobre o desenho técnico.

e Projeto e Modelagem:

— Viabilidade: Se a arquitetura proposta ou o diagrama de classes for inviavel de

implementar no prazo estipulado, é dever do Implementador levantar a mao (“Push-
back”).

— Fidelidade: O codigo deve refletir os diagramas. Se vocé precisou mudar a es-
trutura da classe durante o cédigo, o diagrama precisa ser atualizado. Cddigo e
Documentagao devem andar juntos.

19.2 Fluxo de Apoio (Durante a Codificagao)

Vocé nao estd codando sozinho. Use os especialistas para blindar seu codigo.

e Seguranca: Adote a postura de Shift Left. Nao espere o cédigo estar pronto para
perguntar se ele é seguro.

— Fzxemplo: Perguntando ao responsavel por Seguranca do Cédigo - “Vou usar essa lib
para gerar PDF, ela tem alguma vulnerabilidade conhecida?”

e Padroes: Se o Linter ou o Pipeline estiverem travando seu commit injustamente, acione
o responsavel para ajustar as regras de automagao. Nao tente burlar as regras locais.

19.3 Fluxo de Saida (Entrega)

A implementacao sé termina quando o préximo da fila consegue trabalhar.
e QA e Entrega:

— Smoke Test: Nunca entregue cédigo que “nem builda”. Antes de passar para QA,
rode o caminho feliz (happy path) na sua maquina.

— Testes Unitarios: O codigo deve ir para QA com a cobertura minima de testes
unitarios definida no projeto. QA foca em testes integrados e de sistema, nao deveria
perder tempo pegando erro de sintaxe.

e Operagao:

20

“Na minha maquina funciona”: Essa frase é proibida. Garanta que todas as
dependéncias novas estejam no requirements.txt ou Dockerfile.

— Variaveis de Ambiente: Se vocé criou uma nova chave ou configuragao, avise
o responsavel da Operacao para que ele possa configura-la no ambiente de Ho-
mologagao/Produgao.

51

20 Checklist de Code Review (Pull Request)

O Code Review ¢ a tiltima linha de defesa antes de um bug ou vulnerabilidade chegar a producao.
O revisor nao deve aprovar o PR se qualquer um dos itens abaixo nao for atendido.

20.1 Padroes e Legibilidade

Idioma: O cédigo (varidveis, fungoes) estd 100% em Inglés? (Exceto termos de dominio
local).

Clean Code: Nomes de variaveis e fungoes revelam claramente a intengao?

Documentagao: Fungoes publicas possuem Docstrings no padrao definido (Args, Re-
turns, Raises)?

Sujeira: Cédigo comentado, prints de debug e imports nao usados foram removidos?

Automacao: O cdédigo passou no pipeline de Linter, Formatter e Type Checker sem
erros?

20.2 Arquitetura e Design (SOLID/KISS)

KISS: Existem fungdes complexas demais que poderiam ser quebradas? (Ninhada de
if/else).

DRY': Existe logica de negdcio duplicada que deveria virar uma funcao auxiliar?
Responsabilidade: A classe/fungao faz apenas uma coisa? (Principio SRP).
Fidelidade: A implementacao reflete os diagramas e arquitetura desenhados pelo time

de Projeto?

20.3 Seguranca e Performance (Critico)

Segredos: GARANTIA de que nao ha senhas, tokens ou chaves hardcoded?
Injegao: Queries SQL estao parametrizadas (sem concatenacao de string)?
Validagao: Inputs externos sao validados e sanitizados antes do processamento?

Loops: Existe algum loop (for/while) perigoso que pode travar com grandes volumes
de dados?

20.4 Operacao e Observabilidade
Logs: Os logs estao estruturados (JSON)? O nivel (INFO/ERROR) esté correto?

LGPD: Garantia de que nenhum dado sensivel (PII) ou senha esta sendo logado?

Tratamento de Erro: As excegoes sao tratadas ou envelopadas corretamente (sem
try/catch vazios)?

52

20.5 Testes

Cobertura: Existem testes unitarios cobrindo o Happy Path - “Caminho Feliz” - e as
principais falhas?

Independéncia: Os testes rodam isolados (Mock) sem depender de banco de dados real?

23

W NN N NN
S © w N o «

%

21 Anexo Técnico: Setup do Ambiente de Desenvolvi-
mento

Para garantir a padronizacao, utilizamos automacao de *git hooks*. Abaixo estao as instrucoes
de configuracao separadas por stack tecnoldgica.

21.1 Perfil A: Stack Python (Projetos de Backend / Scripts)

Este perfil utiliza o framework nativo pre-commit e é o padrao para projetos de ciéncia de
dados e APIs em Python.

21.1.1 Instalacao

O arquivo requirements-dev.txt deve conter: black, mypy, pylint, pre-commit.

No terminal (ambiente virtual ativo):

pip install -r requirements-dev.txt

; pre-commit install

Listing 16: Setup Python

21.1.2 Configuracao (.pre-commit-config.yaml)

repos:
- repo: https://github.com/psf/black
rev: 23.9.1
hooks:
- id: black

language_version: python3

- repo: https://github.com/pre-commit/mirrors-mypy
rev: v1.5.1
hooks:
- id: mypy

additional _dependencies: [types-requests]

- repo: local
hooks:

- id: pylint

54

1
2

3
3

name: pylint

entry: pylint

language:

system

types: [python]

args: [u_rnu’ "—sn"]

Listing 17: Configuracao Padrao Python

21.2 Perfil B: Stack C# / .NET

Para projetos .NET, utilizamos a ferramenta oficial dotnet format combinada com hooks

locais.

21.2.1 Instalacao das Ferramentas

Instala o formatador globalmente ou localmente no projeto

1 dotnet tool install -g dotnet-format

Listing 18: Setup C

21.2.2 Automacao (Husky.Net ou Script)

Recomendamos o uso do pacote Husky.Net para gerenciar os commits.

dotnet new tool-manifest

dotnet tool install Husky

dotnet husky install

Adicione a tarefa no arquivo task-runner. json gerado pelo Husky:

["format", "--verify-no-changes"],

{
"tasks": [
{
"name": "dotnet-format",
"command": "dotnet",
"args":
"group": "pre-commit"
}
]

95

Gl W N =

Listing 19: Tarefa do Husky para C

21.3 Perfil C: Stack Java

Para Java, a validacao é feita via plugins do Maven/Gradle.

21.3.1 Configuracao no pom.xml (Maven)

Adicione o plugin Spotless (Formatagao) e Checkstyle (Lint) no pom.xml:

<plugin>

<groupId>com.diffplug.spotless</groupld>

<artifactId>spotless-maven-plugin</artifactId>

<version>2.40.0</version>

<configuration>

<java>

<googleJavaFormat />

</java>

</configuration>

</plugin>

Listing 20: Exemplo Spotless Maven

21.4 Integracao com IDE (VS Code)

Para feedback visual em tempo real, instale as extensoes conforme sua linguagem:

e Python:

— Extensao:

— Extensao:
e C# / .NET:

— Extensao:

— Extensao:
e Java:

— Extensao:

— Extensao:

Black Formatter (Microsoft)
Mypy Type Checker

C# Dev Kit

SonarLint

Extension Pack for Java

Checkstyle for Java

o6

22 Usabilidade

22.1 Visao Geral

A érea de Usabilidade é responsdvel por assegurar que as interacoes entre os sistemas e seus
usuérios (sejam eles humanos ou outros sistemas) sejam intuitivas, eficientes e propensas ao
sucesso. O objetivo é reduzir a carga cognitiva necessaria para operar ou integrar as solucoes
da empresa.

Aqui, definimos os padrdes que garantem a Consisténcia (o sistema se comporta sempre
da mesma forma), a Previsibilidade (o usuério sabe o que esperar) e a Recuperabilidade
(facilidade em corrigir erros), atuando como uma ponte de qualidade entre a necessidade do
negoécio e a implementacgao técnica.

22.2 Fundamentos Teoricos

A préatica de usabilidade nesta organizacao ¢ fundamentada nas seguintes Areas de Conheci-
mento (KAs) do SWEBOK v4 e normas globais:

e Software Design (Cap. 2): Aplicacao de principios de Design de Interface de Usudrio
(UI) para garantir interagoes eficazes.

e Software Quality (Cap. 10): Utilizacdo de modelos de qualidade (como a ISO/IEC
25010), onde a Usabilidade é tratada como um requisito nao funcional critico (Operabil-
idade e Apreensibilidade).

e Heuristicas de Usabilidade (Nielsen/Norman): Aplicacdo de principios universais
como “Visibilidade do Status do Sistema” e “Prevencao de Erros”.

22.3 Principais Responsabilidades

A atuacao da area de Usabilidade permeia todo o ciclo de vida do software, com foco na
experiéncia de quem consome a tecnologia.

22.3.1 Na Fase de Definicao e Design

Nesta etapa, a Usabilidade estabelece as “regras do jogo” para garantir coeréncia entre sistemas.

Acao: Criagao e manutengao de Guias de Estilo (Style Guides) e padroes de interagao.
Definicao de um vocabulario controlado para garantir que os mesmos termos sejam utilizados
de forma consistente em todos os sistemas.

22.3.2 Na Fase de Avaliagao (Testing)

Responsabilidade de auditar se a solucao proposta é facil de usar antes de ser massificada, em
conformidade com as préticas de Software Testing (SWEBOK, Capitulo 4).

Acao: Avaliacao heuristica das interfaces e APIs. Verificacao da clareza das mensagens de
feedback (sucesso e erro) e da qualidade da documentagao de apoio.

22.4 Integracao com o Time

A seguir, detalha-se como a area de Usabilidade interage com as demais areas da Software
House.

o7

22.4.1 Com Engenharia de Requisitos

Entrada: Necessidades do negdcio e perfil dos usuarios.

Acao: Garantir que o requisito nao gere complexidade desnecesséaria. A Usabilidade valida
se o fluxo proposto pela Engenharia de Requisitos é cognitivamente simples ou se exige esforgo
excessivo do usuadrio final.

22.4.2 Com Q&A / Testes

Entrada: Versoes estaveis do sistema para homologacao.

Acao: Enquanto o Q&A foca em defeitos de cddigo (bugs), a Usabilidade foca em defeitos
de design (confusao). A édrea de Usabilidade apoia o Q&A identificando fluxos que, embora
tecnicamente corretos, induzem o usuério ao erro.

o8

23

1

Leitura Recomendada

Hohpe, G., & Woolf, B. Enterprise Integration Patterns: Designing, Building, and De-
ploying Messaging Solutions, Addison-Wesley, 2003. Descri¢ao: O livro classico e funda-
mental sobre integracao. Apresenta um catalogo de 65 padroes de integragao baseados
em mensageria, fornecendo um vocabulario e uma notacao visual para descrever solugoes
de integracao em larga escala. E a referéncia principal para entender os mecanismos de
comunicagao assincrona.

Newman, S. Building Microservices: Designing Fine-Grained Systems, O’Reilly, 2015.
Descricao: Embora focado em microsservicos, o livro dedica uma parte significativa a
integragao entre servigos, abordando comunicacao sincrona (REST/RPC) e assincrona
(mensageria), além de padrdes de integracao de dados e transagoes distribuidas.

Fowler, M. Patterns of Enterprise Application Architecture, Addison-Wesley, 2002. De-
scricao: Uma obra essencial sobre arquitetura de software empresarial. Embora nao
seja estritamente sobre integracdo, os padroes apresentados (como Data Mapper, Unit of
Work, Repository) sao cruciais para a construcao de sistemas que se integram de forma
limpa e eficiente.

Bass, L., Clements, P., & Kazman, R. Software Architecture in Practice, 4th ed., Addison-
Wesley, 2021. Descricao: Aborda a arquitetura de software de forma abrangente, in-
cluindo a importancia das qualidades de arquitetura (como desempenho, seguranga e
manutenibilidade), que sdo diretamente impactadas pelas decisoes de integragao.

Sommerville, I. Engenharia de Software, 9% ed., Pearson, 2011. Descricao: Um livro-texto
classico de engenharia de software que cobre o ciclo de vida completo do desenvolvimento,
incluindo a fase de integragao e teste de sistemas.

Coulouris, G., Dollimore, J., Kindberg, T., & Blair, G. Distributed Systems: Concepts and
Design, 5th ed., Addison-Wesley, 2011. Descricao: Fornece a base tedrica para entender
os desafios e as solucoes em sistemas distribuidos, que é o contexto de toda integracao
de software em larga escala. Cobre comunicacao, concorréncia, tolerancia a falhas e
seguranga.

29

References

1| Integracao de software.. Disponivel em: https://apipass.com.br/
g P pip
integracao-de-software-como-funciona/

[2] Guia completo sobre Integrag¢io de Software.. Disponivel em: https://www.techverdi.
com/pt/blog

(3] Enterprise Integration Patterns.. Disponivel em: https://www.
enterpriseintegrationpatterns.com/

[4] iPaaS vs ESB. . Disponivel em: https://latenode.com/pt-br

60

https://apipass.com.br/integracao-de-software-como-funciona/
https://apipass.com.br/integracao-de-software-como-funciona/
https://www.techverdi.com/pt/blog
https://www.techverdi.com/pt/blog
https://www.enterpriseintegrationpatterns.com/
https://www.enterpriseintegrationpatterns.com/
https://latenode.com/pt-br

	Requisitos do Sistema
	Requisitos Funcionais
	Requisitos Não-Funcionais
	Protótipo
	Detalhamento das Telas do Protótipo

	Projeto de Software
	Diagramas de Interação
	Diagramas de Classes
	PersistÊncia de Dados
	Mapeamento de Ferramentas
	Linguagem de Programação
	Frameworks e Bibliotecas
	Ferramentas de Desenvolvimento
	Containerização e Automação

	Versionamento
	Introdução
	Configuração do Ambiente
	Versionamento Semântico (SemVer)
	Estrutura da Versão (X.Y.Z)

	O Modelo Git Flow
	Branches Permanentes
	Feature Branches (feature/*)
	Release Branches (release/*)
	Hotfix Branches (hotfix/*)

	Exemplo:
	Glossário de Comandos
	Configuração Inicial
	Operações Diárias
	Boas Práticas de Commit

	Deploy
	Infraestrutura
	Processo de Deploy

	Ambiente de Produção e Homologação
	Ambiente de Homologação
	Ambiente de Produção
	Controle de Acesso e Segurança (Opcional)

	QA
	Tipos de Testes
	Testes de Requisitos (Validação Inicial)
	Testes Funcionais
	Testes de Integração
	Testes de Regressão
	Testes de Aceitação (UAT)
	Testes de Performance Básicos
	Smoke Test Pós-Deploy

	Processo de QA (Passo a Passo)
	Planejamento (Antes da Implementação)
	Design dos Testes
	Preparação
	Execução
	Reteste e Regressão
	Encerramento

	Critérios de Entrada e Saída
	Entrada para Início dos Testes da Sprint/Projeto
	Saída para Liberação em Produção

	Métricas de Qualidade

	Padrões de Adoção de Versões no Mercado
	APIs de Telecomunicações (CAMARA / Open Gateway)
	Java / JDK
	Protocolos de Rede
	APIs de Pagamento e Financeiro
	Linguagens de Programação
	Bancos de Dados
	Infraestrutura / DevOps
	Recomendações
	Fontes Recomendadas

	Processo de Integração
	Tipos e Padrões de Integração
	Tipos de Integração por Tecnologia
	Padrões de Integração Empresarial (EIP)

	Ferramentas e Tecnologias de Integração
	Plataformas de Integração
	Integração por API (Application Programming Interface)
	Tipos de APIs
	Melhores Práticas de Design de APIs (RESTful)
	Ciclo de Vida da API

	Comparativo ESB vs iPaaS

	Procedimento para Integração de Software
	Fases do Projeto
	Melhores Práticas

	Passo a Passo para o Desenvolvimento de APIs RESTful
	Design da API (API-First)
	Implementação e Codificação
	Testes e Validação
	Governança e Evolução

	Segurança de Software
	Fundamentos Teóricos
	Da Visão SWEBOK v4
	OWASP Top 10 (2021)
	Práticas de Implementação (Codificação Segura)
	As 10 Melhores Práticas de Segurança do CERT/CC

	Principais Responsabilidades
	Na Fase de Definição e Design
	Durante Implementação
	Durante Testes e Entrega

	Princípios Fundamentais (Clean Code)
	KISS (Keep It Simple, Stupid)
	O que é Simplicidade?
	Sinais de Alerta (Code Smells)
	Técnica Prática: Guard Clauses

	DRY (Don't Repeat Yourself)
	O Problema da Duplicação
	A ``Regra de Três'' (Rule of Three)
	Falsa Duplicação (Cuidado)
	Exemplo Prático: Centralização de Lógica

	SOLID Principles
	S - Single Responsibility Principle (SRP)
	O - Open/Closed Principle (OCP)
	L - Liskov Substitution Principle (LSP)
	I - Interface Segregation Principle (ISP)
	D - Dependency Inversion Principle (DIP)

	Convenções de Estilo e Nomenclatura
	Idioma do Código: Inglês
	Sintaxe: Tabela de Referência por Linguagem
	Semântica de Nomenclatura (Regras Universais)
	Funções são Ações (Verbos)
	Classes são Entidades (Substantivos)
	Variáveis Booleanas (Perguntas)

	Segurança de Tipos (Type Safety)
	Exemplo Prático: Refatoração e Clareza

	Ferramentas de Automação (Qualidade Contínua)
	Pilar 1: Formatter Automatizado
	Pilar 2: Analisador Estático (Linter)
	Pilar 3: Type Checker

	Documentação e Legibilidade
	Regra de Ouro
	Padrões de Docstrings (API)
	Estrutura Obrigatória
	Exemplo Prático (Python - Google Style)

	Comentários Internos (O ``Porquê'')
	Tags de Manutenção (Anotações)

	Tratamento de Erros e Observabilidade (Logs)
	``A Morte do print''
	Logs Estruturados (JSON)
	Níveis de Log (Padronização)
	Segurança no Log (Sanitização)
	Tratamento de Exceções (Exception Handling)
	Regra 1: Não engula exceções (Silent Failure)
	Regra 2: Envelopamento (Pattern de Camadas)
	Regra 3: Correlation ID (Rastreabilidade)

	Segurança na Implementação (AppSec)
	Gerenciamento de Segredos (Credenciais)
	Blindagem contra Injeção (SQL Injection)
	Validação e Sanitização de Entrada
	Vazamento de Informação (Error Handling)
	5. Dependências Vulneráveis (Supply Chain)

	Integração e Fluxo de Trabalho
	Fluxo de Entrada (Antes de Codificar)
	Fluxo de Apoio (Durante a Codificação)
	Fluxo de Saída (Entrega)

	Checklist de Code Review (Pull Request)
	Padrões e Legibilidade
	Arquitetura e Design (SOLID/KISS)
	Segurança e Performance (Crítico)
	Operação e Observabilidade
	Testes

	Anexo Técnico: Setup do Ambiente de Desenvolvimento
	Perfil A: Stack Python (Projetos de Backend / Scripts)
	Instalação
	Configuração (.pre-commit-config.yaml)

	Perfil B: Stack C# / .NET
	Instalação das Ferramentas
	Automação (Husky.Net ou Script)

	Perfil C: Stack Java
	Configuração no pom.xml (Maven)

	Integração com IDE (VS Code)

	Usabilidade
	Visão Geral
	Fundamentos Teóricos
	Principais Responsabilidades
	Na Fase de Definição e Design
	Na Fase de Avaliação (Testing)

	Integração com o Time
	Com Engenharia de Requisitos
	Com Q&A / Testes

	Leitura Recomendada

