Propriedades Mecânicas
- Para selecionar materiais apropriados e então obter um projeto eficiente, é essencial que se conheçam as propriedades relevantes dos materiais. As propriedades mecânicas dos materiais são medidas em termos do comportamento do material quando sujeito a uma força e são determinadas pelas deformações. Valores numéricos absolutos de algumas propriedades mecânicas não são determinados facilmente, mas são apresentados em comparação a outros materiais.
- Muito materiais em serviço estão sujeitos a forças ou carga, por exemplo a liga de alumínio empregada nas asas dos aviões ou o aço no eixo dos automóveis. Em tais situações é necessário projetar o equipamento de tal forma que as deformações em serviço não serão excessivas e fraturas não ocorrerão.
Deformação nos metais
- Quando uma tensão (definida como a relação da força aplicada por unidade de área) é aplicada em um material o mesmo sofrerá deformação. Esta deformação pode ser elástica, a qual desaparece quando a tensão é retirada, ou plástica, que é uma deformação permanente. A figura a seguir mostra diagramas tensão x deformação típicos.
Arquivo:CurvaTensaoxDeformacao.png
- Conforme a figura, até o ponto L.E. a deformação é proporcional, ou seja, obedece a lei de Hooke, sendo o coeficiente de elasticidade calculado pela razão entre a tensão e a deformação correspondente. O ponto L.E. é o limite de elasticidade ou de escoamento.
- Em materiais tais como os aços doces, o limite de escoamento é bem definido, quando o material escoa, ou seja, a deformação plástica ocorre sem que, praticamente, haja aumento da tensão. Além, do ponto L.E. a deformação será, em parte, elástica e, em parte, inelástica. Porém, o material não mais retornará às suas dimensões originais quando a força for removida. Após o ponto L.E. o material estica rapidamente e a máxima tensão é aplicada no ponto L.Re. No ponto L.Ru ocorre a fratura.
- Cabe ainda ressaltar a diferença de comportamento nas diversas curvas mostradas. Por exemplo, na figura (a) trata-se de um material frágil que se rompe sem que haja deformação plástica. Já na figura (b) temos um material dútil, com limite de escoamento definido. Quando não ocorre escoamento, o L.E. é definido como a tensão necessária para provocar uma deformação permanente de 0,2%.
- Tensão: força por unidade de área;
- Deformação plástica: deformação permanente provocada por tensões que ultrapassam o limite de elasticidade;
- Deformação elástica: deformação reversível, proporcional à tensão aplicada;
- Módulo de elasticidade (módulo de Young): quociente entre a tensão aplicada e a deformação elástica resultante.
- Ductilidade: deformação plástica total até o ponto de ruptura. Pode ser expressa como o alongamento (ver Fig. 1.10) ou como a redução na área da seção reta do corpo, imediatamente antes da ruptura, chamada estricção: No material dútil a região do regime plástico é muito maior que a do regime elástico; o alongamento e estricção são grandes.
- Estricção = área inicial - área final ] / área inicial
- O limite de resistência à tração de um material é calculado dividindo-se a carga máxima suportada pelo mesmo pela área da seção reta inicial. Esse limite, tal como os demais, é expresso em unidades de tensão. Deve-se notar que o limite de resistência é calculado em relação à área inicial. Essa é uma observação importante, particularmente para os materiais dúcteis, pois os mesmo sofrem uma redução de área quando solicitados pela carga máxima. Embora a tensão verdadeira que solicita o material seja calculada considerando-se a área real, a tensão tal como definida anteriormente é mais importante para o engenheiro, pois os projetos devem ser feitos com base nas dimensões iniciais. Por este motivo também o limite de ruptura pode ser inferior ao limite de resistência.
- Outro aspecto importante é que a deformação plástica (permanente) dos metais ocorre pelo deslizamento dos átomos, escorregando uns sobre os outros no cristal. Este deslizamento tende a acontecer preferencialmente ao longo de planos e direções específicos do cristal.